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Abstract: Call graphs provide the groundwork for numerous analysis algorithms and tools. However, in practice, their
construction may have several ambiguities, especially for object-oriented programming languages like Java.
The characteristics of the call graphs – which are influenced by building requirements such as scalability, effi-
ciency, completeness, and precision – can greatly affect the output of the algorithms utilizing them. Therefore,
it is important for developers to know a well-defined set of criteria based on which they can choose the most
appropriate call graph builder tool for their static analysis applications. In this paper, we studied and compared
six static call graph creator tools for Java. Our aim was to identify linguistic and technical properties that might
induce differences in the generated call graphs besides the obvious differences caused by the various call graph
construction algorithms. We evaluated the tools on multiple real-life open-source Java systems and performed
a quantitative and qualitative assessment of the resulting graphs. We have shown how different outputs could
be generated by the different tools. By manually analyzing the differences found on larger programs, we also
found differences that we did not expect based on our preliminary assumptions.

1 INTRODUCTION

Producing high-quality software is an important re-
quirement of today’s industrial development, so, nat-
urally, there are many tools and methodologies avail-
able to aid quality management. A subset of these
tools are static source code analyzers that help pro-
grammers eliminate flaws and rule violations early
on by automatically analyzing the subject system and
highlighting its potentially erroneous parts. However,
their capabilities can differ significantly depending on
the complexity of the internal representations and al-
gorithms they use.

Call graphs are directed graphs representing con-
trol flow relationships among the methods of a pro-
gram. The nodes of the graph denote the methods,
while an edge from node a to node b indicates that
method a invokes method b. Call graphs can either be
considered static or dynamic depending on whether
they were constructed during static or dynamic anal-
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ysis. Static graphs tend to overestimate the accurate
call graphs, while the quality and precision of the dy-
namic graphs are heavily influenced by the size and
quality of the corresponding test-suite. In this work
we are considering static call graphs only.

As call graphs are the main building blocks for
modeling interprocedural control and data flow, their
soundness can greatly affect the results of subsequent
analyses. Developers need to carefully consider how
their call graphs are constructed before they incorpo-
rate them into a novel algorithm. In the case of object-
oriented languages, the target of a call often depends
on the runtime behavior of the program, therefore,
a static call graph builder has to make assumptions
about what methods could be called, resulting in pos-
sible imprecisions. Call graph builder algorithms ad-
dressing this challenge have an extensive literature,
including detailed comparisons (Lhoták, 2007), (Tip
and Palsberg, 2000), (Grove et al., 1997), (Murphy
et al., 1998), (Grove and Chambers, 2001), (Lhoták
and Hendren, 2006). However, there are other factors
that influence the structure of a call graph as well, for
example, the handling of different kinds of initializa-
tions or anonymous classes. In this paper, we aimed
to study these factors through the evaluation of six
static call graph builder tools for Java. The following
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Research Questions (RQs) guided the direction of our
research:

• RQ1: How does the different handling of Java’s
language features affect the resulted call graphs?

• RQ2: How different could the call graphs be in
practice?

• RQ3: Do we get the same graphs if we ignore the
known differences?

We constructed an example code – full of lan-
guage features that we expected to challenge the tools
(available as an online appendix, see Section 4) – and
compared the resulting graphs. We also performed an
evaluation on four real-life Java systems in order to
study the differences on a bigger scale. The results of
the Maven1 and ArgoUML2 projects are presented in
this paper, while the results of the other projects are
available as part of the online appendix.

The rest of the paper is organized as follows. Sec-
tion 2 provides a brief background on call graphs and
also discusses the related literature. The six tools we
compare are described in Section 3. We define the
steps of our evaluation process in Section 4 and ana-
lyze the results quantitatively and qualitatively in Sec-
tion 5. Finally, threats to the validity of our results are
examined in Section 6 before we draw our conclu-
sions in Section 7.

2 RELATED WORK

Call graphs are the basis of many software analy-
sis algorithms, such as control flow analysis, pro-
gram slicing, program comprehension, bug predic-
tion, refactoring, bug-finding, verification, security
analysis, and whole-program optimization (Weiser,
1981), (Feng et al., 2014), (Christodorescu and Jha,
2003), (Wagner et al., 1994). The precision and recall
of these applications depends largely on the sound-
ness and completeness of the call graphs they use.
Moreover, call graphs can be employed to visual-
ize the high level control flow of the program, thus
helping developers understand how the code works.
There are several studies about dynamic call graph-
based fault detection, like the work of Eichinger et
al. (Eichinger et al., 2008), who created and mined
weighted call graphs to achieve more precise bug lo-
calization. Liu et al. (Liu et al., 2005) constructed be-
havior graphs from dynamic call graphs to find non-
crashing bugs and suspicious code parts with a classi-
fication technique.

1https://github.com/apache/maven
2http://argouml.tigris.org/

Regardless of whether the examined language
is low-level and binary or high-level and object-
oriented, call graph construction can always lead to
some difficulties (Bacon and Sweeney, 1996), (Reif
et al., 2016). A call graph is accurate if it contains
exactly those methods and call edges that might get
utilized during an actual execution of the program.
However, in some cases, these can be hard to calcu-
late. For example, if several call targets are possi-
ble for a given call site, then deeper examination is
needed to determine which ones to connect as pre-
cisely as possible. This examination can be done
in a context-dependent or context-independent man-
ner; naturally, the choice influences the generated call
graph. Context-dependent methods are more accu-
rate in return for greater resource usage. To miti-
gate the resource demands of such methods, the anal-
ysis of the programs often only starts from the main
method or a few entry points instead of starting from
every method. This might result in a less accurate
call graph. To improve the accuracy of context-
independent methods, the following algorithms can
be used for object-oriented languages: Class Hierar-
chy Analysis (CHA) (Dean et al., 1995), Rapid Type
Analysis (RTA) (Bacon and Sweeney, 1996), Hybrid
Type Analysis (XTA)(Tip and Palsberg, 2000), Vari-
able Type Analysis (VTA) (Sundaresan et al., 2000).

