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Abstract: Detecting concept drift from an imbalanced evolving stream is challenging task. At high degree of 

imbalance ratios, the poor or nil performance estimates of the learner from minority class tends to drift 

detection failures. To ameliorate this problem, we propose a new drift detection and adaption framework. 

Proposed drift detection mechanism is carried out in two phases includes unsupervised and supervised drift 

detection with queried labels. The adaption framework is based on the batch wise active learning. 

Comparative results on four synthetic and one real world balanced and imbalanced evolving streams with 

other prominent drift detection methods indicates that our approach is better in detecting the drift with low 

false positive rates. 

1 INTRODUCTION 

Recently, learning from imbalanced data streams is 

receiving much attention. This is a combined 

problem of Online Class Imbalance and Concept 

Drift according to (Ditzler et al, 2015 and Gama et 

al, 2013) and can usually find in Fraud and Fault 

detection domains. The class imbalance problem 

occurs when one class of data severely outnumbers 

the other classes of data. Due to this tendency the 

learner performance bias towards the majority class.  

In case of evolving streams this degree of imbalance 

varies from time to time. Further due to lifelong 

learning, the underlined concept generation function 

prone to changes thus leads to concept drifts. 

From (Gama et al, 2013) in terms of Bayesian 

classifier, there are three types of concept drifts that 

are due to the change in (i) the posterior probabilities 

𝑝(𝑦|𝑥)   (ii) the prior probabilities 𝑝(𝑦)  without 

effecting the  𝑝(𝑦|𝑥)  and (iii) the likelihood  𝑝(𝑥|𝑦) 

without effecting 𝑝(𝑦|𝑥). In addition to this, a drift 

coexist together. Generally, the concept drift is 

countered by active or passive methods.  The latter 

methods first tracks and detect the drifts and then 

adapt to the changes by instance forgetting and 

weighing mechanisms. Whereas, in the formal 

methods a single learner may continuously adapt to 

the changes by resetting the parameters or a new 

classifier may be added /removed/updated from an 

ensemble, no explicit drift detection is carried out. 

This paper focuses on the active method of drift 

detection and adaption. 
Further (Gama et al, 2013) discusses several drift 

detection methods based on supervised learning. 
These methods directly or indirectly detect the drift 
based on the classifiers performance estimates such 
as error, accuracy in both online and batch modes 
and fail to detect the drift in case of imbalanced 
streams due to poor or nil prediction from minority 
class (Wang and Minku, 2017). There are solutions 
based on tracking the changes in minority class True 
Positive Rate (TPR) (Wang et al, 2013) and  on 
classifiers four rates such as TPR, False Positive 
Rate (FPR), Positive Prediction value (PPV) and 
Negative Prediction value (NPV) (Wang and 
Abraham, 2015). Prequential AUC of online learners 
is also proposed in (Brzezinski and Stefanowski, 
2017) to detect drift in dynamic imbalanced streams 
with concept drift. However all this methods are 
based on supervised estimate of the minority class 
and prone to false positives due to the dynamic 
change in TPR. 

To address this problem, we present a two-stage 

drift detector with an unsupervised drift warning 

indicator at Stage 1 and an unbiased supervised 

estimator with queried labels for drift conformation 
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at stage 2. Here the unsupervised drift warning 

indicator is independent with target and only rely on 

distribution changes. Then the supervised indicator 

confirms the drift if there is a significant variation in 

the performances. The learning and adaption of the 

stream with proposed drift detector is through 

querying the uncertainty samples by batch based 

active learning. 

The paper organization is as follows. Section 2 

presents the work related to drift detection and 

adaption, Section 3 describes the proposed batch 

based drift detection and adaption. Data stream 

description, experimental setup results and 

discussion are presented in Section 4. Finally, this 

paper concludes in section 5. 

2 RELATED WORK 

The drift detection methods are categorized into two: 

(i) active (ii) passive. The active methods works 

based on drift detection and adaption.  The drift can 

be detected using 
 Hypothesis Tests: Validates the NULL 

hypothesis, i.e., the two samples are derived 
from same distribution (Patist, 2007 and 
Nishida and Yamauchi, 2007). 

 Change-point Method: Tracking the point of 
change of the behaviour of distribution 
function (Hawkins, Qiu and Wook kang, 
2003). 

