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Abstract: By exploiting a side channel created by Copy-on-Write (CoW) operations of modern file systems, we
present a novel attack which allows for detecting files in a shared cloud environment across virtual machine
boundaries. In particular, we measure deduplication operation timings in order to probe for existing files of
neighbouring virtual machines in a shared file system pool. As a result, no assumptions about the underlying
hardware and no network access are necessary. To evaluate the real-world implications, we successfully
demonstrate the feasibility of our attack on the ZFS file system. Our results clearly show that the presented
attack enables the detection of vulnerable software or operating systems in a victim’s virtual machine on the
same file system pool with high accuracy. Furthermore, we discuss several potential countermeasures and
their implications.

1 INTRODUCTION

Data deduplication is an efficient way to share a
limited set of resources, like storage or memory,
among several parties. It allows for eliminating re-
dundant or repeating data by carefully analysing
chunks of information. Once redundant parts have
been identified, they are replaced with reference to
the unique chunk of data. In the event that referenced
parts are modified, techniques such as CoW ensure
that affected chunks are replicated again. In other
words, data deduplication ensures that only one in-
stance of information needs to be retained, effectively
eliminating the need to store the same data multiple
times.

In recent years, there has been an increasing
interest in data deduplication in environments where
resources are limited or shared, like in multi-user or
Virtual Private Server (VPS) systems. For example,
a significant challenge in virtualised environments is
how to cope with storage space, typically associated
with a large number of virtual machines. In fact,
virtual machine images can quickly grow to several
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gigabytes in size. Notwithstanding, virtual machines
usually have large overlapping areas due to similar
software or operating systems. Thus, deduplicating
data can help to improve the efficiency of the system,
thus reducing the operating costs.

This issue has been acknowledged in academia
as well. For instance, Jin and Miller (2009) have
demonstrated that ”deduplication of virtual machine
images can save 80% or more of the space required
to store the operating system”. Furthermore, file
systems specifically designed for deduplication of
virtual machine images, like LiveDFS (Ng et al.,
2011) or Liquid (Zhao et al., 2014), clearly demon-
strate the demand for storage deduplication in cloud
environments.

Although deduplication comes with clear storage
space advantages, it can be susceptible to memory
disclosure attacks. Consequently, information about
systems can be leaked across security boundaries.
For instance, Suzaki et al. (2011) have shown that
deduplication of the main memory can be used to
perform side-channel attacks, disclosing memory
contents to an attacker. The authors have successfully
shown how an adversary can measure the write access
times in one virtual machine to detect applications or
downloaded files in another virtual machine. This
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attack effectively breaks one of the core security
assumptions of cloud computing, i.e., that virtual
machines are confided environments which separate
different users’ confidential data from each other.
While countermeasures like restricting access or
obfuscation exist, deploying them generally decreases
the performance or efficiency of a system. Thus,
they are typically not acceptable in VPS or shared
cloud environments where resources need to be used
efficiently.

In this paper, we present a novel attack that builds
upon this property, which allows for breaking out of
the strict sandbox environment of virtual machines.
We discuss our contribution in detail in the following
section.

1.1 Contribution

We present a novel attack to determine the existence
of confidential files in a shared file system pool, by
relying on a side channel created by data deduplica-
tion techniques of modern file systems. In a nutshell,
our contribution is threefold:

1. We successfully demonstrate for the first time
how write operation times of modern file sys-
tems for virtual machine storage can leak critical
information about chunks of data beyond the
context of a virtual machine. We showcase how
this exploit can be used to detect the existence of
files in a shared file system pool. In particular,
our attack is accurate enough that it enables an
attacker to probe for the installation of vulnerable
software or operating systems on neighbouring
virtual machines. Still, our approach does not
make any assumptions about the underlying host
CPU or the victim and does not rely on network
access.