Another important question during call graph cre-
ation is the handling of library calls (Ali and Lhoták,
2012). Including library calls not only makes the call
graph bigger, it also requires the analysis of the li-
braries which can be quite resource consuming. How-
ever, the exclusion of library elements may cause in-
accuracies when developers implement library inter-
faces or inherit from library classes. The analysis
of library classes might involve private, inaccessible
methods as well. Michael Reif et al. (Reif et al., 2016)
discussed the problem that the often used call graph
builder algorithms, such as CHA and RTA, do not han-
dle libraries separately according to their availability.
The recommended algorithm in this work reduces the
number of call edges by 30%, in contrast to other ex-
isting implementations. The tools we selected for our
comparison represent library calls and library meth-
ods at various levels of detail.

As mentioned in Section 1, many comparative
studies are available about call graph creation. Grove
et al. (Grove et al., 1997) implemented a framework
for comparing call graph creation algorithms and as-
sessed the results with regard to precision and per-
formance. Murphy et al. (Murphy et al., 1998) car-
ried out a study similar to ours about the comparison
of five static call graph creators for C. They identi-
fied significant differences in how the tools handled
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typical C constructs like macros. Hoogendorp gave
an overview of call graph creation for C++ programs
in his thesis (Hoogendorp, 2010). Antal et al. (Antal
et al., 2018) conducted a comparison on JavaScript
static call graph creator tools. Similarly to our work,
they collected five call graph builders and analyzed
the handling of JavaScript language elements and the
performance as well. As a result, they provided the
characterization of the tools that can help in select-
ing the one, which is most suitable for a given task.
Tip et al. (Tip and Palsberg, 2000) tried to improve
the precision of RTA by introducing a new algorithm.
On average, they reduced the number of methods by
1.6% and the number of edges by 7.2%, which can
be a considerable amount in the case of larger pro-
grams. Lhoták (Lhoták, 2007) compared static call
graphs generated by Soot (Sable Research Group,
2019) and dynamic call graphs created with the help
of the *J (Sable *J, 2019) dynamic analyzer. He built
a framework to compare call graphs, discussed the
challenges of the comparisons, and presented an al-
gorithm to find the causes of the potential differences
in call graphs.

Reif et al. (Reif et al., 2018) dealt with the un-
soundness of Java call graphs. They compared the
call graph creator capabilities of two analyzer tools,
WALA and Soot. They evaluated different configu-
rations of the tools on a small testbed. Their main
goal was to decide whether a tool handles a specific
language element or not, and - unlike our work - did
not investigate the way it is handled. An assessment
suite for the comparison of different call graph tools
is proposed as well. Our work is similar to their
study, however, we performed an in-depth examina-
tion to identify what differences can occur between
call graph builder tools. The six tools we selected for
our research have various properties and ways of anal-
ysis, for example, there are both source- and bytecode
analyzers, while Reifs et al. only analyzed bytecode
based tools. As a result, we provide a full scale of
factors that can cause ambiguities in the call graph
creation. There are obvious factors, like the handling
of polymorphism and library calls that were analyzed
before. However, we highlight other, less evident as-
pects as well that have to be considered before using
or developing a call graph builder tool.

3 CALL GRAPH
CONSTRUCTION TOOLS

We studied numerous static analyzer tools for Java
to decide whether they could generate – or could
be easily modified to generate – call graphs. We

searched for widely available, open-source programs
from recent years, which could analyze complex,
real-life Java systems. We discarded many plug-in-
based tools, as they produced only a visual output
(e.g., CallGraph Viewer (CallGraphViewer, 2019)),
while other promising candidates were not robust
enough on larger systems (e.g., Java Call Hierarchy
Printer (Badenski, 2019)). In some cases, the call
graphs had to be extracted directly from the inner rep-
resentation of the analyzer. However, we eliminated
any tool that did not provide enough information
to reconstruct the caller-callee relationships between
compilation units without major development (e.g.,
JavaParser (Danny van Bruggen, Federico Tomassetti,
Nicholas Smith, Cruz Maximilien, 2019)).

The description of the six tools that met our selec-
tion criteria is presented below.
Soot (Sable Research Group, 2019) is a widely used
language manipulation and optimization framework
developed by the Sable Research Group at the McGill
University. It supports analysis up to Java 9 and works
on the compiled binaries. Although its latest offi-
cial release was in 2012, the project is still active on
GitHub, from where we acquired the 3.2.0 release,
which was the latest version at the time. Soot has a
built-in call graph creator functionality that can be pa-
rameterized with multiple algorithms. We employed
the CHA algorithm during construction.
OpenStaticAnalyzer (OSA) (DSE University of
Szeged, 2019) is an open-source, multi-language
static analyzer framework developed by the Univer-
sity of Szeged. It calculates source code metrics,
detects code clones, performs reachability analysis,
and finds coding rule violations in Java, JavaScript,
Python, and C# projects. Besides the recursive
directory-based analysis of the source code, OSA is
also capable of wrapping the build system (maven or
ant) of the project under examination. This can make
the analysis more precise, as generated files will be
handled as well. We extracted the call graph of our
project by traversing its Abstract Syntax Tree 3 (AST)
like internal representation and collecting every avail-
able invocation information.
SPOON (Pawlak et al., 2015) is an open-source,
feature-rich Java analyzer and transformation tool for
research and industrial purposes. It is actively main-
tained, supports Java up to version 9, and while sev-
eral higher-level concepts (e.g., reachability) are not
provided ”out of the box”, the necessary infrastruc-
ture is accessible for users to develop their own.
SPOON performs a directory analysis of the source
code and builds an AST-like metamodel, which is the

