
ECDSA-compatible Delegable Undeniable Signature

Sam Ng and Tomas Tauber
Crypto.com, Hong Kong, China

Keywords: Delegable Undeniable Signature, Designated Confirmer, Blockchain, Privacy.

Abstract: We present the first ECDSA-compatible delegable undeniable signature. Undeniable signature was first in-
troduced by Chaum and Antwerpen. Such signatures cannot be verified without running a zero-knowledge
protocol with the signer. Delegable undeniable signature extends this by allowing the signer to delegate the
verification ability to a third party. An example use case for delegable undeniable signature is that a trusted
party verifies a user’s personal information, signs a message and then passes the signature back to the user. If
a verifier needs to know that personal information (e.g. an online merchant selling alcohol needs to verify the
user’s age), the user can run the verification protocol as a delegate to prove the trusted party (e.g. the govern-
ment) signed that personal information. The verifier will be convinced the signature is genuine, but will not be
able to convince others. Our signature scheme is based on standard ECDSA, which is the most common sig-
nature scheme in blockchain technology. It is easy to construct (it involves two standard ECDSA signatures)
and easy to verify (a simple two-round zero-knowledge protocol). We believe our signature scheme is useful
especially in Self-Sovereign Digital Identity.

1 INTRODUCTION

Digital signatures can authenticate message origin, as
changes inside signed content nullify the validity of
the original digital signatures. However, this universal
verification of digital signatures may not be desirable
in some applications (e.g. disclosing personal infor-
mation). Traditional digital signatures, hence, have an
inherent conflict between authenticity and privacy.

To address this issue, Chaum and van Antwerpen
(Chaum and van Antwerpen, 1989) introduced the no-
tion of undeniable signatures. The key property of un-
deniable signatures lies in the fact that they require the
signer’s involvement in the signature verification. By
doing so, the signer has control over whom the signed
document is being disclosed to. Different variants
of undeniable signature schemes have been proposed
since the initial work of Chaum and van Antwerpen:

• Convertible: the signature can be converted to a
publicly verifiable signature (Boyar et al., 1990;
Damgård and Pedersen, 1996).

• Designated Verifier: the verification protocol can
only convince a particular verifier, preventing the
verifier acting as an intermediary and launch-
ing man-in-the-middle attacks (Jakobsson et al.,
1996).

• Designated Confirmer: the validity of the signa-
ture can be confirmed by the signer or by another
third party who knows the private key of a partic-
ular public key (Chaum, 1994; Okamoto, 1994).

• Delegable: a relaxed version of designated con-
firmer, the validity of the signature can be con-
firmed by the signer or by any third party who
knows a particular secret value (Gennaro et al.,
1997).

At the time of these works, the problem desig-
nated confirmer and delegable verification were try-
ing to solve is to prevent the signer from refusing to
engage in the verification process. In that case, the
signer is not a “trusted” party and the message to be
signed is around promises – e.g. something like “I
will pay Alice 1 million dollars if X happens”. The
confirmer or the delegate act as arbitrators.

Recently, there is another emerging use case that
makes designated confirmer and delegable verifica-
tion very interesting: signing sensitive personal infor-
mation. In this case, the signer is usually a trusted
party such as a government office, a bank, or a doctor,
who verifies a user’s personal information and then
signs the corresponding data. In this case, the con-
firmer or the delegate is actually the data owner. An
example use case is to allow users to prove their gov-
ernment verified digital identity while signing-up for

470
Ng, S. and Tauber, T.
ECDSA-compatible Delegable Undeniable Signature.
DOI: 10.5220/0007949604700477
In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 470-477
ISBN: 978-989-758-378-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



online bank accounts. While this setup does not pre-
vent the bank from leaking its users’ information, it
prevents the bank from acting on behalf of its users
and abusing their identities.

The motivating problem we aim to solve and im-
plement is digital identity management in blockchain
networks, and we will refer to this use case through-
out the paper.

Our Contribution. We present a simple delegable
undeniable signature scheme which is based on con-
straints of two related polynomials. Our signature
scheme utilizes the standard ECDSA (Johnson and
Menezes, 1998) operations which ease the effort of
analyzing its security properties. In addition to that,
our scheme can be directly applied to blockchain net-
works, such as Bitcoin and Ethereum, where ECDSA
is employed. These properties make our signature
scheme a very suitable candidate in the area of dig-
ital identity management in blockchain networks.