2. We evaluate the real-world implications of our
attack on the ZFS file system. ZFS is one of
the most mature file systems which support data
deduplication. We evaluate ZFS regarding three
metrics. First, by detecting any alignment dif-
ferences between the probed file on the virtual
machine’s internal file system and the underlying
ZFS storage pool. Second, by determining the
operating systems of adjacent virtual machines.
Third, by detecting specific applications and their
major and minor version. Our evaluation shows
that we were able to successfully detect block
offsets between the files inside the victim’s virtual
machine and the ZFS pool, as well as the used
operating system. Furthermore, we were able
to detect specific versions of an application in a
victim’s virtual machine with high accuracy.

3. We propose several countermeasures to cope with
the presented attack. The majority of solutions,
however, either limits the efficacy of data dedu-
plication or requires changes inside the victim’s
virtual machine. This fact again underlines the
severe impact of our findings.

1.2 Outline

The paper proceeds by providing background infor-
mation about deduplication in Section 2. Section 3
discusses related work and puts our contribution into
context. Afterwards, Section 4 covers our results and
shows the feasibility of our approach. We evaluate
the practicability of the attack on ZFS, which is one
of the most advanced file systems to support data
deduplication. Section 5 continues by discussing the
limitations of this attack and possible countermea-
sures. Finally, Section 6 concludes this work and
provides an outlook on future work.

2 BACKGROUND

This section provides background information about
the deduplication support in modern file systems and
describes different types of deduplication. Further-
more, we take a closer look at the ZFS file system,
which is one of the file systems supporting deduplica-
tion.

2.1 Deduplication Support

Modern file systems such as ZFS1 and btrfs2 offer
an extended range of functionality compared to con-
ventional file systems. Among a plethora of new
features, one of the main selling points of these file
systems is the support for Copy-on-Write (CoW). By
supporting CoW, these file systems can reference
individual blocks of data multiple times. This tech-
nology enables various features, such as the support
for deduplication of files with (partially) the same
content. Further advantages are, for instance, the
support for snapshots, which enable the user to cre-
ate images of whole partitions without doubling the
storage space. Developers of more traditional file
systems have also recognised the advantage of CoW
— for example, the XFS file system received support
for CoW with the Linux kernel version 4.9 and thus

1https://docs.oracle.com/cd/E19253-01/819-5461/
zfsover-2/index.html

2https://btrfs.wiki.kernel.org/
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Figure 1: Effect of (mis-)alignment when operating with different block sizes.

also supports deduplication3.
Deduplication support can be implemented on

three different levels — either on a file, block, or
byte level. When implemented on the file level, files
are only deduplicated if the exact same file already
exists on the volume. While this approach may be
applicable to individual files, it does not perform
well with large files such as virtual machine images,
as these generally only have partial overlap. When
deduplication is performed on the block or byte level,
it is possible to deduplicate files with only partially
matching contents. While deduplication on the byte
level achieves the highest deduplication ratio due to
its fine granularity, it also has the highest overhead,
as metadata, such as the reference to each byte, have
to be stored for each use of this byte individually.
Hence, most file systems operate on blocks of data.
These provide a sweet spot between the metadata
overhead and the granularity of the blocks, which
indirectly defines the deduplication efficacy.

Some file systems allow tweaking the size of the
blocks for different use cases. As virtual machine
images are generally stored in a single monolithic
file, tuning the block size is essential to achieve a
high level of deduplication. For instance, the ext4 file
system, which is the standard file system for many
Linux distributions, works with a default block size
of 4 KiB4. Furthermore, the file formats for virtual
machine images may also operate on blocks of data,

3https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=35a891be96f1f8e1227e6ad3ca827b8
a08ce47ea

4https://ext4.wiki.kernel.org/index.php/Ext4 Disk Lay
out

influencing the deduplication efficiency to a lesser
degree. For example, one of the default file formats in
QEMU operates on blocks of with a size of 64 KiB5.
To achieve a high level of deduplication, aligning the
different block sizes is recommended. Otherwise,
even if exactly the same file is stored on two different
virtual machines, it may not be deduplicated by the
file system. An overview of this issue is illustrated in
Figure 1.