3Abstract Syntax Tree represents the syntactic structure
of the source code in a hierarchical tree-like form.
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basis for these further analyses and transformations.
Similarly to the above mentioned OSA implementa-
tion, the call information can be obtained by process-
ing the AST-like inner representation of SPOON. The
library is well-documented and provides a visual rep-
resentation of its metamodel, which helped us thor-
oughly study its structure. We used the 7.0.0 version
for our research.
Java Call Graph (JCG) (Georgios Gousios, 2019) is
an Apache BCEL (Apache Commons, 2019) based
utility for constructing static and dynamic call graphs.
It can be considered a small project, as it has only
one major contributor, Georgios Gousios, whose last
commit (at the time of writing) is from October, 2018.
It supports the analysis of Java 8 features and requires
a jar file as an input. A special feature of the analyzer
is the detection of unreachable code. As a result, the
call graph does not include calls from code segments
that are never executed.
WALA (WALA, 2019) is a static and dynamic an-
alyzer for Java bytecode (supporting syntactic ele-
ments up to Java 8) and JavaScript. Originally, it was
developed by the IBM T.J. Watson’s Research Cen-
ter; now it is actively developed as an open-source
project. Similarly to Soot, it also has a built-in call
graph generation feature with a wide range of graph
building algorithms. We used the ZeroOneContain-
erCFA graph builder for our research, as it performs
the most complex analysis. It provides an approxima-
tion of the Andersen-style pointer analysis (Andersen,
1994) with unlimited object-sensitivity for collection
objects. The generator had to be parametrized with
the entry points, from which the call graphs would
be built. To make the results similar to the results
of the other tools, we treated all not-private, non-
abstract methods as entry points (instead of just the
main methods). For other configuration options, we
used the default settings provided in the documenta-
tion and example source codes.
Eclipse JDT (Eclipse JDT, 2019) is one of the main
components of the Eclipse SDK (Eclipse, 2019). It
provides a built-in Java compiler and a full model
for Java sources. We created a JDT based plugin for
Eclipse Oxygen that supports even Java 10 code, to
extract the call graph from the extensive, AST-like in-
ner representation.

4 EVALUATION PROCESS

In Java, methods can be distinguished by fully quali-
fied names, which include the package name, the class
name, the name of the method, and the list of the pa-
rameter types. These methods can be referred by their

name and by the appropriate parameter types. How-
ever, the nomenclature of some language elements
is not standardized, for example, the naming of the
anonymous classes and methods, or the notations of
lambda expressions. Moreover, it is also possible that
compiler-generated code parts are not present in some
source-code based representations.

In applications, call graphs can only be used effec-
tively if the call dependencies among the nodes solely
cover real dependencies and also include all those that
indicate any data or control dependencies. In order to
compare the soundness and unsoundness of the call
graphs generated by different tools, we need to iden-
tify the corresponding nodes – the targets of the po-
tential invocations – in multiple graphs. Naturally,
each tool produced a slightly different output. For ex-
ample, OSA and WALA use the standardized naming
convention4, while others employ their own notation
system. To illustrate, here are two different represen-
tations of the public void foo(String[] str) method:

• OSA: foo([Ljava/lang/String;)V

• Soot: void foo(java.lang.String[])

Despite the different textual forms, these two rep-
resentations can be matched easily. We had to im-
plement a specific graph loader for each tool to han-
dle the aspects of its method naming convention. A
method name unification algorithm was introduced to
overcome all notational differences. However, two
language features, the anonymous and generic code
elements, needed extra consideration, therefore, the
line information of the methods was also involved in
the method pairing process. We have note that line
information was not always available or reliable. The
developmental and fine-tuning steps of the method
name unification algorithm and validation of the pair-
ing mechanism based on that were discussed in one
of our previous articles (Pengő and Ságodi, 2019).
We performed the graph comparisons on the unified
graphs. We analyzed the kinds of nodes and edges
that were found by each tool.

First, we performed a comparison on a small Java
sample code (454 LOC) to identify how the tools
handle different Java language elements. The code,
through trivial test cases, helps highlight how the
language features impact the generated call graphs.
We tested the handling of polymorphism, reflection,
lambda expressions, etc. with one simple example
each, then manually studied the outputs. Native JNI
calls and callback functionalities are not tested be-
cause their handling is far beyond the capabilities of

4Standard naming convention for Java methods:
https://docs.oracle.com/en/java/javase/11/docs/specs/jni/
intro.html
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ordinary static analyzer tools. After the in-depth ex-
amination of the sample code we conducted an analy-
sis of large, real-life Java projects in order to measure
the impact of various handling procedures on a large
scale.

The source of our tool, which compare the differ-
ent outputs of the different call graphs, the used call
graph tools, the example code and analyzed programs
with the comparison results are available in our on-
line appendix at http://www.inf.u-szeged.hu/∼ferenc/
papers/StaticJavaCallGraphs.

5 COMPARISON OF CALL
GRAPHS

To answer our research questions, in this section we
first characterize the language elements responsible
for the variance of call graphs. We perform a qualita-
tive and quantitative analysis, and finally we classify
the differences of the resulted call graphs manually,
so that we can learn more about the causes of the dif-
ferences.