2 RELATED WORK

Designated confirmer undeniable signature scheme
was first introduced by Chaum (Chaum, 1994). The
main motivation was to prevent the signer from refus-
ing or being unavailable to be engaged in the signa-
ture verification protocol. Following that, Okamoto
presented a formal security model for DC-signature
(Okamoto, 1994) which proved that “designated con-
firmer signatures exist if and only if public-key en-
cryption exists”.

In Chaum’s original paper, the signing protocol is
a proof to convince the signature receiver not only the
signature is valid, but also the designated confirmer is
guaranteed to be able to verify1 the signature. This as-
surance is important for their usage scenario because
the signature receiver may need the designated con-
firmer to prove to a judge that the signature is valid
when there is a dispute.

Delegable undeniable signature allows anyone
who knows the secret value to be able to verify the
signature, does not bind the confirmer to a public
key. Delegable undeniable signature does not work
in Chaum’s usage scenario because (1) if the signa-
ture receiver receives the secret value, then the re-
ceiver can convert the signature into a publicly ver-
ifiable signature by disclosing the secret value, which
is what the original signer is trying to avoid, (2) if the
signature receiver does not receive the secret value,
then there is no way (at least no simple way on its

1There is no disavowal protocol in (Chaum, 1994).

own) for the receiver to be assured that the designated
confirmer has received and securely stored the secret
value.

However, in our usage scenario – signing personal
information – the undeniablility is not a benefit of the
signer, but a benefit of the message owner. Therefore,
the signer does not need to prove to the receiver that
a confirmer will later be able to verify the signature
because the receiver is the confirmer, and the receiver
has no incentive to convert the signature into a pub-
licly verifiable signature.

RSA-Based Undeniable Signature (Gennaro et al.,
2000) is closely related to our work except their sig-
nature scheme is based on RSA while ours is based
on ECDSA. In their scheme, both exponents of RSA
are kept secret by the signer, while the public key con-
sists of a composite modulus and a sample RSA sig-
nature. The verification process can be delegated to a
third party by sharing the verification exponent with
the delegate.

Nominative signature (Kim SJ, 1996) is another
type of undeniable signature. While undeniable sig-
nature can only be verified with the aid of the signer,
a nominative signature can only be verified and cre-
ated with the aid of the nominee. In 2007, Liu et al.
presented a nominative signature (Liu et al., 2007)
using a witness indistinguishable proof (Feige and
Shamir, 1990) with a construction similar to a 3-Move
Undeniable Signature Scheme (Kurosawa and Heng,
2005). In 2012, Liu et al. followed up with a one-
move Nominative Signature Scheme (Liu and Wong,
2012) but this advanced scheme requires the use of
bilinear pairings.

The idea of “Undeniable Certificates” (Gennaro
et al., 2001) is that a signer uses an undeniable signa-
ture scheme to sign his public key and, thereby, create
an undeniable certificate which can be used to verify
the signer’s digital signature on any document signed
using the signer’s corresponding private key. Hence,
once the undeniable certificate is received by the re-
cipient, the recipient and the signer engage one time
in a confirmation protocol or denial protocol to the
satisfaction of the recipient that the undeniable cer-
tificate has in fact been signed by the signer and thus
comprises the signer’s certified public key. There-
after, the recipient can use the certified public key to
verify any documents signed by the signer. The prob-
lem for using undeniable certificate on digital identity
is, if users pass their signed personal information to a
malicious verifier, the malicious verifier can pass the
signed documents to another verifier, as long as this
verifier has previously run the verification protocol
with the CA, it can be convinced about the authen-
ticity of the personal data as well.

ECDSA-compatible Delegable Undeniable Signature

471



Selectively disclosable digital certificates (Be-
naloh, 2003) enable certifying private data that can be
per-field disclosed to selected third parties. They do
so by generating a random key for each field and using
these keys to encrypt data fields in issued certificates.
Owners of certificates can disclose some of the keys
to selected third parties and selected third parties can
decrypt and verify only the disclosed data fields. Sim-
ilarly to our work, CAs certify private data authentic-
ity and only one certificate is issued. Selectively dis-
closable digital certificates are, however, fully trans-
ferable. If a third party leaks received random keys,
anyone can decrypt and verify private data stored in a
certificate. In contrast, our work is non-transferable,
so that certified private data cannot be publicly leaked
with a strong cryptographic proof.