Let us assume that the file system inside the virtual
machine uses blocks with a size of 64 KiB, while
the file system storing the virtual machine images
is operating on blocks of 128 KiB. In this case, the
replicated file is only deduplicated if it is aligned to
the same part of a block. Particularly, if the beginning
of both files is to be stored at the beginning of a file
system block, or the 64 KiB mark, the files will be
deduplicated as expected. However, if the existing
file is stored at the beginning of the block but the new
file is to be stored at the 64 KiB mark, none of the
blocks will be exactly the same. As the blocks do
not align in this case, none of the two files will be
deduplicated.

In general, there are two different approaches for
supporting deduplication that differ in the point of
time in which deduplication is executed. The follow-
ing subsection will detail the differences between
these two types of deduplication.

5https://blogs.igalia.com/berto/2017/02/08/qemu-and-
the-qcow2-metadata-checks/
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2.2 In-line- and Post-process
Deduplication

With in-line or in-band deduplication, the dedupli-
cation process is performed directly when the data
are written. Therefore, data that already exist in this
form on the medium are immediately referenced to
the existing data blocks and do not have to be written
to the medium first. In order to avoid unnecessary
slowdowns of the writing process, fingerprints of the
blocks already present on the data storage medium are
generally cached in the main memory during online
deduplication. These fingerprints are compared with
the fingerprint of the data to be written. However,
this cache increases main memory consumption as
the amount of data on the volume increases.

With post-process deduplication, on the other
hand, the data are first written to the medium, similar
to conventional file systems. Only at a later point
in time are the data compared and duplicates are
removed. This process can usually be started manu-
ally by the user or automatically at regular intervals.
This approach avoids the main memory overhead
of in-line-deduplication but increases the amount of
storage required until the deduplication is executed.
Additionally, it also increases the amount of data that
have to be written to disk, producing more wear on
the storage devices. The ZFS file system supports
in-line deduplication, while btrfs and XFS rely on
post-process deduplication.

In summary, in-line deduplication provides imme-
diate storage space reductions, while post-process
deduplication only consumes main memory while it
is executed. In the next subsection, we will take a
look at ZFS, which is the most mature file system to
support deduplication.

2.3 The ZFS File System

ZFS operates on storage pools, generally referred
to as zpools. Insides these storage pools, datasets
can be created. For these datasets, options such as
deduplication or compression can be configured in-
dividually. Even if two identical files are stored on
different datasets with activated deduplication, the
data will still be deduplicated across these different
datasets as long as these datasets reside on the same
zpool6. In general, ZFS utilises block-level dedu-
plication. These blocks are referred to as records.
The maximum size of these records can be config-
ured through the recordsize parameter. By default,

6https://www.fujitsu.com/global/Images/ZFS%20Imple
mentation%20and%20Operations%20Guide.pdf

these records have a size of 128 KiB. A peculiarity
of ZFS is that records can also be smaller than the
defined recordsize. This property is used to store
small files more efficiently. However, as we deal with
monolithic virtual machine images in this paper, this
property does not influence any of our experiments.

When committing data to the file system, ZFS
computes a hash value of the written records and
saves it alongside other metadata to the disk. This
value is generated regardless of the usage of dedupli-
cation as it is also used, for example, to verify the
integrity of stored records. When deduplication is
activated, the hashes and other metadata required
to detect replicated records are kept in the DeDupli-
cation Table (DDT), which is stored inside ZFS’s
Adaptive Replacement Cache (ARC). The ARC gen-
erally resides in the main memory of the system,
which may be supplemented by separate cache de-
vices. If deduplication is activated, ZFS compares the
computed hash value with the hashes inside the DDT.
If the hash exists in the DDT, the reference count
for this record is increased, and the write is finished.
Therefore, the record does not have to be written to
disk. If, on the other hand, the hash cannot be found
in the DDT, the record has to be committed to the
underlying storage media. Hence, it is reasonable
to assume that the writing process will be finished
earlier if the file already exists on disk. Alterna-
tively, when writing to an existing file that has been
deduplicated, ZFS has to remove the reference to the
existing record, reserve new blocks on the file system,
possibly copy the existing data to these new blocks,
and subsequently commit the new data. In this case,
we assume that overwriting deduplicated records
will take longer than overwriting non-deduplicated
records. Before we put these assumptions to the
test in Section 4, we will discuss related work in the
following section.