5.1 Handling of Language Features

In this subsection, we summarize the language ele-
ments that are handled differently, therefore, cause
differences in the generated call graphs.
Initializer Methods. The handling of the different
types of initializations is one of the main sources
of differences. Naturally, all of the tools represent
constructor calls. With the exception of JDT, all of
them detect and connect generated default construc-
tors even without the instantiation of an object, and
derived classes’ calls to super constructors are repre-
sented as well. In case of AST-based call graphs, ini-
tializer blocks and constructors have different nodes
in the call graph. Bytecode based call graph builders
represent such nodes as one. The initializer meth-
ods of nested classes also cause discrepancies in the
graphs, because bytecode based tools (Soot, WALA
and JCG) represent a reference to the outer class as an
additional parameter in the parameter list. Obviously,
source code based tools miss this parameter, since it
is not present in the actual code. Both solutions are
acceptable, and does not lessen the accuracy of calls,
although it makes the node pairing more challenging.

Static initializer blocks are executed when a class
is loaded by the class loader of the Java Virtual Ma-
chine. This is a dynamic process, triggered by dif-
ferent types of usage of a class, therefore, represent-
ing static initializer nodes in a static call graph can be
cumbersome and incidental. All tools represent static

initializer blocks, however, with different details and
call edges. A large part of Soot’s graphs are made up
of these nodes. When a class is used and it has at least
one static field declared, Soot inserts a corresponding
static initializer node.
Polymorphism. Polymorphism is one of the most im-
portant traits of an object-oriented language. They oc-
cur most often when a parent class reference is used to
refer to a child class object. However, polymorphism
can cause inaccuracies in the call graphs, as static an-
alyzers might be unable to decide whether an object
reference is of its declared type or any subtype of its
declared type. So, when a method is invoked, instead
of linking the proper overridden method, most of the
analyzers only link the parent method in the graph.
This problem can be resolved by employing an algo-
rithm that tries to approximate the call target.

Only WALA and Soot use an advanced algo-
rithm, namely a type of points-to analysis, whilst the
other tools rely on simple Name Based Resolution
(NBR) (Tip and Palsberg, 2000). The NBR tools,
such as OSA, SPOON, JCG, and JDT represent poly-
morphic methods with their static type. As there are
many comparative studies about call graph builder al-
gorithms (Lhoták, 2007), (Tip and Palsberg, 2000),
(Grove et al., 1997), (Murphy et al., 1998), (Grove
and Chambers, 2001), (Lhoták and Hendren, 2006),
the thorough examination of the handling of polymor-
phism is not in the focus of our research. In our cur-
rent evaluation, Soot uses the Class Hierarchy Anal-
ysis (CHA) to resolve the target of the polymorphic
call. CHA makes the assumption that every over-
ridden implementation of methods on a given inher-
itance hierarchy is callable at the call sites. In many
cases, this will clearly result in false positive call-
ing relationships, as we will see in the discussion
of anonymous classes. The ZeroOneContainerCFA
algorithm of WALA is more sophisticated, but the
implementation is incorrect in the sense that neither
WALA nor Soot realize method invocations of default
methods of interfaces. If a method is not overridden
in the derived class, JCG generates a copy of the base
method in the derived class. This method is callable
if the static type of the object at the calling site makes
it possible, however, this method does not refer to the
original method and the called methods of the origi-
nal. So an application, which traverses the possible
execution paths, will miss some potential paths.
Anonymous Source Code Elements. Anonymous
methods and classes can cause difficulties in the node
pairing process because there is no standard way of
naming. If the tools do not provide valid line infor-
mation, some anonymous methods will remain un-
matched, which results in different call edges as well.
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However, our examination revealed that this is not
the most important reason for differences caused by
the anonymous elements. The instantiations of inner
classes and the calls of constructors work well in ev-
ery tool. Although the naming of the inner classes
can be different for each tool, the pairings of the cor-
responding nodes of the graphs are made feasible with
the help of additional line information. According to
the properties discussed during the polymorphism, it
is not surprising, that OSA, SPOON, JCG are not able
to invoke the methods overloaded by the anonymous
classes. CHA algorithm of the Soot can be problem-
atic. Since methods of the anonymous classes are not
reachable in many contexts, it is not always correct to
consider these to be the part of the hierarchy. In many
cases, this can cause false positive call relations in the
call graph.
Generic Elements. In order to implement generics,
the Java compiler applies type erasure, where it re-
places all type parameters in generic types with their
bounds or with the Object if the type parameters are
unbound. This type erasure is used by the call graph
tools in most cases. Although WALA and Soot are
also using type erasure to specify the target method,
whose definition contains at least one generic param-
eter, these tools propagate the types of the actual pa-
rameters into the called method.

When using JDT, we collect information from the
AST representation of the analyzed program, and we
determine the target of a particular call with method
binding information at the call site. If a generic
method is instantiated with different types, we get
more nodes in the call graph, which represent the
same method. Of course this is our fault, since JDT
provides all necessary information with which we
could approach the accuracy of either WALA or Soot.
Java 8. Java 8 introduced the concept of functional
interfaces. These are interface classes that contain ex-
actly one abstract method. Lambda expressions and
method references, which are also new features of
Java 8, can be used to reference such functional in-
terfaces. Since lambda expressions cannot, strictly
speaking, be considered methods, their interpretation
in a graph that represents methods as nodes is a bit
cumbersome. Out of the six tools, only WALA cre-
ates dedicated nodes for lambda expressions, other
tools represent them with the interface they imple-
ment. Similarly to lambda expressions, WALA also
handles functional interfaces with specific nodes, to
which the lambda and method reference nodes are
connected. Although it would not be impossible (by
tracing the inner calls of the Java libraries) we con-
cluded from our research that call graph builder tools
mostly fail to detect and, therefore, represent what ac-

tual methods are called through the mentioned calls.
Dynamic Method Calls. The reflection and the
method handle mechanism of Java make it possible
to determine the target of a method invocation dy-
namically in runtime. On our sample code we tested
whether any of the six tools could determine the tar-
gets of a basic reflection and a method handle call.
Since none of the tools provided a solution for the
handling of these invocations, we are not dealing with
them in the rest of the paper, similarly to native JNI
calls and callback methods.

