
OC-ORAM: Constant Bandwidth ORAM with Smaller Block Size using
Oblivious Clear Algorithm

Linru Zhang1, Gongxian Zeng1, Yuechen Chen1, Nairen Cao2, Siu-Ming Yiu1 and Zheli Liu3

1Department of Computer Science, The University of Hong Kong, HKSAR, China
2Department of Computer Science, Georgetown University, U.S.A.

3College of Computer and Control Engineering, Nankay University, Tianjin, China

Keywords: ORAM, Constant Communication Overhead, Oblivious Clear Algorithm.

Abstract: Oblivious RAM has been studied extensively. A recent direction is to allow the server to perform computations
instead of being a storage device only. This model substantially reduces the communication between the server
and the client, making constant bandwidth communication (the number of blocks transmitted) feasible. It is
obvious that the larger the block size, the easier it is to construct a constant bandwidth ORAM scheme. Also, a
lower bound of sub-logarithmic bandwidth was given if we do not use expensive homomorphic multiplications.
The question of “whether constant bandwidth with smaller block size without homomorphic multiplications
is achievable” remains open. In this paper, we show that the block can be further reduced to O(log3N) using
only additive homomorphic operations. Technically, we design a non-trivial oblivious clear algorithm with
very small bandwidth to improve the eviction algorithm in ORAM for which the lower bound proof does not
apply. As an additional benefit, we are able to reduce the server storage due to the reduction in bucket size.

1 INTRODUCTION

Oblivious RAM (ORAM) is a block-based storage
structure together with a series of algorithms, which
allows a client to outsource storage to an untrusted
server, while the server learns nothing about the
client’s access pattern, i.e., the sequence of data
blocks actually accessed by the client. It is one of ef-
ficient approaches to protect access pattern(di Vimer-
cati et al., 2011; di Vimercati et al., 2016). The con-
cept of ORAM, with a hierarchical structure, was first
proposed by Goldreich (Goldreich and Ostrovsky,
1996). Several works of hierarchical structure(Boneh
et al., 2011; Goldreich, 1987; Goodrich and Mitzen-
macher, 2011; Goodrich et al., 2011; Goodrich et al.,
2012; Lu and Ostrovsky, 2013; Williams and Sion,
2012) have been proposed to improve the efficiency of
ORAM. However, hierarchical structure has a draw-
back of poor worst-case efficiency. A breakthrough
came from the novel tree-based structure proposed by
Shi et al. (Shi et al., 2011), which was further im-
proved by many subsequent works (e.g. (Chung et al.,
2014; Gentry et al., 2013; Stefanov et al., 2013)). In
this tree-based structure, the server storage is treated
as a binary tree in which each node is a bucket that
can hold up to a fixed number of blocks. It contains

an access algorithm to fetch the required block and an
eviction algorithm to reshuffle the data blocks from
the root to the leaves. Tree-based ORAM avoids the
high worst-case cost of the hierarchical ORAM and
achieves better efficiency.

The original ORAM model assumes that the
server acts as a storage device that only allows the
client to read and write. Under this model, re-
searchers focus on improving the bandwidth overhead
(the amount of communication between the client and
the server to serve a client request) from O(log3 N) to
O(logN) (Path ORAM (Stefanov et al., 2013)) where
N is the number of data blocks. However, due to
the simple server setting, constant or sub-logarithmic
bandwidth seems not achievable.
Server-with-Computation ORAM. In order to over-
come this bandwidth barrier, Mayberry et al. (May-
berry et al., 2014) proposed a new model that allows
the server to perform some computations. The new
model is widely used in cloud setting. In this model,
the computations are outsourced to the server. And
the client just sends messages to drive the compu-
tations and retrieve the required blocks. Intuitively,
the client can instruct the server to “compress” all
transmitted blocks and “hide” the required blocks in-
side before sending over to decrease the bandwidth.