3 RELATED WORK

The side channels resulting from memory deduplica-
tion have been the source for a variety of vulnerabili-
ties. In general, these fall into two categories:

Memory-based attacks, where RAM deduplication
or cache timings are exploited.

Storage-based attacks, utilising persistent data dedu-
plication, as we do in our work.

While the former has received wide-spread attention
due to the wide applicability of flush+reload (Yarom
and Falkner, 2014) or prime+probe (Tromer et al.,
2010) attacks, the latter has not been applied in the
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context of multi-tenant cloud computing. Rather, at-
tacks based on the deduplication features of persistent
data has mostly focused on cloud storage providers
like Dropbox7, for example.
This section first delves into memory-based attacks
and summarises their potential compared to our work.
Afterwards, we discuss previous storage deduplica-
tion attacks and argue why our contribution presents
a significant advancement over existing solutions.

3.1 Memory-based Deduplication
Attacks

As our solution is based on storage deduplication
features, we briefly discuss attacks based on memory
deduplication to better differentiate the possibilities
and attack scenarios of both approaches. In 2014,
Yarom and Falkner presented a last-level cache attack
(based on the prime+probe principle as outlined by
Tromer et al. (2010)) aimed specifically at cloud
computing scenarios. This attack exploits timing
differences when accessing data structures based on
whether it has been loaded into the last-level cache or
not. Since hypervisors implement memory deduplica-
tion and the last-level cache is shared between CPU
cores, two otherwise isolated virtual machines actu-
ally share some memory. This makes it possible for
attackers to extract confidential information across
virtual machine boundaries, as long as the target vir-
tual machine is located on the same physical machine
as the attacker’s (Yarom and Falkner, 2014). Based
on this principle, Maurice et al. (2017) have shown
that it is even possible to establish an SSH connection
between two virtual machines over a covert channel,
fast enough even to stream high definition video.
More closely related to our contribution is the work
by Irazoqui et al. (2015) aimed at detecting installed
cryptographic libraries across virtual machine bound-
aries. Due to the high precision of this side channel, it
is possible to pinpoint the exact version of an installed
library and thus, probe for versions containing known
vulnerabilities to be exploited.

Although all of these attacks make it possible to
extract information in a very fine-grained manner and
can therefore be devastating, they require attacker and
victim VMs to be located on the same physical ma-
chine. Moreover, some of these exploits are specific
to certain CPU architectures. Our storage-based side
channel attack, on the other hand, is OS-independent
and makes no assumptions about the host machine’s
architecture. In its current form it does, however, not
enable high-resolution attacks or high-speed covert

7https://dropbox.com/

channels and is thus better suited to probe for instal-
lations of known vulnerable software to be exploited
separately, similarly to the work of Irazoqui et al.
The following section outlines attacks on storage
deduplication to put our work into context.

3.2 Storage-based Deduplication
Attacks

Already in 2010, Harnik et al. have shown that
client-side, cross-user deduplication in cloud storage
settings can be exploited to violate some privacy
guarantees typically assumed in such a context. In
essence Harnik et al. (2010) show how it is possible to
detect whether or not some file is present on a cloud
storage platform by observing traffic when uploading
a file. This works, because prior to uploading a file,
its hash is transmitted to the cloud storage provider to
check whether the file is already present and if it is,
no upload takes place. After projects like dropship8

started to actively exploit this feature for covert, cross-
user file sharing, countermeasures were put in place
by Dropbox.