Our RQ1 was: “How does the different handling
of Java’s language features affects the resulted call
graphs?” The handling of some language elements
causes additional nodes to appear in the call graph.
This is necessary in some cases (e.g. in the case of
default constructors or generated methods), while in
others it is only a technical help for call graph con-
struction (e.g. linking inherited methods). In some
cases there are many potential targets of a method
call. In such situations, different call graph tools can
have a different number of call edges from the given
call site.

5.2 Quantitative Differences of Call
Graphs

We summarized the results of our sample code in Ta-
bles 1 and 2. The numbers in the main diagonals of
the tables are the number of methods (e.g. Soot found
114 methods, see Table 1) or calls (e.g. Soot identified
404 invocations, see Table 2) found by the tools, while
the top left cell contains the number of distinct meth-
ods found by the different tools, i.e., it is the number
of methods or calls in the union (the six tools together
found 176 distinct methods and 472 different method
invocations). The number of calls discovered by the
individual tools ranges from 211 to 404. The percent-
ages in the row of a tool show the ratio of its methods
or calls that were found by the other tool presented
in the given column. For example, WALA found 249
calls and 175 of them were found by JDT as well,
which results in 70.28%. On the other hand, JDT de-
tects 211 call edges from which WALA found 175 as
well. However, as JDT has fewer calls than WALA,
the ratio is higher, 82.94%. This means that the table
is not symmetrical.

For an easier visual overview, the percentages
above 80% are colored green, while the percentages
below 60% are red. Tables 1 and 2 show that the re-
sults of OSA and SPOON are well aligned on the ex-
ample code, OSA covers all the methods and edges
of the SPOON’s graph. SPOON connects three addi-
tional library methods into the graph, and this causes
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Table 1: Common methods of the sample code.
176 Soot OSA SPOON JCG WALA JDT
Soot 114 76.39% 78.47% 81.25% 82.64% 73.61%
OSA 92.44% 119 100.00% 95.80% 91.60% 94.12%
SPOON 92.62% 97.54% 122 95.90% 91.80% 94.26%
JCG 86.67% 84.44% 86.67% 135 85.19% 81.48%
WALA 93.70% 85.83% 88.19% 90.55% 127 82.68%
JDT 90.60% 95.73% 98.29% 94.02% 89.74% 117

Table 2: Calls of the sample code.
472 Soot OSA SPOON JCG WALA JDT
Soot 404 51.73% 52.48% 53.96% 58.42% 43.56%
OSA 89.70% 233 100.00% 94.85% 89.27% 82.83%
SPOON 87.60% 96.28% 242 92.56% 87.19% 82.64%
JCG 87.20% 88.40% 89.60% 250 86.40% 74.80%
WALA 94.78% 83.63% 84.74% 86.75% 249 70.28%
JDT 83.41% 91.47% 94.79% 88.63% 82.94% 211

Table 3: Methods of the Maven project.
7,567 Soot OSA SPOON JCG WALA JDT
Soot 4,769 33.84% 50.05% 55.19% 43.24% 53.66%
OSA 64.33% 2,509 77.40% 75.69% 57.83% 74.33%
SPOON 63.34% 51.76% 3,748 87.22% 44.18% 82.87%
JCG 68.36% 49.34% 84.91% 3,849 45.31% 87.63%
WALA 92.31% 64.94% 74.55% 78.09% 2,236 84.70%
JDT 61.38% 47.09% 75.58% 82.71% 45.60% 4,239

Table 4: Methods of the ArgoUML project.
28,987 Soot OSA SPOON JCG WALA JDT
Soot 14,905 61.61% 66.51% 69.23% 31.02% 68.26%
OSA 50.61% 18,148 55.11% 56.11% 21.66% 57.95%
SPOON 86.19% 86.97% 11,447 92.93% 35.42% 91.05%
JCG 66.23% 65.28% 68.55% 15,574 26.97% 70.43%
WALA 96.74% 82.27% 85.36% 88.00% 4,783 87.10%
JDT 78.98% 82.35% 82.02% 85.97% 32.48% 12,929

the slight difference.
Having analyzed the sample code, we evaluated

the tools on larger projects as well, namely the
ArgoUML-0.35.15 and Maven-3.6.06. ArgoUML is
a UML modeling tool with 180 KLOC, while Maven
is a library tool with 80 KLOC, and older versions
of both are also presented in the Qualitas Corpus

Table 5: Calls of the Maven project.
70,192 Soot OSA SPOON JCG WALA JDT
Soot 63,839 3.52% 6.29% 8.28% 6.00% 6.46%
OSA 47.95% 4,684 64.50% 63.86% 38.32% 61.38%
SPOON 56.24% 42.32% 7,139 85.28% 31.18% 80.25%
JCG 59.76% 33.83% 68.87% 8,840 32.34% 74.07%
WALA 99.92% 46.81% 58.04% 74.55% 3,835 53.17%
JDT 59.97% 41.81% 83.31% 95.22% 29.65% 6,877

Table 6: Calls of the ArgoUML project.
332,806 Soot OSA SPOON JCG WALA JDT
Soot 292,212 8.10% 8.42% 8.77% 3.88% 8.58%
OSA 45.13% 52,441 49.96% 49.88% 13.25% 56.14%
SPOON 80.10% 85.26% 30,730 82.78% 24.03% 89.45%
JCG 63.80% 65.13% 63.33% 40,163 19.01% 71.11%
WALA 98.65% 60.48% 64.27% 66.45% 11,491 56.52%
JDT 71.89% 84.38% 78.79% 81.86% 18.62% 34,888

5http://argouml-downloads.tigris.org/source/browse/
argouml-downloads/trunk/www/argouml-0.35.1/

6https://mvnrepository.com/artifact/org.apache.maven/
maven-core/3.6.0

database (Tempero et al., 2010). Although this pa-
per compares the call graphs of these two programs
only, we repeated our evaluation on other tools too.
The results of these measurements are also available
in our online appendix at http://www.inf.u-szeged.hu/
∼ferenc/papers/StaticJavaCallGraphs.