Zhang, L., Zeng, G., Chen, Y., Cao, N., Yiu, S. and Liu, Z.
OC-ORAM: Constant Bandwidth ORAM with Smaller Block Size using Oblivious Clear Algorithm.
DOI: 10.5220/0007924701490160
In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 149-160
ISBN: 978-989-758-378-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

149

But then at least one data block B must be returned
from the server to the client. If we use the number of
blocks to evaluate the bandwidth of ORAM schemes,
constant bandwidth (i.e., O(1) blocks) is the natu-
ral target. The size of a block, |B|, becomes an is-
sue. The client sends instructions to drive operations
on server. Aiming for obliviousness, each instruction
should drive actions on all blocks in one path. So the
size of an instruction is always related to the number
of blocks in one path (i.e., related to the number of
blocks in one bucket times the number of buckets).
When considering constant bandwidth, the size of in-
structions should be bounded by the block size |B|.
The larger the bucket size, the larger block size it is.

Under this model, Devadas et al. (Devadas et al.,
2016) proposed a tree-based Onion ORAM scheme
that achieves O(1) communication overhead (con-
stant number of blocks) by applying homomorphic
multiplications, but it requires a large block size of
O(log5 N) to bound all intermediate transmitted mes-
sages. An open question is how small a block of an
ORAM scheme can be while still achieving constant
bandwidth.

Two improved schemes C-ORAM and CHf-
ORAM were proposed. C-ORAM was proposed by
Moataz et al. (Moataz et al., 2015b) to improve the
block size to O(log4 N) while keeping O(1) com-
munication overhead in the worst case and it only
needs additively homomorphic operation and Private
Information Retrieval (PIR) operation. CHf-ORAM
(Moataz et al., 2015a) also claimed to achieve O(1)
bandwidth overhead with even smaller block size of
O(log3 N) using simple XOR-based PIR and four
non-colluding servers. However, (Abraham et al.,
2017) found security flaws in both CHf-ORAM and
C-ORAM. The eviction algorithms in their schemes,
which push all blocks from one bucket to its two chil-
dren, cause a leakage of buckets’ distribution by ob-
serving the behaviour of several evictions. (Abra-
ham et al., 2017) later derived a Ω(logcD N) band-
width lower bound for the ORAM model with PIR
and PIR-write operations. Here, c is the stash size in
the client side and D is the number of blocks on which
PIR read/write operations are performed. Practically,
c and D can be set to O(logN), i.e., the lower bound
can be interpreted as Ω(logN

log logN), which implies that,
in such a model, sub-logarithmic bandwidth is achiev-
able but constant bandwidth seems still impossible.

Very recently, a new distributed tree-based ORAM
scheme (S3ORAM) was proposed (Hoang et al.,
2017) which achieves O(1) client-server bandwidth.
S3ORAM does not rely on the direct computation of
PIR, so the lower bound in (Abraham et al., 2017)
does not apply. Technically, it uses Shamir Secret

Sharing along with a secure multi-party multiplica-
tion protocol using more than one server to perform
the eviction operations in Onion ORAM in a more ef-
ficient way. It is a breakthrough to use more than one
server to reduce the communication bandwidth and
further reduce the block size. Based on the communi-
cation analysis of (Hoang et al., 2017)1, we conclude
that the block size is O(log4 N), and at least 3 servers
are needed.

An open problem is whether the block size (the
best result is O(log4 N)) can be further reduced while
maintaining constant bandwidth. Additionally, notice
that all schemes (Devadas et al., 2016; Moataz et al.,
2015b; Abraham et al., 2017; Hoang et al., 2017;
Moataz et al., 2015a) use the same eviction strategy,
which leads to O(logN) bucket size. So the total
server storage in these schemes is O(N logN) blocks.
Whether the server storage can be reduced (the lower
bound should be O(N)) is another open question.

1.1 Our Contributions

Over the past four years, researchers have come a
long way to achieve constant bandwidth and reduce
the block size in the new server-with-computation
ORAM model. (Devadas et al., 2016) introduces an
eviction algorithm, which first pushes all useful (real)
blocks down on a chosen path from the root to the
leaf node and then clears all the noisy blocks on the
path except the leaf node. All previous works(Moataz
et al., 2015b; Moataz et al., 2015a; Hoang et al., 2017)
try to apply several technologies (PIR, Secret Shar-
ing) to perform the eviction algorithm in (Devadas
et al., 2016) more efficiently, but none of them try
to improve the eviction algorithm itself. On the other
hand, we notice that such an eviction algorithm causes
a large bucket size (O(logN)), which would finally
cause a ‘logN’ factor in both block size and server
storage. To further reduce the block size for constant
bandwidth, we need to solve two problems: (i) de-

