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Abstract: The traveling salesman problem is a well-known combinatorial optimization problem with permutation-based 

variables, which has been proven to be an NP-complete problem. Over the last few decades, many 

evolutionary algorithms have been developed for solving it. In this study, a new design that uses the 𝑘-means 

clustering method, is proposed to be used as a repairing method for the individuals in the initial population. 

In addition, a new crossover operator is introduced to improve the evolving process of an evolutionary 

algorithm and hence its performance. To investigate the performance of the proposed mechanism, two popular 

evolutionary algorithms (genetic algorithm and differential evolution) have been implemented for solving 18 

instances of traveling salesman problems and the results have been compared with those obtained from 

standard versions of GA and DE, and 3 other state-of-the-art algorithms. Results show that the proposed 

components can significantly improve the performance of EAs while solving TSPs with small, medium and 

large-sized problems.

1 INTRODUCTION 

The traveling salesman problem (TSP) is a prevalent 

mathematics problem that requests the shortest 

possible distance to visit a set of cities. Despite the 

simplicity of its definition, TSP is one of the most 

challenging combinatorial optimization problems 

(COPs) in real world. Its practical importance is 

shown in many fields, such as operational research, 

algorithms design and artificial intelligence, and also 

in many engineering applications, like design of 

hardware devices and radio electronic systems, and 

computer networks (Evans, 2017). So, it attracted the 

attention of several researches for many years to find 

the best way for optimally solving TSPs in a 

reasonable computational time. 

Many exact algorithms, which can accurately find 

the optimum solution, have been introduced for 

solving TSPs (Miller and Pekny, 1991). However, 

they have been considered inapplicable for solving 

many instances of TSPs, which were proven to be an 

NP-hard COP (Jünger et al., 1995). In recent years, 
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several heuristics methods, which can find near 

optimum solution, have been developed for TSPs and 

they achieved better results than exact ones in terms 

of computational time. Among these methods, 

evolutionary algorithms (EAs), which demonstrate a 

very promising direction for TSPs. EAs are inspired 

by the biological model of evolution and natural 

selection, and they have a long history of successfully 

solving optimization problems (Bäck et al., 2018). 

Many EAs-based approaches have been 

introduced for solving TSPs. Some of them were 

integrating local searches (Mavrovouniotis et al., 

2017), and these studies showed that incorporation of 

local search operators can significantly improve the 

performance of EAs. Other EAs, such as genetic 

algorithms (GAs) and differential evolution (DE) 

algorithms have also been developed for TSPs. 

Recently, GA, with two local operators, called branch 

and bound, and cross elimination, was used for 

solving multiple TSPs (Lo et al., 2018). A new initial 

population strategy, based on 𝑘 -means algorithm, 

was also proposed to improve the performance of GA 
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(Deng et al., 2015). Although the algorithm achieved 

better error values than the random generation, the 

obtained error values are still away from the optimal 

solutions. Moreover, many DE algorithms have been 

introduced for TSPs (Wei et al., 2016, Wang and Xu, 

2011). However, many of the studies have been tested 

on small and medium TSPs. 

Seeking to improve the performance of EAs and 

overcome some limitations that presented in the 

previous research works, such as slow convergence, 

increased computational time, and poor quality of 

solutions, the following contributions are proposed in 

this paper: 1) a new design of 𝑘-means clustering to 

be used as a repairing method for the generated 

individuals in the initial population, which can 

increase the convergence speed of an EA and increase 

the possibility of getting the optimal solution in a 

lower computational time; 2) a new crossover 

operator, which is designed based on the 

characteristics of TSPs to increase the population 

diversity and improve the evolving processes of an 

EAs. Finally, the proposed components have been 

implemented using GA and DE for solving different 

instances of TSP and the results were compared with 

those from state-of-the-art algorithms and standard 

versions of GA and DE. 

The rest of this paper is organized as follows. 

Section 2 presents the objective function of TSPs and 

the original structures of GA and DE. Section 3 

represents the proposed components. Section 4 

discusses the experimental results and comparisons. 

Finally, conclusion drawn from this study and future 

work are provided in Section 5. 