Table 3-Table 6 show the differences among the
tools. As both examples show, Soot represents many
more methods in both graphs. One likely reason
for this is the detailed portrayal of static initializer
nodes, and the representation of all overridden meth-
ods caused by CHA algorithm. On the opposite side,
WALA contains fewer methods (and so edges) than
all the others, thanks to its more precise pointer anal-
ysis, and to the fact that WALA only processes meth-
ods available from certain entries. We can also ob-
serve (which did not become apparent from our sam-
ple code) that OSA’s methods often differ from those
of the other tools’. The reason for this is that OSA’s
analysis is library based, meaning that it analyzes ev-
ery library that is on the analysis’s path, but can only
resolve library references based on names or the ac-
tual type only, not through the declarations. In the
case of polymorphic calls, this results in the creation
of nodes that differ in name from the other corre-
sponding nodes of other tools’ graphs. Since, in most
cases the called methods do not even have line in-
formation, pairing cannot be achieved. Moreover,
OSA will not process library functions that other tools
bring in through searching on the project class path.

In RQ2, we investigate the extent to which call
graphs can differ in practice. As we can see based on
the analyzed programs, we get considerably different
graphs. Although our pairings are not correct in every
case, as OSA’s previous example showed, the number
of edges and nodes clearly display the discrepancy.
Even on the small example, one tool defines twice as
many edges as the other (Table 2), but in case of the
large projects, the number of edges differ even more
considerably.

5.3 Examination of the Causes of
Differences

The main question of this section is, whether we could
get the same graphs if we eliminate all the known dif-
ferences of the tools? A given application that is built
on call graphs may demand different call graph prop-
erties. Is it possible to bring the tools’ outputs closer
together in order to really be able to compare the gen-
erated graphs, therefore, assist in finding a suitable
tool or method for a particular call graph based appli-
cation? If we ignore the known differences from the
generated call graphs, do we get the same resulting
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graph by each of the tools?
The structure of call graphs are influenced by the

following three attributes of a call graph creator tool:

• How are the crucial language elements handled?

• What method is used in processing the data: does
it use library analysis or some kind of pointer or
reachability analysis?

• How does it deal with dynamic calls that cannot
be resolved during static analysis. In other words,
what kind of algorithm does it use to make the
connected calls more accurate?

In this section, we are going to non-exhaustively
demonstrate how much filtering out a small discrep-
ancy can help in bringing graph results closer to-
gether. In each step, we create a subgraph from the
original with the help of a given filtering mechanism
and compare it to the call graph that was composed
in the previous step (or with the original if it is the
first step). The filtering is applied on the nodes. Nat-
urally, the edges that are in connection with that node
are eliminated as well. So, the results of the tools are
getting closer together.

Table 7: Common calls of the Maven project after elimi-
nating the clinit calls detected only by Soot (The number of
investigated methods is 7,140.)

69,200 Soot OSA SPOON JCG WALA JDT
Soot 62,847 3.57% 6.39% 8.41% 6.10% 6.56%
OSA 47.95% 4,684 64.50% 63.86% 38.32% 61.38%
SPOON 56.24% 42.32% 7,139 85.28% 31.18% 80.25%
JCG 59.76% 33.84% 68.87% 8,840 32.34% 74.07%
WALA 99.92% 46.81% 58.04% 74.55% 3,836 53.17%
JDT 59.97% 41.81% 83.31% 95.22% 29.65% 6,877

Table 8: Common calls of the ArgoUML project after elim-
inating the clinit calls detected only by Soot (The number
of investigated methods is 28,489).

320,036 Soot OSA SPOON JCG WALA JDT
Soot 279,442 8.47% 8.81% 9.17% 4.06% 8.98%
OSA 45.13% 52,441 49.96% 49.89% 13.25% 56.14%
SPOON 80.10% 85.26% 30,730 82.78% 24.03% 89.45%
JCG 63.80% 65.13% 63.33% 40,163 19.01% 71.11%
WALA 98.65% 60.48% 64.27% 66.45% 11,491 56.52%
JDT 71.89% 84.38% 78.79% 81.86% 18.62% 34,888

Eliminating Differences Caused by Language El-
ements. In Section 5.1 we saw that certain lan-
guage elements can significantly increase the amount
of nodes, and, therefore, edges a graph has, which
can cause large differences. For example, every time
a class with a static member was used, Soot attached
a reference to that class’s static initializer block. For
this reason, many edges became part of the graph that
in reality might not be executed. In the first step, we
decided to filter out the static initializer nodes that
appear in Soot’s graphs in the following way: the
static initializer nodes only have incoming edges in
the graphs of Soot and do not appear in the other

tools’ graphs. Table 7 and 8 show how much closer
the tools outputs get to each other after the elimina-
tion of the large number of static initializer nodes and
their connections. Compared to Tables 5 and 6, the
difference is observable only in the first row. It is ob-
vious, as only Soot’s connections were involved in the
filtering process. In case of Maven, we detracted 992
edges from Soot’s graph this way, 12,770 in the case
of ArgoUML (the number of nodes for Maven is 62,
for ArgoUML it is 498). We concluded that the first
filtering step did not bring Soot that much closer to
the other tools.

Table 9: Common calls of the Maven project after elimi-
nating library calls (The number of investigated methods is
4,216).