While our work is based on the same principle, it
targets a multi-tenant cloud computing context. It
can therefore be considered an extension of memory-
deduplication attacks across the physical machines
hosting virtual machines and makes it even possible
to infer information about the hosts themselves. This
opens up new attack vectors compared to memory-
based side channel attacks, since our only require-
ment is a shared ZFS pool and thus no assumptions
about sharing a CPU with a victim need to be made.
This is especially devastating in a managed cloud
scenario, where tenants do not have full access to the
instances they are using and are thus incapable of
deploying countermeasures. Pooranian et al. (2018),
for example, propose to group storage requests as to
make guesses about which chunk of data may be al-
ready present less reliable. Since this defence targets
only the cloud storage sector it is difficult to transfer
this approach to performance-critical settings such
as the multi-tenant cloud computing sector. Other
approaches based on convergent encryption, such as
ClouDedup proposed by Puzio et al. (2013), on the
other hand, would require invasive changes to the
software stack deployed by cloud providers. In effect,
it is unlikely that countermeasures proposed for cloud
storage are applicable to the cloud computing sector
due to highly different constraints.

Our work essentially closes the gap between
cross-user cloud storage deduplication attacks and

8https://github.com/driverdan/dropship
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memory-based side channel exploits directly aimed
at the cloud computing sector. This means that
we are able to apply storage-based techniques to
establish multi-bit covert channels between virtual
machines, even if they do not share a host, as long
as their virtualised drives reside on the same ZFS
pool. Consequently, schemes like those proposed by
Hovhannisyan et al. (2015) to establish more than
just single-bit covert channels based on the existence
of a particular file can directly be applied in our
setting. While the original publication on this matter
presented a significant advancement over single-bit
channels, it is still limited to bandwidth constraints
under real-world settings. Our attack scenario, on the
other hand, is not subject to such limitations as it puts
no strain on network links. Consequently, it works
even when no network access is available, similar to
the attack presented by Maurice et al. (2017). Far
more effective than applying file-based deduplication
side channels to establish covert communication,
however, is using our approach to probe for the
installation of vulnerable software, as explained
by Irazoqui et al. (2015).

To actually recover the IP address of a virtual
machine that has a vulnerable software installed,
we can apply the same mechanism as proposed by
Irazoqui et al.: In effect, once a vulnerable version
of a service is found, we can simply probe the IP
neighbourhood of the virtual machine we control
and try to mount known attacks on each reachable IP
address to see which one responds to the attack.

4 PRYING COW

The following subsections describe the test setup,
the experiments performed, and the results obtained,
showing that it is indeed possible to infer information
about neighbouring virtual machines.

4.1 Test Setup

In our evaluation, we concentrate on the file system
ZFS, as it is the most mature representative of file
systems supporting deduplication. The experiments
were performed on a computer with an Intel R©
CoreTM i5-6200U CPU and 12 GB RAM. The host
operating system was Ubuntu 18.04 LTS with Linux
Kernel 4.15 and ZFS on Linux 0.7.5. While ZFS was
originally developed for the Solaris operating system,
ZFS has also been ported to Linux and is, for example,
officially supported by Ubuntu since version 16.04

LTS9. The virtual machines in the experiment are
running on QEMU/KVM. The images of the virtual
machines are stored on a common ZFS pool, which
uses a recordsize of 64 KiB. The adjacent virtual
machines generally run in the background during the
experiments.

The measurement program was executed on a
virtual machine running Ubuntu 18.10. For this pur-
pose, the files to be detected were loaded into the
virtual machine of the attacker. In order to exclude
false positives, these files were saved onto a tmpfs,
i.e., they were written directly into the allocated
main memory of the virtual machine instead of the
storage volume. In general, the files stored on the
virtual machine executing the measurement program
should have as little overlap as possible with the data
used to detect the victims. Due to the immediate
deduplication of the contents using in-line deduplica-
tion, measurements can be performed directly when
writing data. Compared to post-process deduplica-
tion as used in btrfs, there is no need to wait until
the deduplication process is complete. During the
evaluation phase, the measuring program directly
memory maps the file. The application then proceeds
by writing the mapped file to the storage volume
of the virtual machine, which is backed by the ZFS
pool. To measure the execution time more precisely,
the file descriptor used to write the file is opened
with the option O SYNC. As a result, the operating
system waits until all data have been written, and,
compared to the default behaviour, does not continue
the program flow before the data are committed to
the system. In addition, the execution times of the
write operations were measured on the basis of the
guidelines provided by Intel R© for benchmarking
code as outlined by Paoloni (2010). This prevents
the measurement results from being falsified by the
out-of-order execution of modern processors.