2 BACKGROUND 

In this section, the definition and objective function 

of TSPs, and the standard versions of GA and DE are 

introduced. 

2.1 Traveling Salesman Problem 

The traveling salesman problem (TSP) is a well-

known COP with discrete decision variables. In 1930, 

TSP was formulated as a mathematical problem for 

the first time. In traditional TSP, a person has a task 

of visiting 𝑁  numbers of cities. He needs to visit 

every city only once in any order starting from any 

city and returning back to the home city from where 

he started. Given the distances between each city, the 

person needs to minimize the total travelled distance 

during his trip. The objective is to find the shortest 

tour that visits each city exactly ones, and then return 

to the starting city. Mathematically, the objective 

function of TSP can be described as minimization of 

the total distances between visited cities, in addition 

to the distance of returning to start city, as follows: 

Minimize: 𝐷, where  

𝐷 = 𝑑𝑁,1 + ∑ 𝑑𝑖,𝑖+1

𝑁−1

𝑖=1

 (1) 

where 𝐷  is the total distance of the trip, 𝑁  is the 

number of cities to be visited, 𝑖 = 1, 2, …, 𝑁. 𝑑𝑁,1 is 

the return distance from the last city (𝑁) to the first 

one, and 𝑑𝑖,𝑖+1  is the distance between two 

consecutive cities 𝑖 and 𝑖 +  1. 

2.2 Standard Versions of Genetic 

Algorithm and Differential 

Evolution 

Both GA and DE belong to EAs (Bäck et al., 2018). 

They solve a problem by iteratively improving the 

candidate solutions through three evolving operators, 

namely: mutation, crossover and selection. These 

operators are applied to guide the search to find 

optimal solutions. The first basic difference between 

GA and DE is the order of evolving operators’ 

execution, as GA applies selection then crossover and 

finally mutation, whereas DE considers mutation 

first, then crossover and selection. The second major 

difference is that GA performs an additional process 

called elitism, which ensures that the best individual 

from the current generation is carried over to the next 

without any modifications. This process guarantees 

that the quality of the solutions is not decreased from 

one generation to another. GA and DE are considered 

powerful tools for solving optimization problems in 

both continuous and discrete spaces. Basically, an 

initial population with a pre-determined size (𝑃𝑆) is 

generated and then each individual ( �⃗�𝑖 ), which 

consists of 𝑁  variables, is evolved using the three 

evolutionary operators. Figure 1 shows the basic 

outlines of the standard versions of GA and DE and 

the order of their three evolving operators. 

2.2.1 Mutation Operator 

In DE, a mutant vector is generated for each target 

vector (𝑥𝑖,𝑔), using this simplest mutation form:  

�⃗�𝑖,𝑔+1 =  �⃗�𝑟1,𝑔 + 𝐹 × (�⃗�𝑟2,𝑔 − �⃗�𝑟3,𝑔)    , 𝑟1 ≠  𝑟2

≠  𝑟3 ≠ 𝑖 
(2) 

where 𝐹  is the weighting factor, that controls the 

amplification of the differential variation between the 
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two vectors  �⃗�𝑟2,𝑔 and �⃗�𝑟3,𝑔, and generally lies within 

the range of [0, 2]. �⃗�𝑟1,𝑔,  �⃗�𝑟2,𝑔 , �⃗�𝑟3,𝑔  are three 

randomly chosen vectors, which are not equal to each 

other or to the target vector (�⃗�𝑖,𝑔). In GA, mutation 

modifies one or more gene values in an individual by 

swapping them with other genes or flip their values 

from the initial state, and hence the individual may 

change entirely from the previous one.  

 

Figure 1: Structure of standard GA and DE. 

2.2.2 Crossover Operator 

In DE, new vectors (trial vectors) are generated by 

combining target (individuals from last generation) 

and mutant vectors according to a pre-defined 

possibility. Binomial and exponential are the two 

most well-known types of crossover for DE. In GA, 

the new offspring is produced by exchanging 

different parts of two randomly selected parents, 

where if the first part of the offspring came from first 

parent, the second part must come from second 

parent, etc. This is called one-point crossover (Ali et 

al., 2015), where a random point is generated to 

divide both parents into two parts. 