 Sequential Hypothesis Test: Constantly 
monitoring the stream until it attains enough 
confidence to accept or reject the hypothesis 
test (Wald, 1945). 

 Change Detection Test: Identifies the drift 
based on a threshold on a classification error or 
on a feature value (Bifet and Gavalda, 2007). 
The use of Hellinger distance and adaptive 
Cumulative SUM test for change detection 
between data chunks is also studied in (Ditzler 
and Polikar, 2011 ) 

Once the drift is detected in an evolving stream, 

the learning framework adapts it by learning a new 

model on current knowledge and forgetting the old. 

The forgetting mechanisms are of selecting random 

samples to filter, or weighing the samples based on 

their age so that the sample with largest age is 

forgotten. Another method is of windowing, once 

the change is detected, the samples which are 

relevant to current learner only retained in the 

window. But the size of the window is critical here, 

the adaptive window size mechanisms based on 

Intersection of Confidence Interval (ICI) are 

proposed in (Alippi, Boracchi and Roveri, 2011). 

Unlike the drift detection and adaption methods the 

passive approaches, constantly update the model to 

adapt the change with new evolving data. The model 

updation is carried out by resetting the parameters 

(single classifier adaption) or add/remove/update a 

classifier in an ensemble. 

So far the drift detection methods for supervised 

learning are intended for balanced classes and used 

supervised performance estimates such as error, 

accuracy and four rates such as TPR, NPR, PPV and 

NPV. However, recently, few drift detection 

methods are proposed for imbalanced streaming 

distributions. The Drift Detection Method Online 

Class Imbalance (DDM_OCI) (Wang et al, 2013) is 

a modification to DDM (Gama et al, 2004). Unlike 

DDM, whose focus is on the change detection in 

over all error rate, DDM_OCI tracks changes in TPR 

assuming that the drift in the distribution leads to 

significant changes when there is an imbalance in 

the stream. But, DDM_OCI is quite sensitive to the 

dynamic imbalance rate of change than the real 

concept drift which results in many false positives. 

Instead of tracking the changes only in TPR (Wang 

and Abraham, 2015) proposed a Linear Four rates 

tracking mechanism for drift detection. If significant 

change is detected in any of the performance rates 

such as TPR, FPR, PPV and NPV then the drift 

signal is alarmed. In (Brzezinski and Stefanowski, 

2017) proposed a Prequential AUC based drift 

detection mechanism which identifies the drift in 

Prequential AUC by Page-Hinkley test. In (Yu et al, 

2019) proposed a two-layer drift detection method 

where layer 1 adapts LFR and layer 2 is based on 

permutation test and both layers are of supervised. 

All these methods mainly based on tracking the 

changes in supervised performance estimators and 

can prone to false positives due to the sensitivity of 

TPR towards dynamic imbalance rather than drift at 

high degree of imbalance cases.  We propose two-

stage drift detection based on unsupervised and 

supervised change tracking. 

3 PROPOSED METHOD 

Figure 1 depicts the flow diagram for proposed drift 
detection and adaption method. Here the Learning of 
the stream as well as the adaption to the drift is 
handled based on batch based active learning. The 
drift detection is carried out in two stages, named it 
as Kolmogorov-Smirnov_Area under Curve 
(KS_AUC) method. This drift detector assumes 
initial training set is labelled and the rest of the 
stream evolved as unlabelled. 
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3.1 Learning and Adaption to the Drift 

Here the stream is learned based on interleaved 

training and testing of batches. The learning 

mechanism is chosen as active learning of batches 

(Pohl et al 2018) and presented in Algorithm 1. The 

first batch is assumed as initial training set T1, a new 

Model  is learned, the corresponding class labels 𝑦̅  

are predicted for each sample and the 𝐴𝑈𝐶1  (Area 

Under ROC Curve) is computed using (Fawcett, 

2006). For each upcoming batch Bi, at first the class 

labels are predicted using already trained Model. 

Later Bi undergoes a two stage drift detection 

KS_AUC ( ), considering current training Ti  as 

reference window and  Bi  as detection window 

along with calculated AUC's,  𝐴𝑈𝐶𝑖−1   and 𝐴𝑈𝐶𝑖  . 