1The client-server communication complexity
in (Hoang et al., 2017) is at least O(|B| + (H +
1)(2Z2dlog2 pe)), where |B| is the size of block,
H = O(logN) is the height of binary tree, Z = O(logN)
is the bucket size and p is a prime used in Shamir Se-
cret Sharing. Note that when B is larger than dlog2 pe,
the client would split the data into equal-sized chunks.
While each block B should contain an index and the
size of the index is O(logN), dlog2 pe times the number
of chunks should be at least O(logN). The paper does
not count the number of chunks into bandwidth analysis
(i.e., it is viewed as a constant). Actually, the dlog2 pe
parts in its analysis means dlog2 pe times the number of
chunks. Combining this parameters together, we can get
|B| ∈ O(|B|+(H +1)(2Z2dlog2 pe)) = O(log4 N).

SECRYPT 2019 - 16th International Conference on Security and Cryptography

150

riving an improved eviction strategy; and (ii) bypass-
ing the lower bound barrier in (Abraham et al., 2017).
The followings show how we tackle these two prob-
lems. By combining these two solutions, we come
up with a novel two-server oblivious clear protocol
which is the core component of our proposed OC-
ORAM scheme.

1) Deriving an Improved Eviction Strategy. We
propose a high-level idea that just moves some blocks
from one bucket to one of its child when doing evic-
tion, instead of pushing all blocks in one bucket to
its two children. Then O(1) bucket size is proved
large enough to achieve negligible overflow probabil-
ity. However, some “useless” blocks will reside in the
same buckets with “useful” blocks, which will occupy
the bucket’s space and result in failure if we do not
clear them. Thus, we need a new noise-clearing algo-
rithm that supports oblivious clearing of the “useless”
slots.

2) Bypassing the Lower Bound Barrier. Recall
that the lower bound in (Abraham et al., 2017) is
derived by computing the number of operations (read,
write, PIR-read and PIR-write). So this lower bound
is on the number of operations. Under the condition
that each of the 4 kinds of operations results in
at least 1 block’s bandwidth, the lower bound on
the number of blocks is equal to the lower bound
on the number of operations. If we can overcome
the constraint that each operation corresponds to at
least 1 block of bandwidth, it is possible to achieve
constant bandwidth while using logarithmic number
of operations. More precisely, if we can have a new
operation OP with bandwidth V < O(1

logcD N) blocks,
by calling this operation frequently (O(logN) times)
constant bandwidth is achievable.

Combining the two ideas, we introduce a Two-
server Oblivious Clear Protocol (2SOC Protocol).
1) The bandwidth overhead of this protocol is V =
O(logN+ |M |) bits, where |M | is the length of plain-
text. It will be proved later that such bandwidth is ob-
vious smaller than O(1

logcD N) blocks. 2) 2SOC Proto-
col can be used in ORAM scheme to clear the ‘use-
less’ blocks. So our improved eviction algorithm can
be performed efficiently.

Applying this algorithm, we propose a new
ORAM scheme achieving O(1) bandwidth overhead.
Compared with the existing secure constant commu-
nication construction Onion ORAM(Devadas et al.,
2016) and S3ORAM(Hoang et al., 2017), our scheme
only requires a block size of O(log3 N) with a small

constant factor. Different from others, we focus on
improving the eviction algorithm to reduce the bucket
size. It brings another benefit that the server side
storage is reduced to O(N) blocks. Table 1 summa-
rizes our improvements when compared to existing
schemes in server-with-computation model. Note that
besides reducing the block size, we achieve the opti-
mal server storage, which closes the gap between the
upper bound and the lower bound.

The following summarizes our contributions in
the paper:

– We propose a novel 2-server oblivious clear proto-
col based on two non-colluding servers. It brings
a new idea to update bucket’s content without
downloading any block to the client. This clear
algorithm can be regarded as the new operation
with O(1) bandwidth.

– We propose an efficient new constant ORAM
scheme (OC-ORAM) based on the clear algo-
rithm with the properties described in Theorem 1.
We believe that the block size we achieved is the
lowest possible with existing additive homomor-
phic encryption schemes since all these schemes
require a block size of at least O(log3N). We re-
mark that we can also achieve optimal server stor-
age of O(N).