Hyperledger Indy (West, 2016) is a project that
centers around the idea of Self-Sovereign Identity on
blockchain networks. The technology that under-
pins Hyperledger Indy, such as privacy-preserving at-
tribute credentials and verifiable claims, was mainly
prototyped in IBM Identity Mixer (Osborne et al.,
2017). In Hyperledger Indy, a user obtains certified
credentials from authorities (e.g. government or em-
ployers) and uses them to prove “claims” about their
content to selected third parties (e.g. an insurance
company). It employs zero-knowledge proofs (Gold-
wasser et al., 1989) in unlinkable “claims”, such that
certified data is not directly revealed to selected veri-
fying third parties. In case of disputes, values are re-
vealed to a trusted third party “inspector” which can
decrypt the private data. It employs the CL signature
scheme (Camenisch and Lysyanskaya, 2002). This
signature scheme allows signing on cryptographic
commitments which can be verified. One other simi-
lar digital signature scheme is U-Prove (Paquin and
Zaverucha, 2011). The approach taken in Hyper-
ledger Indy is different from our work, so we see
both approaches as complimentary: standardization
that Hyperledger Indy provides can be incorporated
with our work, while ours can simplify the workflow
where private data needs to be revealed in a claim (e.g.
cross-hospital medical record transfer) and the CA /
issuer needs to be the same entity as the “inspector”.

3 PRELIMINARIES

The core of our signature scheme relies on the stan-
dard Elliptic Curve Cryptography (Koblitz, 1987;
Miller, 1985) and ECDSA (Johnson and Menezes,
1998) signature scheme. In this section, we briefly
present the basic ideas and operations of ECDSA for
a later reference in our discussion.

3.1 Quick Review on ECDSA

3.1.1 Signature Generation

If Alice, with private key dA and public key QA =
dA×G , wants to sign a message z = hash(m) using
ECDSA with G as the base point of the curve, n as
the order of the curve, she needs to generate a random
number k ∈ {1,n−1} and publish (r,s) where r,s 6= 0
and

(x,y) = k×G
r = x (mod n)

s = k−1(z+ rdA) (mod n)

 (1)

3.1.2 Signature Verification

Bob wants to verify that a message m is signed with
Alice’s signature (r,s). He calculates z= hash(m) and
computes the following:

zs−1×G + rs−1×QA

= zk(z+ rdA)
−1×G + rk(z+ rdA)

−1×QA

= zk(z+ rdA)
−1×G + rk(z+ rdA)

−1dA×G
= k(z+ rdA)(z+ rdA)

−1×G
= k×G
= (x,y)


(2)

Now, if x (mod n) = r, then the signature is verified.

4 OUR SIGNATURE SCHEME

4.1 Signature Generation Protocol

The signature generated in our scheme is based on the
standard ECDSA with the following modifications:

1. Instead of providing one signature, the signer
signs two values, using two random numbers k1
and k2 respectively.

2. Instead of signing z = hash(m), the first signature
is performed on z+α where α ∈ {1,n− 1} is a
random number where z+α 6= 0 and z+α2 6= 0,
the signer shares the value of α with the prover
(data owner) via a secure channel2.

3. The second signature is performed on z+β with
β = α2.

2The secret value can be exchanged face-to-face, by us-
ing a USB token, S/MIME, ECIES, NFC, etc. It is out of
the scope of this paper.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

472



4. The value of x, instead of r = x mod n, is pub-
lished.

5. The value of y is published as well.

In summary, the signer publishes two signatures
(x1,y1,s1) and (x2,y2,s2) which are generated accord-
ing to Eq. 3 and 4, and sends the value of α to the
prover (data owner) in a secure and encrypted chan-
nel.