The KS_AUC ( ) algorithm is presented in 

Algorithm 2 in detail. If the concept drift is not 

confirmed between the windows,  the training set for 

the next iteration Ti+1   is updated with the samples of 

current training Ti and with the uncertainty samples 

which are less than a given threshold β . The labels 

of these samples are queried by oracle. If the 

concept drift  between the two windows is 

conformed then the old Model is replaced with a 

new Model considering  n+m samples from Bi  

whose labels are obtained by querying the Oracle. 

As the stream is with imbalanced class distributions 

for the better probability to be the minority sample 

getting labelled   the n samples  from Bi  are selected  

whose uncertainty < α.  In addition to this, m 

random samples (i.e., 𝑚𝑖 ≠ (𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦𝑖 <∝)  ) 

are also selected from Bi  as new Training set Ti+1 for 

the next iteration.  Further, here(𝛽 >∝). Then the 

rest of the procedure iterates same like earlier. 

3.2 Two Stage Drift Detection 
KS_AUC 

For unbalanced streaming distributions, the drift 

detection methods based on supervised i.i.d's 

(independent and identically distributed random 

variables) prone to biased estimates (Wang et al., 

2018) thus, it is critical to detect the concept changes 

in unsupervised manner. Therefore,   the stage I of 

KS_AUC is based on the hypothesis tests, without 

label information the hypothesis tests are capable 

enough to detect the changes across the 

distributions. Here, a non parametric Kolmogorov-

Smirnov (KS) test is chosen to measure the distance 

between the two distributions.  KS test rejects the 

NULL hypothesis i.e., the two samples drawn under 

same distribution at significant level α provided for 

the following inequality. 

|𝐹𝐴(𝑥) − 𝐹𝐵(𝑥)|𝑥
𝑠𝑢𝑝

> 𝑐(𝛼)√
𝑚 + 𝑛

𝑚𝑛
 

 

(1) 

Where m and n are the sizes of the two 

distributions, 𝐹𝐴(𝑥)  and 𝐹𝐵(𝑥)  are empirical 

distribution functions ( 𝑃(𝑋 < 𝑥))  of the first and 

second distributions,  𝑠𝑢𝑝 is the supermom function, 

𝑐(𝛼)   are considered from a known table with 

significant level of α.  The KS test is performed for 

all attribute ∀𝑥𝑖=1
𝑑

𝑗
𝑖    𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2  for two 

distributions by considering each 𝑥1
𝑖   and in 𝑥2

𝑖  of 

common attribute X into reference W1 and detection 

window W2. If the NULL hypothesis is rejected for 

any W1 and W2 then the warning signal for the drift 

is triggered. Instead of KS any other two-sample 

hypothesis tests can also considered here.  Usually 

the hypothesis tests are of quite sensitive to all types 

of distributional changes, they are much prone to 

false positives. Therefore, the stage 1 used as 

warning signal for the underlined drift and stage II 

detection is incorporated for the confirmation of the 

drift. 

At Stage II an unbiased supervised performance 

estimator AUC between the batches A and B are 

used to confirm the drift.   If the |𝐴𝑈𝐶𝐴 − 𝐴𝑈𝐶𝐵|  > 

λ then the drift conformation is signalled, here λ is a 

threshold for AUC change between A and B.  Here 

𝐴𝑈𝐶𝐴  is the Model performance on reference 

window at Ti where as 𝐴𝑈𝐶𝐵  is the Model 

performance on the detection window.  

 

Figure 1: Flow Diagram for KS_AUC Drift Detection. 

 

 

 

 

An Unsupervised Drift Detector for Online Imbalanced Evolving Streams

227



 
 

 

4 EXPERIMENTAL RESULTS 

This section presents the results of proposed drift 

detectors when compared to existing drift detectors 

such as DDM, EDDM, and HDDM_Atest. These 

drift detectors are considered from MOA (Bifet et al, 

2010). We used synthetic as well as real world data 

sets for the experimental study. Number of drifts 

confirmed is used as performance indicator in 

evaluating the performance. Proposed drift detector 

is validated on Naive Bayes, SVM, KNN classifiers. 

These classifiers with proposed KS_AUC are 

implemented. 