Simultaneous processes on the storage volume or
the system could, in general, lead to differences in
the execution time. While this has not been an issue
for large files in our experiments, as the difference
between the execution times is more significant, it
may lead to wrong conclusions when writing smaller
files. In order to compensate for such differences,
the measurements can be performed several times
and then statistically analysed. To restore the virtual
machine to the starting point after a measurement,
the file is overwritten with random data and subse-
quently deleted. We measure both the time it takes to
write the file initially, and the duration of overwriting
the file afterwards. As mentioned previously, our

9https://arstechnica.com/gadgets/2016/02/zfs-file
system-will-be-built-into-ubuntu-16-04-lts-by-default/
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Figure 2: Detection of the the block offset inside a ZFS record.

assumption is that writing the file initially is faster if
the file already (partially) exists on the volume, while
overwriting a deduplicated file is slower than over-
writing a non-deduplicated file. In our experiments,
we found that the difference is more pronounced in
the first case. Therefore, the stated measurements in
the following case studies are from the initial writes,
if not mentioned otherwise. The following subsection
proceeds by showing how to detect the block offset,
in case the blocks stored in the virtual machine image
are not aligned with the recordsize.

4.2 Detection of the Block Offset

As stated in the previous section, our ZFS pool works
on records with a size of 64 KiB. However, we
observed that most file systems created during the
installation of an operating system use a block size of
4 KiB. Thus, replicated files may not be aligned to the
recordsize and may not get deduplicated, as outlined
in Section 2.1. While we observed that some oper-
ating systems, such as Ubuntu 18.10, align (large)
files to 64 KiB, other operating systems such as Win-
dows 10 do not. To account for a possible alignment
mismatch on real-world systems, the measurements
can be invoked repeatedly with padded files. Without
loss of generality, we assume that the victim virtual
machine uses a block size of 4 KiB. Therefore, we
will pad the file at the beginning in steps of 4 KiB. To
avoid skewing the measurements by writing paddings
of different size, we always pad the written file by

64 KiB. The part of the pad that is not used at the
beginning of the file will be attached to the end of
the file. Figure 2 shows the results of detecting a
non-aligned file inside a virtual machine running
Windows 10. As shown in this figure, writing the file
with an offset of 36 KiB takes less time than writing
the file at other offsets. Therefore, we detected that
the file exists in another virtual machine at this offset.
In the following subsections, we assume that the files
are aligned to the recordsize of the ZFS pool.
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Figure 3: Execution times of writing the file gnome-3-26-
1604 70.snap (part of Ubuntu 18.10) to disk.
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4.3 Detection of Adjacent Operating
Systems

In the first case study, we identify the operating
system an adjacent virtual machine is running. To
identify the operating system, a file unique to the
operating system was chosen. For example, in this
experiment, we first detect whether or not a neigh-
bouring virtual machine has Ubuntu installed. The
gnome-3-26-1604 70.snap file was chosen to identify
the operating system, as it comes by default with the
operating system, even when choosing a minimal set
of applications during the installation. As the virtual
machine used to conduct the measurements also runs
Ubuntu 18.10, the corresponding file was removed
from this system prior to the measurement runs to
avoid any false negatives. The measurements can be
found in Figure 3. The red bars show the experiments
where Ubuntu was not installed on the same volume,
while the blue bars show the experiments where
Ubuntu was installed. The Figure depicts 25 different
measurements for each of the cases, out of the 200
measurements conducted. As shown in the figure, the
writing time is generally much higher if the library
file does not exist, confirming our earlier assumption.
Due to some outliers, it is advisable to perform mul-
tiple measurements before coming to a conclusion
about the utilised operating system. However, even
considering these outliers, using k-means we were
able to cluster 81% of the measurements correctly.
As each measurement only takes a few seconds, it is
possible to detect the adjacent operating system in a
short amount of time, even when conducting multiple
measurements.