2.2.3 Selection Operator 

In DE, a comparison of each trial vector and its 

corresponding target vector is used to determine 

whether trail or target vectors should survive to the 

next generation. The greedy strategy is an example of 

DE selection operator. In GA, a tournament method 

is adopted to select an individual by running several 

competitions, based on the fitness values and the 

feasibility of the solutions, among a few individuals 

selected randomly from the population. 

In both GA and DE, the processes of the 

evolutionary operations remain as long as a time or a 

generation limit is reached, or the number of calling 

the fitness evaluation function is greater than a pre-

defined number of calling. 

3 PROPOSED EVOLUTIONARY 

ALGORITHM 

In this paper, two main components have been 

developed and implemented in order to improve the 

performance of EAs for solving TSPs. In this section, 

the basic steps of EAs and the two proposed 

components are briefly discussed. Figure 2 shows the 

proposed components when adopting with both GA 

and DE algorithms as examples of EAs. 

 

Figure 2: Structure of proposed GA and DE. 

3.1 Initial Population 

The first step in most EA is to generate an initial 

population of solutions. So, a population of 𝑃𝑆 

solutions is randomly generated. In our algorithm, 

every solution can be represented by a discrete vector, 

where the length of each vector equals the number of 

cities to be visited (𝑁). 

3.2 𝒌-means Clustering as a Repairing 

Method 

As TSPs are a complex COP, we noticed that the 

evolutionary process may take longer to make the 

solutions in the initial population converge towards 

the optimal solution. So, a new design of 𝑘-means 

clustering method is applied, according to a pre-

defined probability (𝐶𝑙𝑢𝑠𝑃𝑟𝑜𝑏), to the solutions in 

the initial population as a repairing method to 
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improve their qualities within the initial phase, and as 

a result, the optimal solution is likely to be found after 

a few EA’s generations.  

In 𝑘-means clustering, several locations (𝐿) are 

generated over the geometric problem space 

according to Equation 3. A number of groups, equal 

to 𝐿, are formed with those points as the centroids. 

Each group attracts the close cities (by their 

coordinates) from its centroid.  

𝐿 =  𝑟𝑜𝑢𝑛𝑑(√𝑁 + 0.5) (3) 

After assigning all the cities in groups, each group 

is solved as a sub-TSP by finding the shortest sub-

tour between the cities in each group. In order to form 

the complete tour of TSP, the distances between the 

centroid points (𝐿) are calculated and the two groups 

with the smallest distance between their centroids are 

selected to be merged and form a larger group. The 

merge between groups is done by connecting two 

cities of a group with their closest two cities of the 

other group after breaking their local connections. 

After that, the centroid point of the new formed group 

is calculated and the distances between all the 

centroid points ( 𝐿 − 1 ) of existing groups are 

remeasured. This process is repeated until only one 

group (𝐿 = 1) that contains all the cities is formed. 

  
(a) Distribution of 

centroid points over 

geometric space. 

(b) Calculate the 

shortest paths in each group 

 
(c) Merging two groups to form a larger one 

Figure 3: Steps of k-means clustering repairing method. 

In Figure 3, the basic steps of 𝑘-means clustering 

repairing method are illustrated. It shows the steps of 

the proposed repairing method, for a TSP instance 

called eil51 with 51 cities to be visited, as follows: (a) 

gives the distribution of the 𝐿  locations over the 

search space of the problem; (b) shows the shortest 

path in each formed group; (c) displays the generation 

of the first group produced from merging group 1 

with 3. This last step is repeated until one large group 

including all the cities is formed with the shortest path 

between them, as the example shown in Figure 4. 

 

Figure 4: Final tour after applying 𝑘 -means clustering 

repairing method. 

3.3 Fitness Evaluations 

After the initial population is generated and repaired, 

the fitness value of each individual is measured 

seeking to rank them according to their qualities. The 

fitness function shown on Equation 1 is used to 

calculate the quality of each solution, and then the 

solutions are ranked where the fittest one shown first 

and the worst last. 