Theorem 1. To outsource N blocks with block
size B = O(γ) database, where γ is a security pa-
rameter of encryption scheme, OC-ORAM is se-
cure under the standard model, and costs O(1)
blocks bandwidth, O(N) blocks server storage,
O(logN) client storage, and achieves negligible
failure probability in N.

2 PRELIMINARIES

2.1 ORAM Basics

We now present the basics of ORAM, to illustrate its
important features.

We build on the tree-based ORAM framework of
(Shi et al., 2011), which organizes server storage as a
binary tree of nodes. In all tree-based ORAMs, each
block is mapped to a random path and each block can
only live in a bucket along that path or in client side
at any time. The client maintains a local position map
to store the path mapped to each block. In most cases,
there is a stash in the client side, which is used to store
the blocks returned by the server temporarily.

When blocks are added to the ORAM, they start at
the root of the tree. As access operations continue, the
ORAM needs an eviction process that pushes blocks

OC-ORAM: Constant Bandwidth ORAM with Smaller Block Size using Oblivious Clear Algorithm

151

Table 1: Comparison with existing sever-with-computation ORAM schemes.

Scheme Bandwidth
overhead

total # of bits
(bandwidth)

Block size
(bits)

Server
storage

of
servers Secure?

Onion ORAM O(1) O(log5 N) O(log5 N) O(N logN) 1 Yes
C-ORAM O(1) O(log4 N) O(log4 N) O(N logN) 1 No

CHf-ORAM O(1) O(log3 N) O(log3 N) O(N logN) 4 No
ORAM in (Abraham et al., 2017) O(logN

log logN) O(log4 N
log logN) O(log3 N) O(N logN) 2 Yes

S3ORAM O(1) O(log4 N) O(log4 N) O(N logN) ≥ 3 Yes

OC-ORAM O(1) O(log3 N) O(log3 N) O(N) 2 Yes

towards their tagged leaves. Usually, this is accom-
plished by picking a path in the tree and pushing all
the blocks on that path as far as possible towards the
leaf node.

To avoid incurring large client storage, the posi-
tion map should be recursively stored in other smaller
ORAMs (Shi et al., 2011). When the data block size
is Ω(log2 N) bits for an N block ORAM (which is the
case for our result), the asymptotic costs of recursion
are insignificant relative to the main ORAM(Stefanov
et al., 2013). So we no longer consider the bandwidth
cost of recursion in the rest of the paper.

We show the definition of Access Pattern and se-
curity of ORAM refer to (Stefanov et al., 2013)

Definition 1. Access Pattern: Let A(~y) denote the
sequence of access to the remote server storage given
the data request sequence ~y from client. Specifically,
~y = {(opL′ ,aL′ ,dataL′), ..., (op1,a1,data1)}, L′ = |~y|,
and opi denotes a operation of either read(ai) or
write(ai,datai). In addition, ai is logical identifiers
of the block.

Definition 2. Security Definition: An ORAM con-
struction is said to be secure if (1) Correctness the
ORAM construction is correct in the sense that it re-
turns correct results for any input ~y with probability
≤ 1− negl(|~y|). (2) Security For any two data re-
quests~y and~z of the same length, their access patterns
A(~y) and A(~z) are computationally indistinguishable
by anyone but the client.

2.2 Private Information Retrieval

Private information retrieval (PIR) is a useful tool
that allows the client to retrieve one data block from
an unprocessed database known to a server, reveal-
ing nothing to the server about which block is down-
loaded(Chor et al., 1995). There are two categories
of PIR algorithms: one processes database in a sin-
gle server and the other assumes the existence of at
least two non-colluding servers. Single server PIR
algorithms(Cachin et al., 1999; Gentry and Ramzan,
2005; Kushilevitz and Ostrovsky, 1997) designed by

applying homomorphic encryption have been used
in (Devadas et al., 2016; Moataz et al., 2015b) to
reduce bandwidth overhead. PIR on two or more
non-colluding servers is based on very simple oper-
ations such as XOR operation, which has been used
in (Moataz et al., 2015a). In this paper, we will use a
variant of two-server PIR and we will show the details
in Section 4.

3 A NEW EVICTION AND CLEAR
ALGORITHM

In this section, we propose the formal definition of the
Two-Server Oblivious Clear Protocol (2SOC Proto-
col) we used to achieve constant bandwidth, together
with the security definition. The concrete construc-
tion will be introduced in the next section.