(x1,y1) = k1×G
s1 = k−1

1 (z+α+ x1dA)

}
(3)

(x2,y2) = k2×G
s2 = k−1

2 (z+α
2 + x2dA)

}
(4)

4.2 Confirmation Protocol

Upon receiving the signature, the verifier calculates
α×G and β×G by using Eq. 2:

zs−1
1 ×G + x1s−1

1 ×QA

= (z+ x1dA)s−1
1 ×G

= (z+ x1dA)k1(z+α+ x1dA)
−1×G

= (k1− k1α(z+α+ x1dA)
−1)×G

= k1×G −αs−1×G
= (x1,y1)−αs−1×G

Therefore

A = α×G = s1× (x1,y1)− z×G − x1×QA (5)

Similarly

B = β×G = s2× (x2,y2)− z×G − x2×QA (6)

Without knowing the exact value of α and β, the
verifier cannot verify if the signature is valid or not.
However, no matter what is the exact value of α, as
long as the prover can prove β = α2, then it becomes
very difficult to cheat because

z+α = c1 (7a)

z+α
2 = c2 (7b)

where c1 and c2 are constants

Equation 7a is a straight line while 7b is a
quadratic equation, therefore, there are at most 2 in-
tersection points. In other words, if β = α2 then there
exists only two possible (z,α) pairs that can satisfy
Eq. 3 and 4 at the same time.

Table 1: Expected input/output values for the zk-proof.

Challenge Expected Response
r×G r×A
r×A r×B

4.2.1 Shadow Answer

With c1 and c2, it is easy to find the other intersec-
tion point (Eq. 8), and we call it the shadow answer
denoted by (ẑ, α̂).

α̂ = 1−α

ẑ = 2α+ z−1
ẑ = hash(m̂)

 (8)

If a malicious prover finds the m̂, then he can
prove to the verifier that the signer signed m or m̂
without being detected. However, while finding ẑ is
easy, finding m̂ requires breaking the hash function
which is one of basic cryptographic assumption that
almost all digital signature schemes rely upon.

4.2.2 Zero-knowledge Proof for β = α2

To prove β = α2, the prover proves the point A (Eq.
5) is α×G for some value of α. And the point B (Eq.
6) is α2×G for the same value of α. Equations 7a
and 7b already ensure that if this relationship holds,
i.e. β = α2, then m is either the real m, i.e. the value
signed by the signer, or the shadow m̂.

The protocol for proving β = α2:

1. The verifier chooses a random number r ∈ {1,n−
1} and use it as a blinding factor.

2. The verifier randomly either sends r×G or r×A
to the prover, we call this challenge P .

3. The prover returns α×P as long as P is a valid
curve point.

4. The verifier checks the result according to Table
1.

4.2.3 Zero-knowledgeness of the Protocol

Consider a simulator, who does not have the knowl-
edge of α but has access to the verifier’s random or-
acle, i.e. the simulator knows the blinding factor
r and whether the challenge is derived from G or
A . Obviously, the simulator can convince the veri-
fier β = α2 by constructing the expected response ac-
cording to Table 1. Since a convincing simulator can
be constructed without the knowledge of α, the zero-
knowledgeness is proved.

ECDSA-compatible Delegable Undeniable Signature

473



4.2.4 Soundness of the Protocol

Consider, instead of m 3 z = hash(m), the prover tells
the verifier the message is m′ 3 z′ = hash(m′) where
m′ is not the real m nor the shadow m̂. Then when
the verifier calculates the values of A and B by the
following

A ′ = s1× (x1,y1)− z′×G − x1×QA

= s1× (x1,y1)− z×G − x1×QA + z×G
− z′×G

= α×G + z×G − z′×G
= (α+ z− z′)×G

⇒ α
′ = α+ z− z′

B ′ = s2× (x2,y2)− z′×G − x2×QA

= s2× (x2,y2)− z×G − x2×QA + z×G
− z′×G

= β×G + z×G − z′×G
= (β+ z− z′)×G

⇒ β
′ = β+ z− z′

Note, (1) β′ 6= α′2 in this case, (2) upon receiving
the challenge point P , the prover cannot distinguish
whether P is a blinded G or A ′. The prover can make
a guess and he can guess the correct answer with 50%
chance. Assuming the prover can make the correct
guess, then the prover can

return

{
α′×P , if P is a blinded G
α′−1β′×P , if P is a blinded A ′

Repeat the above process, for instance, 80 times,
the chance for the prover cheating without being de-
tected is 2−80 which is negligible.