3.4 Evolving Operators 

3.4.1 Proposed Crossover for TSP 

In this paper, a new design of a crossover, which uses 

the characteristics of the TSP (TSP-Xover) is given. 

In TSP-Xover, the one-point crossover procedure is 

followed, where a random cut point (𝐶𝑃) in the range 

[1, 𝑁 ] is chosen and two parents are randomly 

selected to generate a new offspring. The first part of 

the offspring [1,2, … , 𝐶𝑃] is copied from one of the 

parents, and the second part is completed from the 

other. In order to do that, starting from the last city in 

the first part of the offspring (𝐶𝑃), the next city (𝐶𝑃 +
1) is selected based on its distance from 𝐶𝑃. So, if the 

next city is the closest one to the 𝐶𝑃 city and has not 

been taken before in the offspring (not in the range 

[1 − 𝐶𝑃]), then next city will be added in offspring at 

(𝐶𝑃 + 1) order. The pseudo-code for the proposed 

crossover (TSP-Xover) is provided in Algorithm 1. 

3.4.2 Mutation Operator 

The standard mutation operators of GA and DE were 

implemented in the proposed framework. For DE and 

GA, the DE\rand\1 mutation strategy (Equation 2) 

and the swap mutation (Bäck et al., 2018) were 

adopted, respectively. 
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Algorithm 1: Pseudo-code of TSP-Xover. 

for 𝑖 form 1 to 𝑃𝑆 do 

if random-number <= 𝑐𝑟 then 

Parent1 ← random individual 

Parent2←another random individual  

𝐶𝑃 ←random point in range [1 − 𝑁] 

𝐷𝑖𝑠 ← Distance between all cities 

Offspring=Parent1(1 to 𝐶𝑃) 
𝑗 ← 𝐶𝑃 + 1  
while 𝑗 ≤ 𝑁  do 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑖𝑡𝑦 ← city from Parent2 

with 𝑚𝑖𝑛(𝐷𝑖𝑠(Parent1(𝑗 − 1) and 

Parent2(1 to 𝑁))) 
if 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑖𝑡𝑦 is not existed in 

Offspring(1 to 𝑗 − 1), then 

Offspring(𝑗) ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑖𝑡𝑦 
𝑗 ← 𝑗 + 1  

else 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑖𝑡𝑦 ← next closest city 
from Parent2 

end if 

end while 

end if 

end for  

3.5 Fitness Re-evaluations and 

Selection 

After obtaining the new population, a selection 

operator is applied to decide which solution can 

survive to the next generation. The greedy selection 

strategy and the tournament method are applied to DE 

and GA, respectively. The solutions in the new 

selected population are ranked based on their fitness 

values, where the best solution located first. 

For comparisons purposes, 2-Opt local search 

(Savelsbergh, 1985) is used and applied to the best 

solution found in each generation for all standard and 

proposed versions of GA and DE. 

3.6 Termination Condition 

In this study, the number of calling the fitness 

function is counted and if this counter exceeds the 

predefined allowed number of objective function 

evaluations, the algorithm is terminated. 

4 EXPERIMENTAL RESULTS 

To judge the effect of the proposed components on 

the performance of EAs, computational simulations 

were carried out using GA and DE (as popular 

examples of EAs) for solving 18 instances of TSPs 

with small, medium and large dimensions. The 

instances were selected from the well-known TSP 

library (TSPLIB), which is described in (Reinelt, 

1991). Both GA and DE were coded in MATLAB 

R2017b, and were performed on a PC with an i7 

Processor and 16 GB memory. In our experiments, 

each TSP instance was independently executed 30 

times with 1,000, 5,000 and 50,000 fitness 

evaluations in each run for comparison. The quality 

of each algorithm is assessed by calculating the 

average error of each problem, which is the error 

between the best obtained solution by an algorithm 

and the optimal solution of the same problem as 

shown in Equation 4. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 = (
𝐵𝑒𝑠𝑡 −  𝑂𝑝𝑡𝑖𝑚𝑎𝑙

𝐵𝑒𝑠𝑡
) × 100 (4) 

4.1 Parameters Settings and Tuning 

In this sub-section, the parameters setup of both GA 

and DE and the parameter analyses of the two 

proposed components are presented. 