3.1 Intuition of the Algorithm

We introduce how this algorithm comes up when con-
sidering how to derive new eviction algorithm and re-
duce the buckets’ load.

Aiming for O(1) bucket size, inspired by
Path ORAM(Stefanov et al., 2013) and Circuit
ORAM(Wang et al., 2015), we propose a new evic-
tion algorithm that just move some blocks (at most 1
block from each bucket) to one of its child along the
eviction path. However, after this eviction, the real
blocks and noisy blocks will reside in the same buck-
ets on the path. So we cannot directly clear all the
buckets as in (Moataz et al., 2015b). Therefore, we
design a new algorithm that supports oblivious clear-
ing of the noisy blocks while keeping other’s plaintext
unchanged2. It is obvious that this algorithm could
change the system states while being hidden from the
server and can be performed frequently, so it can be

2Oblivious clearing means that change the data in the
slot into Enc(0), and keeping other unchanged means that
re-encrypt the data in the slots.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

152

used to overcome the limitation of the lower bound
proof if we can realize it with small bandwidth.

This clear algorithm can be easily realized if fully
homomorphic encryption (FHE) is used to encrypt
data. We can send a sequence of Enc(0) and Enc(1),
where each Enc(0) is corresponding to the noisy
block and Enc(1) is corresponding to the real block.
However, FHE is too expensive and far from practical.
When considering only use additively homomorphic
encryption (AHE), we find that it is hard to achieve.

Inspired by (Catalano and Fiore, 2015), we use
two non-colluding servers A and B to design our algo-
rithm. Novelly, we store an encryption of m on server
A and an encryption of−m on server B, where m is the
data of one block. Then, by multiplying same coeffi-
cient k on m, −m and summing them up we can get 0.
And by multiplying different coefficient k, k−1 on m,
−m and summing them up we can get m. Addition-
ally, in order to preserve obliviousness, the message
sent by the client to drive the clear operation should
not leak any information about which block is cleared.

Based on the above ideas, we store Enc(x),m+ x
on server A and Enc(y),−m+ y on server B, where
x,y are two random numbers and Enc is an AHE. As
proved in (Catalano and Fiore, 2015), as long as A
and B are non-colluding, each server cannot recover
m. For each noisy block, the client sends the same
random numbers (k1,k2) to A and B, then A will get
Enc(k1(x+ y)),k1(x+ y) and B will get Enc(k2(x+
y)),k2(x+ y), both of which can be viewed as an en-
cryption of 0. For each real block, the client sends
(k′1,k

′
2−1) to A and (k′1−1,k′2) to B, then A will get

Enc(k′1x+(k′1− 1)y),m+ k′1x+(k′1− 1)y and B will
get Enc(k′2y+(k′2− 1)x),−m+ k′2y+(k′2− 1)x, both
of which can be viewed as a re-encryption of m.

Now, we can present our 2-server oblivious clear
protocol. This protocol can be applied to a two-server
model and achieve the function that obliviously clears
noisy blocks for one bucket with small bandwidth.

3.2 Algorithm and Security Definition

Here comes the definitions of 2SOC Protocol.

Definition 3. A protocol for two-server oblivi-
ous clear protocol is a tuple of algorithms based
on the a public key encryption scheme P K E =
(Setup,Encrypt, Decrypt). It takes as input a bit b
from the client. The protocol works as follows:

KeyGen(1λ): the key generation algorithm takes
the security parameter λ and outputs a secret key sk
and a public key pk by running P K E .Setup(1λ).
The algorithm generates an operation sequence OP =
{op1, . . . ,opk} and sends it to two servers.

Encrypt(m,pk): the encryption algorithm takes

as input pk and a message m ∈ M . It outputs two
ciphertexts C(1) = P K E .Encrypt(pk, f1(m,r1)) and
C(2) = P K E .Encrypt(pk, f2(m,r2)), where f1, f2 :
M ×R →M are two transformation functions and
R is the randomness space.These two ciphertexts are
stored in two servers respectively.

VecGen(b,pk): the vector generation algorithm
takes as input the bit b. If b = 0, then the algorithm
generates (V (1)

0 ,V (2)
0) that supports the clear noisy op-

eration. Else if b = 1, then the algorithm generates
(V (1)

1 ,V (2)
1) for the keep real operation. Finally, the

algorithm sends V (1)
b and V (2)

b to two servers respec-
tively.