For the sake of completeness, we also identify
a neighbouring Windows 10 virtual machine. The
measurements are depicted in Figure 4. Similar to
the previous illustration, the red bars show the experi-
ments where Windows 10 was not installed, while the
blue bars show the experiments where Windows 10
was installed. In this case, the Microsoft.Photos.dll
library was chosen to identify the operating system,
as it only exists in Windows 10. As in the previous
experiment, it is again possible to distinguish whether
or not the operating system is deployed in the vicinity.
Summing up, it is possible to detect both Linux- and
Windows-powered virtual machines.

4.4 Detection of Applications

The following case study shows that it is even pos-
sible to detect individual applications in a virtual
machine running in parallel. The adjacent virtual
machine is running Ubuntu 18.10. The application
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Figure 4: Execution times of writing the Mi-
crosoft.Photos.dll library (part of Windows 10) to disk.
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Figure 5: Execution times of writing Firefox’s libxul.so to
disk.

to be detected is the Firefox web browser. The mea-
surements conducted for this experiment are shown
in Figure 5. Similar to the previous case study, 25
measurements are depicted, where the red bars illus-
trate the case where Firefox is not installed, while the
blue bars show the experiments where Firefox was
installed in a neighbouring virtual machine. In the
test cases where Firefox is installed, it was installed
from the official repositories of Ubuntu. We identify
Firefox by detecting the libxul.so shared object file,
which is an integral part of the web browser. In total,
we conducted 100 measurement runs (50 for each
case) for this experiment. In addition to giving an
intuition about the detectability of an application,
we again used k-means to cluster the results into
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Figure 6: Execution times of writing different versions of Firefox’s libxul.so to disk.

two classes. It was possible to partition 83% of the
measurements correctly, showing that it is indeed
feasible to detect the existence of an application in a
neighbouring virtual machine.

Even more interesting than the mere presence
of an application is the patch level of a program,
as accompanying changelogs provide information
about potential vulnerabilities. Thus, we show in the
next experiment that it is possible to detect the exact
version number of Firefox, down to the minor version.
Figure 6 shows these results. In the experiment, we
distinguish four different cases:

1. Firefox 65.0 installed, but probing for Firefox
65.0.1

2. Firefox 65.0.1 installed, probing for Firefox
65.0.1

3. Firefox 65.0.1 installed, but probing for Firefox
65.0

4. Firefox 65.0 installed, probing for Firefox 65.0

Like in the previous experiments, the diagram shows
25 measurements for each case. This experiment
shows that an adversary can detect the exact version
of an application by recording the execution time of
writing the corresponding file. Consequently, it is
possible to detect applications with known vulnerabil-
ities in a neighbouring virtual machine. For example,
Firefox 65.0.1 closed four different security vulnera-

bilities10, some of which are openly documented11.
The update did not include any other changes. An at-
tacker could potentially use the known vulnerabilities
to compromise an adjacent virtual machine.

Similar to the previous experiments, we used k-
means to cluster all the 200 conducted measurement
runs (100 for each case) into two clusters, i.e., into
application detected and not detected. With k-means
we were able to correctly partition 91.5% of the mea-
surements between case 1 and 2. By combining
both writing measurements and overwriting measure-
ments, we were able to increase the accuracy to 94%.
On its own, the overwriting measurements achieve
an accuracy of 79.5%. When applying k-means to
case 3 and 4, 93.5% of the writing measurements
can be partitioned correctly. Combining the writing
and overwriting measurements did not increase the
achieved accuracy. Still, this experiment shows that
it is possible to detect the installed version of an
application with high accuracy, even by evaluating
only a single measurement.

10https://www.mozilla.org/en-US/security/advisories/
mfsa2019-05/

11https://googleprojectzero.blogspot.com/2019/02/the-
curious-case-of-convexity-confusion.html
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5 DISCUSSION

This section deals with limitations of the attack vector
and possible countermeasures on the part of the
operators of cloud services and the users of the virtual
machines.