4.1.1 Parameter Settings 

Based on extensive experiments using 18 instances of 

TSPs, the final parameters setup of GA and DE are 

shown in Table 1. 

Table 1: GA and DE parameters setup. 

Parameter Symbol Value 

Number of runs  30 

Population size 𝑃𝑆 50 

Crossover rate 𝑐𝑟 0.7 

Mutation rate 𝐹 0.2 

Number of individuals to be 

repaired in the initial population  
𝐶𝑙𝑢𝑠𝑃𝑟𝑜𝑏 0.1 (10%) 

Maximum fitness evaluations 1000, 5000, and 50,000 

4.1.2 Parameters Tuning 

Two sets of experiments were designed to analyse 

effects of the two proposed components’ parameters 

𝐶𝑙𝑢𝑠𝑃𝑟𝑜𝑏 and 𝑐𝑟, while the other parameters’ values 

were fixed as shown in Table I. Both 𝐶𝑙𝑢𝑠𝑃𝑟𝑜𝑏, and 

𝑐𝑟, were run with different values for 10 runs for each 

value and 5000 fitness evaluations for each run using 

GA and DE for solving 18 TSPs. Figures 5 and 6 

present the average value of errors of solved TSPs 

from their optimal solutions (on bars) and standard 

deviations (on vertical small bars) using DE and GA, 

respectively. In the figures, DE and GA run with 

𝐶𝑙𝑢𝑠𝑃𝑟𝑜𝑏 set to different values of 0, 10, 30, 50, 70, 

90 and 100 (%) of 𝑃𝑆. The results show that repairing 

New Designs of k-means Clustering and Crossover Operator for Solving Traveling Salesman Problems using Evolutionary Algorithms

127



10% of the individuals in the initial population can 

enhance the average error by 47.98% and 61.21% 

compared with the average of other parameter values 

in DE and GA, respectively. Also, we noticed that 

with higher values of 𝐶𝑙𝑢𝑠𝑃𝑟𝑜𝑏, the average error is 

increased because of the lack of diversity in the 

population. On the other hand, 𝐶𝑙𝑢𝑠𝑃𝑟𝑜𝑏 =0%, 

achieved worse average error than 𝐶𝑙𝑢𝑠𝑃𝑟𝑜𝑏=10%, 

which confirms the importance of the proposed 

repairing method. Another experiment run for 

analysing 𝑐𝑟  parameter by setting it to different 

values of 0.1, 0.3, 0.5, 0.7 and 0.9. Based on the 

results, it was found that 𝑐𝑟=0.7 achieved the best 

average error compared with other values. 

 

Figure 5: Analysis of 𝐶𝑙𝑢𝑠𝑃𝑟𝑜𝑏 parameter with standard 

deviation error bar using DE. 

 

Figure 6: Analysis of 𝐶𝑙𝑢𝑠𝑃𝑟𝑜𝑏 parameter with standard 

deviation error bar using GA. 

4.2 Effect of k-means Clustering 
Repairing Method 

This sub-section discusses the effect of applying the 

proposed repairing method on performance of an EA. 

In order to do that, all TSPs have been solved with 

and without applying 𝑘-means method. Results show 

that the proposed method can enhance the quality of 

solutions by 76.6% on average. To graphically 

present the effect of the proposed method, the best 

individuals of 3 TSPs were presented before and after 

adopting the proposed method in Figure 7. 

 

 

 

Before 𝑘-means After 𝑘-means 

  
eil51 = 1494 eil51 = 588 

  
kroC100 = 149393 kroC100 = 29827 

  

lin318 = 557091 lin318 = 58941 

Figure 7: Graphical paths of 3 TSPs before and after 

applying the proposed repairing method with the total 

distance of each. 

For comparison, Figure 7 shows the paths of the 

same individual of each problem produced directly 

after generation of the initial population (Before 𝑘-

means) and after being repaired (After 𝑘-means). The 

figure also provides the total distances of each 

individual to show differences in their qualities. From 

Figure 7, it can be noticed that 𝑘-means clustering 

repairing method can enhance the solutions in the 

initial population for TSPs “eil51”, “kroC100”, and 

“lin318” by 60.64%, 80%, 89.41%, respectively. The 

results demonstrate efficiency of the proposed 

repairing method, especially for large TSP instances. 