Clear Noisy: For i ∈ 1,2, server i performs
(op1, . . . ,opk) ∈ OP in sequence with the inputs
C(i) and V (i)

0 , and outputs a new ciphertext C(i) =
P K E .Encrypt(pk, fi(0,r′i)).

Keep Real: For i ∈ 1,2, server i performs
(op1, . . . ,opk) ∈ OP in sequence with the inputs
C(i) and V (i)

1 , and outputs a new ciphertext C(i) =
P K E .Encrypt(pk, fi(m,r′i)).

Informally, a 2SOC protocol should guarantee that
any adversary who has access to the pair (C(i),V (i)

b),
i = 1 or 2 should not learn anything about both the
plaintext and the value of b. We formalize this prop-
erty using the approach of indistinguishable security.

Definition 4. (2SOC Indistinguishable Security) Let
2SOC be a 2SOC protocol as defined above, and A be
a PPT adversary. Consider the following experiment:

Experiment Exp2S.IND
2SOC,A(λ)

(pk,sk)← 2SOC.KeyGen(1λ)
(m, i)← A(pk)
(C(1),C(2))← 2SOC.Encrypt(pk,m)

(V (1)
b ,V (2)

b)← 2SOC.VecGen(b, pk)
T M(1)

b ← 2Sb(C(1),V (1)
b); T M(2)

b ← 2Sb(C(2),V (2)
b)

b′← A(C(i),V (i)
b ,T M(1)

b ,T M(2)
b)

If b′ = b return 1. Else, return 0.

T M(1)
b ,T M(2)

b is the transformation messages(if any)
between two servers to complete the clear noisy
or keep real operation. 2S0 means the protocol
performing ‘clear noisy’ operation and 2S1 means
the protocol performing ‘keep real’ operation. Let
Adv2S.IND

2SOC,A(λ) = Pr[Exp2S.IND
2SOC,A(λ)]−

1
2 . We say that

2SOC is IND secure if for any PPT A it holds
Adv2S.IND

2SOC,A(λ) = negl(λ).

By using 2SOC protocol, we can design a new
eviction algorithm to reduce bucket size. The con-
structions of 2SOC and OC-ORAM will be shown in
section 4. We will discuss how 2SOC bypasses the
lower bound.

OC-ORAM: Constant Bandwidth ORAM with Smaller Block Size using Oblivious Clear Algorithm

153

4 OUR CONSTRUCTION

In this section, we will show the construction of 2SOC
protocol and our ORAM scheme. Intuitively, 2SOC
protocol is used to clear the noisy blocks in buck-
ets after eviction. When considering the security of
ORAM scheme, the server cannot distinguish which
block is noisy. So the 2SOC protocol should be IND-
secure (defined in Definition 4). More precisely, for
a bucket D, a clear vector WD is needed, and each
item wi ∈WD is corresponding to a data block bi in
D. After some computations between wi and bi, the
data block is either cleared or re-encrypted. The dif-
ferent parts of the vector WD should be indistinguish-
able to any adversary. We will first show our over-
all OC-ORAM construction and then follow by the
2SOC protocol construction.

4.1 OC-ORAM Construction

Our ORAM builds on the tree-based ORAM frame-
work and shares many similar features with most tree-
based constructions.
Stash. When the client reads or writes a block, this
block will be added into the stash. The stash is a lin-
ear structure of size R = O(logN) in the secure stor-
age on the client side.
Position Map. The client stores a position map. x :=
position[b] means that block b is currently mapped to
the x-th leaf node, i.e., block b resides in some bucket
in the path from the root to the x-th leaf node. The
size of position map is N logN bits. As shown in Sec-
tion 2.1, we can leverage the recursion technique to
reduce the client side storage.
Bucket Configuration. Let N be the block number of
the out-source database which is the power of 2. Our
scheme is a binary tree with L + 1 levels and 2L =
O(N) leaves. Precisely, each bucket contains Z = µ · z
blocks, where z is a constant indicates the number of
slots needed to hold real data blocks and µ > 2 is a
multiplicative constant that gives extra room for noisy
blocks. Additionally, each bucket contains IND-CPA
encrypted meta-information named Headers, includ-
ing additional information about a bucket’s contents.
Headers. Bucket headers determine how permuta-
tions are generated, which blocks will be moved down
and which blocks are supposed to be cleared. A
bucket header is comprised of two parts: the first part
stores the information whether each block is noisy,
real or empty(encryption of 0) data, while the second
one keeps the block identifier.
Two-server Structure. Our scheme is based on a
two-server model. Let A and B are two non-colluding
servers with the same size. Both A and B are orga-