7,530 Soot OSA SPOON JCG WALA JDT
Soot 4,139 27.04% 53.52% 61.97% 33.97% 56.8%
OSA 45.23% 2,474 59.78% 58.57% 35.49% 59.58%
SPOON 54.34% 36.29% 4,076 85.35% 28.75% 83.02%
JCG 60.4% 34.12% 81.92% 4,247 31.29% 89.45%
WALA 99.93% 62.4% 83.3% 94.46% 1,407 83.58%
JDT 58.88% 36.91% 84.75% 95.14% 29.45% 3,993

Table 10: Common calls of the ArgoUML project after
eliminating library calls (The number of investigated meth-
ods is 21,252).

59,215 Soot OSA SPOON JCG WALA JDT
Soot 34,574 42.51% 41.15% 42.44% 16.39% 43.96%
OSA 43.63% 33,685 43.34% 48.78% 12.59% 53.82%
SPOON 87.48% 89.76% 16,264 82.56% 26.94% 91.98%
JCG 64.26% 71.96% 58.8% 22,834 17.76% 74.42%
WALA 100.00% 74.84% 77.29% 71.54% 5,668 71.33%
JDT 78.09% 93.14% 76.86% 87.3% 20.77% 19,463

Eliminating Algorithmic Differences. Often, it is
not because of language elements that graphs become
very different. Examining the nodes of the sample
code, we noticed that the tools handle Java library
calls in various ways. Some tools, like OSA, represent
library calls with less accuracy as it does not connect
methods called within library methods. Other tools
provide more detailed information about calls outside
the source of the examined project. When we make a
decision about the extent to which a call graph should
handle call relationships between library functions,
we have to consider how important examining the de-
pendencies generated by the execution paths is for
us. In certain cases, these library functions may call
the project’s own methods through call back methods,
creating data dependencies. Call graph based appli-
cations may be sensitive to this property. If we elim-
inate the library methods and their edges, the origi-
nally more detailed and less detailed call graphs will
be more comparable.

Table 9 and 10 show the differences of the graphs
after eliminating library calls. The graphs are more
similar in most cases, but there are exceptions because
we filtered out edges that were detected by both tools,
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which reduced the similarity. We can observe that a
lot of such edges were filtered out from Soot that were
not detected by the other tools. This means that Soot
represents the library nodes with more detail in the
graph, which is not always necessary for every use
case.

Table 11: Common calls of the Maven project between
methods recognized by all tools (The number of investi-
gated methods is 1,366).

1,567 Soot OSA SPOON JCG WALA JDT
Soot 1,542 65.3% 65.37% 66.8% 59.21% 65.56%
OSA 99.6% 1,011 100.00% 98.91% 84.47% 99.9%
SPOON 97.49% 97.78% 1,034 96.71% 82.59% 97.78%
JCG 100.00% 97.09% 97.09% 1,030 85.44% 97.38%
WALA 100.00% 93.54% 93.54% 96.39% 913 93.87%
JDT 99.70% 99.61% 99.70% 98.92% 84.52% 1,014

Table 12: Common calls of the ArgoUML project between
methods recognized by all tools (The number of investi-
gated methods is 3,761.)

9,477 Soot OSA SPOON JCG WALA JDT
Soot 9,333 44.36% 44.62% 39.8% 52.81% 42.42%
OSA 98.85% 4,188 99.98% 87.32% 96.35% 95.56%
SPOON 97.56% 98.10% 4,268 86.25% 95.10% 94.07%
JCG 99.73% 98.17% 98.82% 3,725 96.89% 93.32%
WALA 100.00% 81.86% 82.35% 73.22% 4,929 78.19%
JDT 97.8% 98.86% 99.18% 85.87% 95.21% 4,048

Eliminating Processing Differences. Finally, we ex-
amined the differences that come from the different
processing approaches of the tools. We can see a lot
of red numbers in the columns of WALA, because it
ignores many nodes that are taken into account by the
other tools. One possible reason can be that WALA
starts the call graph builder algorithm only form cer-
tain nodes and uses the call information of the reach-
able nodes only. Other tools take all methods into
account, while there are tools that consider only those
methods that are reachable from public methods. To
be able to compare the edges properly, without suffer-
ing from the differences that come from the different
node sets of the graphs, we only kept those nodes (and
the corresponding edges) that were found by all tools.
We know that this way we lost a lot of edges, but thus
we are able to compare the tools and their capabilities
better and, at the same time, how the different capa-
bilities influence the differences of the graphs. From
this experiment we initially expected that we would
find differences among the results of tools using dif-
ferent pointer analysis techniques, while tools using
the same algorithms would give a much similar re-
sult. As we can see in Tables 11 and 12, the results
do not support our assumption, because, for example,
the results of SPOON, OSA and JDT are differing.

In order to find out the cause of the differences,
we manually examined and classified them. In case of
Maven, 719 out of the 1,567 edges are not found by
at least one tool, which means that 46% of the edges

are not “common”. The ratio for ArgoUML is much
worse, because 6,112 out of the 9,477 edges were not
found by all tools, which is 64%. Soot or WALA
apply different pointer analysis than the other tools,
which explains most of the edges that were only dis-
covered by these two tools (or only discovered by the
other tools). There are 62 edges in the Maven project
and 872 edges in the ArgoUML project that cause dif-
ferences among the graphs, but they cannot be ex-
plained by the various pointer analysis algorithms.
Their examination revealed previously undiscovered
causes. Besides the reasonable differences, we found
faults in the graphs as well, because the tools repre-
sented call edges that correspond to invalid call paths
or execution order.