Furthermore, because these 80 challenges can be
verified in parallel, it can be sent as one single ar-
ray. Therefore, the zero-knowledge proof requires
only one request and one response only, with each
message size around 33×80 = 2640 bytes on a 256-
bit ECC curve with the (x,y) coordinate compression.

4.3 Security Requirements

In this section, we summarize the basic security prop-
erties that we require from our work. Formal defi-
nitions with more goals in a key-only attack model
will be presented in the extended version of this pa-
per. Our work scheme, carried out by a certificate

authority C, a data owner A, and a verifier (message
recipient) B, is secure if the following requirements
are satisfied:

• Three modifications (publishing x, y, and signing
offset hashed value) of standard ECDSA signature
scheme do not affect security properties of C’s in-
dividual signatures.

• Unforgeability: attacker cannot forge a valid sig-
nature for a given message

• Non-transferability: A’s disclosed data and proof
to B cannot be transferred to a third party.

5 SECURITY PROPERTIES

In this section, we outline the proofs of the underlying
security properties as described in Section 4.3. We di-
vide these proofs into the ones relevant to individual
signatures (Section 5.1) where we wish to retain se-
curity properties of the standard ECDSA and the ones
relevant to joint signatures (Section 5.2) where their
joint properties and non-transferability of our scheme
are shown.

5.1 Properties of Individual Signatures

In this section, we show that modifications in our
scheme made for individual signatures do not af-
fect the overall security model and assumptions of
ECDSA (Vaudenay, 2003). If we compare the un-
modified ECDSA signature generation (1) and our
signature generation, as shown in (3) and (4), we find
three differences:

• The value of x, instead of r = x (mod n), is pub-
lished.

• The value of y is published.

• The signature is performed on hash(m)+ o f f set
instead of hash(m).

In the rest of this section, we look at these modifica-
tions and show they do not affect the security proper-
ties of ECDSA.

Lemma 5.1. Publishing x and y does not affect the
security model of ECDSA.

Proof (Sketch). We refer to Eq. 2 where the value
(x,y) = k×G is calculated as a part of the ECDSA
signature verification process. Let’s call Eq. 2 as v,
i.e. v(r,s) = (x,y).

Assume there is an attack method T (x,y) on our
scheme that relies on x and y, then it can be used to at-
tack ECDSA by T (v(r,s)). Therefore, disclosing x,y

SECRYPT 2019 - 16th International Conference on Security and Cryptography

474



does not affect the security model because if such at-
tack exists, it is not specific to our signature scheme
and can be applied to ECDSA as well.

Lemma 5.2. Signing ‘hash(m) + offset‘ instead
of ‘hash(m)‘ does not affect the security model of
ECDSA.

Proof (Sketch). First, assume there is a cryptographic
hash function hash1 and another hash function
hash2 = hash1 + o f f set. Assume there exists an at-
tack method T on the hash function hash2 with input
x and output y, i.e. the following can reveal some in-
formation:

T (hash2,x,y = hash2(x)).

Obviously, T can also be used to attack hash1 by

T (hash1 +o f f set,x,y = hash1(x)+o f f set).

Therefore, adding or subtracting an offset does not af-
fect the security properties of a hash function.

The “s” equations in ECDSA and our signature
scheme can be defined as follows:

s = k−1(hash1(m)+ rda)←− ECDSA

s = k−1(hash2(m)+ rda)←− Our scheme
where hash2 = hash1 +o f f set

Since adding or subtracting an offset does not af-
fect the security properties of a hash function, signing
hash(m)+α and hash(m)+β do not affect the secu-
rity model of ECDSA.

Theorem 5.3. Modifications of ECDSA signature
generation in our scheme signature do not affect the
overall security model of ECDSA.

Proof (Sketch). The proof follows from Lemmas 5.1
and 5.2.

5.2 Properties of Joint Signatures

In this section, we look at the properties that are rel-
evant to publishing two signatures and a verification
procedure using them.

Lemma 5.4. Unforgeability: attacker cannot forge a
valid signature for a given message.