5.1 Limitations

The attack cannot determine whether a program or
virtual machine is currently running or only resident
on the disk. If multiple adjacent virtual machines
are present, it is hard to tell which of the virtual
machines is running a specific operating system or
application. Thus, this attack is comparable to attacks
on the page deduplication of the main memory, such
as outlined by Suzaki et al. (2011). In their attack,
no definitive statement can be made about currently
running programs, as non-executed program files can
also be stored in RAM. Likewise, it is not possible
to recognise which neighbouring virtual machine
a program is located in. Even when considering
these limitations, the ability to recognise files in other
virtual machines undermines the security and privacy
assumptions associated with virtualisation.

5.2 Countermeasures

To avoid this vulnerability on the side of the operators
of VPSs, images of different virtual machines can
be stored on separate ZFS pools or, in general, on
partitions that are deduplicated independently. This
means that files in other virtual machines can no
longer be identified by an attacker. However, by
applying this countermeasure, only the blocks within
a single image can be deduplicated. Since the storage
advantages result primarily from the fact that the
operating system and application files of different
images are similar, the benefits of deduplication are
greatly reduced.

As an alternative to deduplication, compression
can be utilised. Although, while compression can
save storage space, it does not prevent similar files
from being replicated on the medium. On the other
hand, compression requires less memory compared to
in-line deduplication, since the information required
for deduplication does not have to be stored in the
main memory. However, especially with many dupli-
cated blocks, the reduction in storage space achieved
by compression alone is likely to be lower.

On the side of the end users of the virtual ma-
chines, encryption can be applied to the stored data.
This effectively prevents applications or data stored
in the virtual machine from being recognised by an

Encrypted Partition(s)

VM Image 2

ZFS Pool

VM Image 1

Block Device

Encrypted Partition(s)

Figure 7: Applying encryption on the user side to avoid
deduplication.

attacker. Encryption, in general, completely prevents
deduplication of the data, as it renders each repli-
cated block of data different. Therefore, encryption
has to be applied above the deduplication layer, as
shown in Figure 7. At the same time, this approach
nullifies any advantage of deduplication. Moreover,
even when enabling full hard disk encryption in the
installation process of some operating systems, data
sufficient for identification of the operating system
type may be stored unencrypted (Landau, 2018). For
this reason, it should be ensured that all files are
properly encrypted as outlined by Kogan (2014) —
even the files required for the boot process, such as
the Linux kernel image.

6 CONCLUSIONS

Data deduplication is typically used in cloud environ-
ments to reduce the required storage space and thus
improve efficiency and in turn provide cost reductions.
However, as we have shown in this paper, relying
on deduplication can also reveal information about
neighbouring systems that compromises the privacy
and security of virtual machine users. More specif-
ically, this work has demonstrated a novel attack
which exploits the deduplication feature of modern
file systems. We have successfully demonstrated for
the first time how timing attacks on write operations
in a shared file system pool enable an adversary to
probe for installed software or operating systems
inside adjacent virtual machines, including version
numbers and patch levels of applications.

Our approach differs from existing attacks in
the sense that it is purely based on measuring write
operation timings of modern file systems and does
not require elevated user rights. Furthermore, the
approach does not make assumptions about the un-
derlying hardware or network access. As a result,
the attack effectively breaks one of the core security
assumptions of cloud computing.

In general, the attack can be prevented by relying
on separate pools for each virtual machine or by
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relying solely on compression instead of dedupli-
cation to reduce storage usage. Another approach
to counter this attack is to encrypt the data inside
the virtual machines. However, all of the discussed
countermeasures impact the achievable storage space
reductions negatively. Therefore, we plan to explore
how to better mitigate such attacks in future work.
While this paper focused on detecting individual files,
we believe that it is also possible to discover multiple
consecutive files. In this case, each of the written
files has to be aligned to the block size of the file
system. We leave the extension of the measurement
application as future work. Nevertheless, due to
the severity of the presented attack, we propose to
reconsider relying on data deduplication in multi-user
and shared cloud environments.
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