4.3 Comparison with Standard 
Versions of GA and DE 

In order to judge the effect of the proposed 

components on the overall performance of EAs, in 

this sub-section the performances of GA and DE will 

be compared, with and without, incorporating the 

proposed components. In order to do that, the best and 

mean values of the average errors produced from i) 

standard GA, ii) standard DE, iii) GA + 𝑘-means and 

TSP-Xover, and iv) DE + 𝑘-means and TSP-Xover 

are presented in Table 2.  
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Table 2: Best (B) and mean (M) average errors for 18 

instances of TSPs obtained from improved and standard 

versions of GA and DE. 

Probs 

Standard 
GA 

GA + 𝑘 -
means and 
TSP-Xover 

Standard 
DE 

DE + 𝑘 -
means and 
TSP-Xover 

B M B M B M B M 

eil51 0.0 2.0 0.0 0.8 0.5 1.7 0.2 1.2 

berlin52 0.3 2.0 0.0 0.1 0.0 2.2 0.0 0.6 

st70 0.2 2.7 0.0 0.6 1.2 2.0 0.3 1.5 

eil76 0.2 2.7 0.7 2.5 2.0 4.0 1.9 3.6 

pr76 1.6 2.0 0.0 0.5 0.0 1.3 0.0 1.2 

kroA100 0.2 1.0 0.0 3.9 0.8 1.9 0.8 2.1 

kroC100 0.5 1.7 0.0 3.9 1.0 2.8 1.0 2.7 

kroD100 1.1 2.4 0.0 3.9 1.8 3.2 1.6 3.2 

eil101 2.7 4.1 0.0 2.5 3.3 5.2 3.0 5.3 

lin105 0.4 4.0 0.0 1.0 0.6 1.8 0.2 1.5 

pr144 0.1 1.7 0.1 0.5 0.1 0.4 0.1 0.5 

ch150 2.9 4.6 0.0 5.1 3.2 4.8 2.8 4.7 

kroA150 2.0 4.0 0.1 5.1 2.5 4.2 1.3 4.3 

kroB150 2.1 3.6 1.0 5.5 2.3 3.8 2.0 3.9 

pr152 0.5 2.1 0.2 3.6 1.2 2.2 1.1 2.3 

lin318 4.0 5.7 0.9 7.0 3.8 5.5 3.9 5.5 

pcb442 5.8 7.5 0.1 8.1 6.2 7.9 6.0 7.6 

d493 4.5 6.3 0.8 7.2 5.2 6.2 5.0 6.3 

Avg. 1.6 3.3 0.2 3.4 2.0 3.4 1.7 3.2 

A nonparametric statistical test (Woolson, 2007), 

which is usually used to assess whether the 

population mean ranks of two related samples differ, 

is applied to show the significant differences between 

the proposed versions of GA and DE and their 

standard versions. The outcome is listed in Table 3. 

Table 3: Nonparametric Wilcoxon test based on the best 
and mean errors from the optimal solution.  

 Better Equal Worse P.Value 

GA + 𝑘 -means 
and TSP-Xover 
VS. Standard 
GA 

Best 15 1 2 0.001 

Mean 10 0 8 0.931 

DE + 𝑘 -means 
and TSP-Xover 
VS. Standard 
DE 

Best 14 2 2 0.002 

Mean 10 0 8 0.338 

 

Figure 8: Convergence plot of eil101 TSP with 20 iterations 

(1000 fitness evaluations). 

From results in Table 2 and 3, the versions with 

the added proposed components can significantly 

enhance the performances of the standard GA and DE 

by 86.52% and 12.13% in terms of the best errors 

from the optimal solutions of 18 TSPs. 

To graphically represent the performance of each 

algorithm, the convergence plot of one TSP, namely: 

eil101 is shown in Figure 8. 