Proof (Sketch). Assuming an attacker has a list of n
existing valid signatures, along with the plain text m
and the corresponding α value. By using m and α, the
attacker can calculate c = hash(m)+α. This c value
is the input to the standard ECDSA. In other words,
the attacker has a list of (c,sign(c)) pair.

To forge a signature in our scheme for message
m f , the attacker can just randomly pick one valid sig-
nature, set α f = c1− hash(m f ). Now if the attacker
can find another c2 = hash(m f )+α2

f , then the attacker
can forge a valid signature for m f , and he/she can sim-
ply lookup this c2 value from the list.

Assuming this is a 256-bit ECC curve, and the
CA signs 1000 signatures per second for 50 years,
then there will be 241 ECDSA signatures available,
the chance for being able to successfully forge a sig-
nature in our scheme by reusing these signatures is3

2−256×241×241 = 2−174

which is much smaller than randomly choosing
two signatures and then running the zero-knowledge
proof by cheating (assuming 80 rounds of zk-
messages).

On the other hand, if we randomly pick any two
(c1,c2), the pair is a valid signature of some z f and
α f (if a solution exist):

z f +α f = c1 (9)

z f +α
2
f = c2 (10)

However, since it is computational infeasible to
find m f 3 hash(m f ) = z f , we conclude it it is not pos-
sible to find an existential signature by combining two
existing signatures.

Lemma 5.5. Non-transferability: except for the cer-
tificate owner and issuer, no one can prove to another
party that the certificate owner produced a signature
proof.

Proof (Sketch). Consider the case if the verifier wants
to disclose all data obtained from the prover during
the interactive zk-proof: as shown in Section 4.2.3, a
simulator with access to the verifier’s random oracle,
i.e. the verifier himself, can generate the correct re-
sponses for the challenges. Therefore, the recorded
data of the zk communication, without the interaction
and a secure random oracle, will not convince anyone.

Consider the case if the verifier (message recipi-
ent) wants to run the interactive zk-proof to another
party: as shown in Section 4.2.4, without the correct
values of α and β, the verifier can only cheat with a
negligible chance. We conclude this is not possible.

3To be more accurate, the term 2−256 should be replaced
with the order of the curve which is a little bit smaller.

ECDSA-compatible Delegable Undeniable Signature

475



Theorem 5.6. Assuming the ECDSA security as-
sumptions and those modifications of ECDSA signa-
ture generation in our scheme do not affect the over-
all security model of ECDSA, our scheme satisfies the
properties of unforgeability and non-transferability.

Proof (Sketch). The proof follows from Theorem 5.3
and Lemmas 5.4 and 5.5.

6 KNOWN LIMITATION

6.1 No Disavowal Protocol

In a standard undeniable signature scheme, a failed
confirmation protocol does not imply signature inval-
idation. Signature invalidation has to be performed by
the disavowal protocol. For example, if Alice claims
Susan, using an undeniable signature scheme, signed
“Susan will pay Alice one million dollars if X hap-
pens,” Susan can prove to the judge that the signature
is not signed on this message, without disclosing what
it really is.

Luckily, the disavowal protocol is not a critical
feature in our potential use case – signing personal
information – because the message is not a commit-
ment on what the signer will perform in the future.

6.2 No Designated Verifier

Undeniable signature can be vulnerable to the man-
in-the-middle attack if the proof is not designated to a
particular verifier. Generally speaking, an interactive
zero-knowledge proof can convince the one who gen-
erates the random numbers. Therefore, if the verifier
acts as a proxy and is controlled by another party, the
proof will be convincing to this party as well. There-
fore, for the use case of signing personal information,
the prover would want to disclose the information to
authenticated parties only, but this feature is missing
in the current version of our work.

7 CONCLUSION

Our signature scheme is a simple undeniable signa-
ture scheme for issuing certificates about private data
without publicly disclosing them. It enables data
owners to selectively disclose their private data in a
non-transferable way. For future work, besides ex-
tending our analysis, we plan to improve the algo-
rithm to be a designated verifier signature and reduce
the communication data size.

REFERENCES

Benaloh, J. (2003). Selectively disclosable digital certifi-
cates.