4.1 Data Sets 

The synthetic data streams i.e., SineV, Line, and 

SineH are generated from (Minku, White and Yao, 

2010) stream generating environment. 

Corresponding data characteristics are shown Table 

1. From these, two states of imbalances such as 

STATIC and DYNAMIC, with single drift, multiple 

drifts and without drift are generated. In STATIC 

imbalance, the degree of imbalance remains static 

for entire stream whereas in DYNAMIC imbalance 

case the prior probabilities p(y) of the classes 

changes dynamically as shown in Table 2. 

The streams with specified settings are generated 

for the length 1000. Here, the change in the data 

stream is considered exactly from the middle of the 

stream i.e., the Change Point (CP) is 501th time step. 

For each of these imbalanced states, streams with 

varied degrees of imbalance such as [1:9, 2:8 and 

5:5] % are generated. In addition to the simulated 

datasets, real world concept drift dataset electricity 

is also used in the analysis. 

4.2 Experimental Setup 

This section analyses the results obtained towards 

drift detection. Table 3 shows the results obtained 

for static imbalance with or without the drift.  Here 

the drift is measured with number of drifts predicted 

Vs known drifts in the data. The False positive 

prediction of the drift here referred as False Alarm. 

False negative prediction of the drift here referred as 

possible unpredicted drift. Developed KS_AUC ( ) 

drift detector for semi supervised streams is 

compared with supervised i.i.d based drift detectors 

such as DDM, EDDM and HDDM_A test. The 

viability of the KS_AUC ( ) drift detector is verified 

on SVM, NB and KNN online batch learners. 

In case of static degree of imbalance without 

drifts there is no change in the entire stream even in 

terms of probabilities or concept so the drift 

detectors should not trigger any changes. From 

Table 3 it is identified that EDDM triggered false 

alarms where as DDM, HDDM_Atest and KS_AUC 

( ) better performed by not triggering any false  

Algorithm 2:  KS_AUC the Batch wise KS and AUC 

test. 

Input: Reference Batch A, Detection Batch B, AUC of 

batch A and B, AUC threshold λ, significant level α 

and d number of dimensions. 

Output: Drift detection status {1: Detected 0: Not 

detected} 

1. For i=1 to d do 

  1. W1 = Ai, W2= Bi. 

2. IF KS test on W1, W2 with α rejects 

the NULL hypothesis then break from 

the loop 

2. END for     #Drift Warning 

3. If (i>d) then return 0; 

4. Else if |AUC (A)-AUC (B)|> λ, then  

       Return 1          #Drift Conformation  

5. End If 

5. END if 

Algorithm 1: Active Learning Framework. 

Input:  Evolving Stream of Batches B1, B2, ∞, 

uncertainty thresholds α, β  (∝> 𝛽) . 

 

Output:   Classification Model for every iteration  

1. Initialize:  Training set T1 = B1 

2.  For i=1 to ∞ do 

   Learn a Model using  Ti 

   If (i==1)  

Return the prediction outcome of each    

sample in B1 and AUC_Bi. 

   Else  

Predict Bi using Model and  

If (KS_AUC (Ti, Bi, AUC_Ti,    

AUC_Bi, λ) ==1) then 

Confirm Drift and request the 

labels of the samples n from Bi 

whose uncertainty < α and 

random samples of size m. 

Where 𝑚 ≠ (𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦𝑖 <
∝). Learn New Model   using 

Ti+1= (n+m) of Bi and go to 

step 2. 

          Else  

Update Model using Ti+1= Ti + 

 (Uncertainty samples<β) in Bi and 

 go to step 2. 

3. End For 
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alarm. In this case EDDM has exhibited 12 false 

alarms with respect to all synthetic streams of this 

category. Hence with respect to above scenario 

DDM, HDDM_Atest and KS_AUC yielded better 

performance.  

In case of static degree of imbalance with drift 

(D) (i.e., p(y|x) change) proposed drift detector  

predicted the drifts correctly on all datasets over 

varied degree of imbalances such as [90:10, 80:20 

and 50:50%]. However the other drift detectors 

prone to either False Positives or False Negatives. In 

particular at high degree of imbalance the drift 

detectors are prone to False Negatives. In case of 

balanced data streams DDM and HDDM_Atest has 

exhibited False Negatives on SineH. In contrast 

EDDM has exhibited false positives for SineH. 