4.4 Comparison with State-of-the-Art 
Algorithms 

In this sub-section, the performance of the proposed 

algorithm is compared with three algorithms from the 

state-of-the-art algorithms: 1) improved bat algorithm 

(IBA) (Osaba et al., 2016); 2) Discrete firefly 

algorithm (DFA) (Osaba et al., 2016); and 3) a 

discrete imperialist competitive algorithm (DICA) 

(Osaba et al., 2016), as shown in Table 4.  

Table 4: Total distances obtained from the proposed 

versions of GA and DE and 3 state-of-the-art algorithms. 

Probs 
GA + 𝑘 -
means and 
TSP-Xover 

DE + 𝑘 -
means and 
TSP-Xover 

IBA DFA DICA 

eil51 426 427 426 426 426 

berlin52 7542 7542 7542 7542 7542 

st70 675 676 675 675 675 

eil76 539 540 539 543 544 

Table 4 shows the competitive performance of the 

proposed components with GA and DE compared 

with other evolutionary algorithms. However, the 

results didn’t show any differences between the 

comparative algorithms. 

In order to further assess the performance of the 

proposed components, the proposed GA is compared 

with other three algorithms: 1) GA, 2) PSO, and 3) 

hybrid GA-PSO, which were recently proposed in 

(Gupta et al., 2019).  

Table 5: Average error % (E) and average time in seconds 

(T) obtained from the proposed GA and other 3 algorithms.  

Probs. GA PSO GA-
PSO 

Proposed 
GA 

E T E T E T E T 
ATT48 2.4 0.5 2.8 0.4 0.3 0.4 0.5 0.5 
EIL51 2.6 0.6 3.1 0.4 1.2 0.5 1.2 0.5 
ST70 4.2 0.9 4.9 0.6 0.8 0.7 0.1 0.7 
PR76 2.2 1.2 2.6 0.8 0.7 1.0 0.4 1.6 
RD100 4.5 1.8 5.3 1.3 1.6 1.5 0.0 1.5 
KROA100 4.0 1.8 4.8 1.3 1.0 1.5 0.1 1.5 
KROB100 3.1 1.8 3.7 1.2 1.8 1.5 0.1 1.3 
PR107 3.2 2.1 3.8 1.5 1.2 1.7 0.0 1.8 
PR124 2.0 2.4 2.4 1.6 0.3 2.1 0.0 2.3 
GIL262 6.3 10.0 7.5 7.1 3.0 8.6 0.0 7.3 
Average 3.4 2.3 4.1 1.6 1.2 2.0 0.3 1.9 
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Table 5 showed that the GA version with the 

proposed components can achieve a higher average 

error from the optimal solution than other 

comparative algorithms for the first three (small) 

TSPs. However, starting from the fourth problem, the 

proposed GA achieved the best average error 

compared with others. This indicates that the 

proposed components are more suitable to solve TSPs 

with large sizes. The average values showed that the 

proposed GA can achieve better average errors by 

92.55%, 93.70%, and 78.18% than GA, PSO, and 

hybrid GA-PSO, respectively.  

Moreover, the detailed results of the proposed GA 

and other comparative algorithms are shown in Table 

1 in the Appendix, which can be accessed from 

https://github.com/IsmailMAli/TSP-Results. In 

Table 1, the results of 10 TSPs with different number 

of cities, mean values, average error (%), and average 

computational time in seconds, are given. 

5 CONCLUSION AND FUTURE 

WORK 

In this paper, a new design that uses the 𝑘-means 

clustering as a repairing method for the initial 

population of an EA, and a new crossover strategy for 

TSPs, are proposed. The 𝑘 -means clustering 

repairing method is applied directly after the initial 

population is generated to enhance the quality of the 

solutions. The crossover is designed to generate 

offspring from the current individuals taking in 

account the characteristics of the TSP. The 

experimental results showed that these proposed 

components can significantly improve the 

performance of EAs, while solving TSPs and are very 

promising especially when dealing with large TSPs. 

In the future, more complex discrete problems, 

such as resource constrained project scheduling 

problems (RCPSPs) and traveling thief problems 

(TTPs), will be used to test the effectiveness of the 

proposed components while solving such problems. 
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