Boyar, J., Chaum, D., Damgård, I., and Pedersen, T. (1990).
Convertible undeniable signatures. In Advances in
Cryptology-CRYPT0’ 90, pages 189–205. Springer
Berlin Heidelberg.

Camenisch, J. and Lysyanskaya, A. (2002). A signature
scheme with efficient protocols. In Security in com-
munication networks, pages 268–289. Springer.

Chaum, D. (1994). Designated confirmer signatures. In Ad-
vances in Cryptology — EUROCRYPT'94, pages 86–
91. Springer Berlin Heidelberg.

Chaum, D. and van Antwerpen, H. (1989). Undeniable sig-
natures. In Proceedings on Advances in Cryptology,
CRYPTO ’89, pages 212–216.

Damgård, I. and Pedersen, T. (1996). New convertible un-
deniable signature schemes. In Advances in Cryptol-
ogy — EUROCRYPT ’96, pages 372–386. Springer
Berlin Heidelberg.

Feige, U. and Shamir, A. (1990). Witness indistinguishable
and witness hiding protocols. In Proceedings of the
twenty-second annual ACM symposium on Theory of
computing - STOC '90. ACM Press.

Gennaro, R., Krawczyk, H., and Rabin, T. (1997). RSA-
based undeniable signatures. In Advances in Cryptol-
ogy — CRYPTO '97, pages 132–149. Springer Berlin
Heidelberg.

Gennaro, R., Krawczyk, H. M., and Rabin, T. D. (2001).
Undeniable certificates for digital signature verifica-
tion.

Gennaro, R., Rabin, T., and Krawczyk, H. (2000). RSA-
based undeniable signatures. Journal of Cryptology,
13(4):397–416.

Goldwasser, S., Micali, S., and Rackoff, C. (1989). The
knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208.

Jakobsson, M., Sako, K., and Impagliazzo, R. (1996). Des-
ignated verifier proofs and their applications. In Ad-
vances in Cryptology — EUROCRYPT ’96, pages
143–154. Springer Berlin Heidelberg.

Johnson, D. B. and Menezes, A. J. (1998). Elliptic curve dsa
(ecsda): An enhanced dsa. In Proceedings of the 7th
Conference on USENIX Security Symposium - Volume
7, SSYM’98, pages 13–13.

Kim SJ, Park SJ, W. D. (1996). Zero-knowledge nominative
signatures. Pragocrypt, pages 380–392.

Koblitz, N. (1987). Elliptic curve cryptosystems. Mathe-
matics of Computation, 48(177):203–203.

Kurosawa, K. and Heng, S.-H. (2005). 3-move undeniable
signature scheme. In Lecture Notes in Computer Sci-
ence, pages 181–197. Springer Berlin Heidelberg.

Liu, D. Y. W. and Wong, D. S. (2012). One-move convert-
ible nominative signature in the standard model. In
Provable Security, pages 2–20. Springer Berlin Hei-
delberg.

Liu, D. Y. W., Wong, D. S., Huang, X., Wang, G., Huang,
Q., Mu, Y., and Susilo, W. (2007). Formal definition

SECRYPT 2019 - 16th International Conference on Security and Cryptography

476



and construction of nominative signature. In Infor-
mation and Communications Security, pages 57–68.
Springer Berlin Heidelberg.

Miller, V. S. (1985). Use of elliptic curves in cryptogra-
phy. In Lecture Notes in Computer Science, pages
417–426. Springer Berlin Heidelberg.

Okamoto, T. (1994). Designated confirmer signatures and
public-key encryption are equivalent. In Proceedings
of the 14th Annual International Cryptology Confer-
ence on Advances in Cryptology, CRYPTO ’94, pages
61–74, London, UK, UK. Springer-Verlag.

Osborne, M., Lehmann, A., Baentsch, Michael, V., Tamas,
and Towa, P. (2017). Ibm identity mixer.

Paquin, C. and Zaverucha, G. (2011). U-prove crypto-
graphic specification v1. 1. Technical Report, Mi-
crosoft Corporation.

Vaudenay, S. (2003). The security of dsa and ecdsa. In
International Workshop on Public Key Cryptography,
pages 309–323. Springer.

West, R. (2016). Indy documentation index.

ECDSA-compatible Delegable Undeniable Signature

477