However DDM and EDDM are prone to false 

positives for the streams like Line. 

Table 1: Settings for Concept Drift Generator. 

Table 2: Type of Imbalance Before and After the Drift for 

1:9 case. 

Imbalance Before After 
LOW 1:9 1:9 
HIGH 1:9 9:1 

Even at high degree imbalanced cases such as 90:10 

and 80:20, DDM and HDDM_A test has exhibited   

false negatives in predicting the drifts for SineV and 

Line datasets. However EDDM has exhibited false 

negatives in 90:10 case of SineH dataset and false 

positives for 80:20. So in this case we can say that 

KS_AUC ( ) performed better than other drift 

detectors in identifying the drift in case of high 

degree of imbalance. Next to KS_AUC, EDDM 

performed better.  In case of multiple drifts DDM is 

prone to false positives at balanced cases and at 

highly imbalanced cases three drift detectors such as 

DDM, EDDM and HDDM_Atest are prone to false 

negatives. Hence in case of multiple drifts also our 

algorithm KS_AUC performed well. Further, from 

the number of labels queried by oracle is a 

concerned, active learning batch based NB learner 

queries more labels than SVM and KNN learners. 

Table 4 shows Dynamic change in imbalance with 

drift (i.e p(y) change). In Dynamic change of 

imbalance with drift (i..e priors and concept also 

changes) KS_AUC and HDDM_Atest performed 

equally in predicting the drift except  the multiple 

drift stream Line. For this stream KS_AUC prone to 

one false positive and HDDM_Atest prone two to 

five false positives. This might be due to sudden 

raise in performance due to p(y) change. Concerned 

with balanced case the DDM has exhibited false 

positives except SineH dataset whereas in case of 

EDDM except sineH dataset the drifts are correctly 

predicted for other data sets. In case of imbalanced 

streams such as 80:20 and 90:10 in single drift case 

DDM correctly identified the drift where as EDDM 

prone to false positives in one drift scenario. 

Whereas in multiple drift case (Line data set) 

DDM has exhibited false positive at balanced case 

where as at imbalanced cases every detector 

exhibited false alarm where our algorithm exhibited 

only one false positive hence in consideration with 

overall performance our detector performed well. 

Further, similar with Static imbalance case online 

NB has queried more number of labels than the 

SVM and KNN learners  

Figure 2 and 3 depicts AUC plots for static and 

dynamic cases with different imbalance ratios i.e., 

[50-50, 90-10, and 80-20] with respect to different 

classifiers such as KNN, NB and SVM for Line 

dataset with three drifts. Figure 4 shows AUC plot 

for electricity data set.  The X-axis represents 

number of batches and Y-axis represents AUC. The 

second level of KS_AUC, the AUC variation at the 

batch with drift is indicated with a green vertical line 

for all datasets except electricity dataset which is 

indicated by  red line. In case of static imbalance, for 

KNN classifier a clear damping is observed, for NB 

classifier in all the cases except  50-50 (at first drift 

point) there is clear damping whereas for SVM there 

is significant rise of AUC at drift points is observed. 

In case of dynamic imbalance, KNN classifier shows 

a clear damping at each and every drift point, NB 

also shows a clear damping at every drift point 

except third drift point (i.e. false drift) where as 

SVM shows clear improvement in AUC at every 

drift point except third drift point which is a false 

drift. 
Table 5 shows the results for real world data set 

Electricity, in this case the number of drifts in this 
case is not prior known. The obtained results are 
concerned, DDM has shown 22 drifts, EDDM has 

No Data 

Stream 

No. Of 

Attrib

utes 

No. of 

Sampl

es 

% Degree of 

Imbalance 

1. SineV 2 1000 50:50,80:20, 

90:10 

2. Line 2 1000 50:50,80:20, 

90:10 

3. SineH 2 1000 50:50,80:20, 

90:10 

4. Electricity 4 45312 ~60:40 
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Table 3: Static Imbalance with (D) and  without (N) Drift, the Notation  -(-)  Indicates  Drifts Predicted(Known Drift). 