In case of SPOON and JDT, such fault was that the
initializations of the static block was connected with
init blocks. Besides, JDT and OSA are not able to de-
tect the calls of class member initializations (15 edges
for ArgoUML) while the other tools handle this prop-
erly. However, it is not consistent, because in some
cases, JDT can recognize such edges, but OSA can-
not. Another interesting observation is that SPOON
inserts an extra loop edge among the init methods
when the class has default constructor (19 and 42
edges for Maven and ArgoUML, respectively).

Another example for the differences is when a
class A is imported from a given package but an other
class A was used with a fully qualified name. SPOON
did not distinguish the two classes, although only one
of them was referred. Since both classes contained
a method with the same signature as the invoked one,
SPOON created two call edges which led to a mistake.
Besides, for Maven, there were 2 cases when SPOON
created call edges, although the called method had a
different number of parameters than the caller pro-
vided. OSA and SPOON rarely handle overloaded7

methods improperly, although, it may happen that a
call is not connected to the correct method (1 and 2
edges for Maven and ArgoUML, respectively).

The handling of super classes is also not consis-
tent among the tools. Soot, WALA and JCG con-
nect super.method calls found in inner classes to
the caller method in 3 cases (ArgoUML), while our
JDT extension left out the super constructor calls 184
times for ArgoUML.

It is interesting that analyzers working on byte-
code (Soot, JCG and WALA) created loops in the call
graph that does not exist in the actual code (7 cases in
ArgoUML). This happened when a method was over-
ridden but the return values of the methods were dif-

7Method overloading allows a class to have more than
one method having the same name with differing parameter
lists
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ferent. In this case, the compiler generates a node to
handle the different return value, and the generated
and the original methods are connected. Since meth-
ods cannot be distinguished based on return types,
and such methods cannot be implemented, therefore,
source code based analyzers did not make difference
among such methods and handled them as one. This
tricky solution yielded the loop edges for the bytecode
analyzers, because these two “different” nodes were
merged into one, and the edge between them became
a loop edge.

We found a special case, when an anonymous
class was implemented in a parameter list of a method
and there was a call from the method of the anony-
mous class. Soot created a call edge from the outer
method instead of the method of the anonymous class.

Finally, we already experienced in our example
code that JCG handles the inherited methods in a dif-
ferent way which causes difference in the call graph
representation. Most of the differences come from the
representation, because JCG represents the inherited
methods with its own node in the inherited class and
the invocations refer to this generated node.

The question of RQ3 was whether, by eliminat-
ing all the known differences, we get the same graphs
for the tools or not. The answer is no. As we have
seen, there were so many minor differences between
the graphs we did not think of as a lay user. Depend-
ing on which features are more important to us in an
application (e.g.: the precision of the control flow in-
formation, or the dependencies defined between the
methods), we must take into account the features of
the call graph tools and choose the most appropriate
for our purposes.

6 THREATS TO VALIDITY

We only collected open-source Java analyzer tools
that either had an appropriate call graph output or
could easily be extended with a call graph generation
functionality. Although we have thoroughly investi-
gated many other tools, we still cannot rule out the
possibility of having missed some which could have
fulfilled our selection requirements. In addition, the
tools have many parameters that influence the con-
struction of call graphs (e.g. different kind of pointer
analysis) but since we focused on the tools instead of
the difference of their algorithms, we executed each
tool with only one configuration. We were not look-
ing for an optimal setting, but one that reliably works
on the tested inputs. Our goal was not to compare
the call graph builder algorithms themselves, but to
gather how many different outputs these tools could

generate. We wanted to collect all the potential rea-
sons for the differences of the investigated call graphs.

Moreover, in case of OSA, SPOON and JDT, we
implemented the call graph exporter ourselves, there-
fore, it was possible for us to commit mistakes. As it
was previously discussed, errors has occurred in the
handling of field initializations, for example. Natu-
rally, there may always be an error if the data extrac-
tion is left to the user.

Even though our sample code contains the fea-
tures of Java 8, we did not take into account the con-
figuration xml-s and files of the analyzed projects.
The examination of runtime annotations was also ig-
nored, because static analyzers represent the calls de-
fined by them as calls to interface methods.

We had to develop a method name unification pro-
cess to handle the different representations provided
by the tools. The implemented node pairing program
was tested on our sample code which contains all ap-
plicable Java 8 features. Because of the anonymous
and generic elements, it was not possible to rely solely
on the methods’ names, we had to include the line in-
formation as well. However, the call graph tools did
not always provide reliable line information, there-
fore, not every possible node pair was identified by
the program.

7 CONCLUSION

One of the main pillars of software analysis is call
graph creation, and, although, it might seem straight-
forward, there are countless factors that can influence
the final result. Consequently, there is a wide collec-
tion of literature on call graphs. Many papers study
how to improve the accuracy, completeness, or effec-
tiveness of call graph creation, while others focus on
the comparison (and, mainly, the differences) of ex-
isting approaches. Our goal was to present these dif-
ferences from a practical perspective.

As the basis of our comparison, we examined how
6 open-source call graph building tools – which, while
not an all-encompassing overview of the current state-
of-the-art, can be considered a representative sample
– perform when analyzing both an artificial example
and some larger-scale, open-source projects. Before
our detailed comparison, we investigated how the dif-
ferent calling contexts are represented by the tools.
Already, in this comparison, we have seen that, in
some cases, the tools also differ in their way of pro-
cessing. We evaluated the impact of these differences
in the resulting call graphs on 4 open source pro-
grams. The results of two (Maven and ArgoUML)
were thoroughly discussed in this paper, while the
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data of the rest is available in the online appendix. We
tried to select the most diverse inputs possible for the
analysis (e.g., libraries and executables as well). We
have shown that the outputs of the different call graph
creator tools may differ significantly. We have also
shown on Maven and ArgoUML the extent to which
the different factors affected the differences of the call
graphs. With this, we have practically emphasized the
parameters that can significantly determine the result-
ing call graphs.
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