.Data

set       

Imbalance 

ratio 

Drift Detection Status Percentage of 

labelling DDM EDDM HDDM_Atest KS_AUC 

N D N D N D N D SVM NB KNN 

SineV 50-50 0(0) 1(1) 0(0) 1(1) 0(0) 1(1) 0(0) 1(1) 29.6 35.5 26.7 

90-10 0(0) 0(1) 0(0) 1(1) 0(0) 0(1) 0(0) 1(1) 34.4 37.6 28.9 

80-20 0(0) 0(1) 1(0) 2(1) 0(0) 0(1) 0(0) 1(1) 33.2 39 27.3 

SineH 50-50 0(0) 0(1) 4(0) 3(1) 0(0) 0(1) 0(0) 1(1) 30.3 33.3 19.2 

90-10 0(0) 0(1) 0(0) 0(1) 0(0) 0(1) 0(0) 1(1) 30.1 32.1 24.7 

80-20 0(0) 1(1) 3(0) 7(1) 0(0) 0(1) 0(0) 1(1) 39.8 39.9 39.8 

Line 50-50 0(0) 5(3) 0(0) 3(3) 0(0) 3(3) 0(0) 3(3) 24.5 30.2 15.8 

90-10 0(0) 1(3) 0(0) 2(3) 0(0) 1(3) 0(0) 3(3) 20.8 36.7 25.5 

80-20 0(0) 1(3) 4(0) 2(3) 0(0) 1(3) 0(0) 3(3) 25.5 25.5 30.2 

Table 4: Drift Detection with Dyna/mic Imbalance Case (a Combined Problem of Change in Priors and Concept Drift). 

Dataset Imbalance 

ratio 

Drift detectors Percentage of labelling 

DDM EDDM HDDM_Atest 

 

  KS_AUC 

SVM NB KNN 

SineV 50-50 2(1) 1(1) 1(1) 1(1) 30.5 38.8 19.2 

90-10 1(1) 2(1) 1(1) 1(1) 29.7 34.7 24.7 

80-20 1(1) 5(1) 1(1) 1(1) 31.3 35.5 36.8 

SineH 50-50 1(1) 2(1) 1(1) 1(1) 30.9 35.5 26.6 

90-10 1(1) 5(1) 1(1) 1(1) 34.1 39.5 29.9 

80-20 1(1) 8(1) 1(1) 1(1) 38.2 39.9 33.6 

Line 50-50 5(3) 3(3)      3(3)      3(3) 22 31.2 25 

90-10 5(3) 7(3)      5(3)      4(3) 26.5 35 23.5 

80-20 6(3) 9(3)      7(3)      4(3) 24.9 36.5 21.5 

Table 5: Real World Dataset (Electricity). 

                                                                        DRIFT DETECTORS 

DDM EDDM HDDM_Atest KS_AUC 

Threshold∝=3% Threshold∝=5% Threshold∝=10% 

SVM KNN NB SVM KNN NB SVM KNN NB 

22 307 319 42 42 42 41 42 42 41 42 42 

 

shown 307 and HDDM_Atest has shown 319 drifts 

respectively, whereas our KS_AUC exhibited 42 

drifts at 3%  uncertainty threshold ∝ for all 

classifiers. At 5% and 10% threshold SVM exhibited 

41 drifts, KNN and NB exhibited 42 drifts 

respectively. Since the considered methods for 

comparison are all supervised i.i.d based drift 

detectors, the experiments are also conducted for 

KS_AUC in supervised manner with the target label 

of each sample. From the results it is noticed that no 

change in Drift Detection performance from 

supervised to semi supervised versions of KS_AUC. 

This is due to phase I of KS_AUC, which detects the 

drift in unsupervised manner. 

5 CONCLUSION 

This paper proposes a new batch based drift 

detection method for imbalanced evolving streams.  

Proposed approach is based on two stages that 

include unsupervised as well as supervised detection 

with queried labels. Experimental results on 

synthetic and real world streams reported that with 

the proposed approach the drifts at both balanced 

and unbalanced streams are correctly detected.  

Further, in comparison with prominent drift 

detectors such as DDM, EDDM, and HDDM_Atest 

proposed method yielded better detection in case of 
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imbalanced streams. In case of imbalanced streams 

the detection rate is on par with DDM, EDDM and 

HDDM_Atest. 
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