nized as a binary tree. Two servers share a common
position map and always perform the same operation
at the same time. For each block b whose data is m,
we choose two random values x,y←M , where M is
the plaintext space, then store C1 = (Enc(x),m+ x)
on server A and C2 = (Enc(y),−m + y) on server
B, where Enc is a appropriate additively homomor-
phic encryption scheme (such as Paillier cryptosys-
tem (Paillier, 1999)). Therefore, each block is always
in the same position of both A and B. For simplicity,
we only discuss one server in the following text and
show the differences between them when necessary.

Access Operation. To access a block b in a server,
i.e., read or write, the client first fetches the corre-
sponding position tag tag from the position map. This
tag defines a unique path Path(tag) starting from the
root of the ORAM tree and going to a specific leaf
given by the tag. The element might reside in any
bucket in this path. To retrieve this element, the client
finds the position of it through the headers and makes
use of a PIRread.
• Firstly, the client downloads the headers of all

buckets in Path(tag) and searches for the bucket
which contains b. Denote that bi is that i-th block
in the path Path(tag) and j is the corresponding
position of block b in this path.

• Then the client generates two vectors E1 =
(e11,e12, . . . ,e1n),
E2 = (e21,e22, . . . ,e2n) ∈ {0,1}n, where e1i = e2i
for all i 6= j and e1 j 6= e2 j. Then the client sends
E1 to server A and E2 to server B.

• After receiving vector from the client, server A
does α1 = ∑i e1i(mi + xi) on the second part of
block, and does β1 =⊕ie1iEnc(xi) on the first part
of block, where ⊕ represents the homomorphic
addition computation and mi,xi is the correspond-
ing content in block bi. Similarly, server B does
α2 = ∑i e2i(−mi + yi) and β2 = ⊕ie2iEnc(yi).
Then server A returns α1,β1 to the client and
server B returns α2,β2 to the client.

• After receiving responses from two servers,
the client does α = α1 + α2 = ∑i(mi(e1i −
e2i))+∑i(e1ixi + e2iyi) and β = Dec(β1⊕ β2) =
∑i(e1ixi + e2iyi), where Dec is the decryption al-
gorithm. Finally, the client does (e1 j − e2 j)(α−
β) = (e1 j− e2 j)m j(e1 j− e2 j) = m j. So the client
can recover the data m j of requested block b.

• Afterwards, two evict operations according to re-
verse lexicographic order are performed. Finally,
if the number of real blocks in the root is less than
z after one evict operation, then a block is written
back from stash.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

154

4.2 Evict Operation

The last process we need to introduce is the evict op-
eration, which aims at moving blocks from top to
bottom along a path. We propose an efficient pre-
determined eviction method with small bandwidth
overhead between the server and the client, while no
entire block needs to be downloaded. In particular,
we come up with a novel way to reduce the number
of clear vectors by adjusting the buckets’ distribution
along the eviction path. Since permutation is much
smaller than the clear vector, our scheme saves the
communication cost. The details will be shown be-
low and the security analysis is in Section 5.

Eviction Algorithm. Since no more than constant
date blocks could be downloaded and only small per-
mutations or vectors can be sent to drive the evic-
tion operations by the client, the traditional eviction
method that downloads all blocks in the evict path
and writes them back one by one is not feasible at
all. Inspired by Circuit ORAM(Wang et al., 2015),
we can use a pre-processing algorithm to determine
which blocks should be moved down and to indicate
their destinations according to the header of the evict
path Path(tag). Then the client can drive the move
down process by small bandwidth messages (such as
permutations).
Pre-processing Algorithm. The inputs of the pre-
processing algorithm are a set of headers. The out-
puts of the algorithm is a sequence of destinations
of each block. The details of the algorithm can
be found in Algorithm 1(Appendix A), in which
PrepareDeepest and PrepareTarget are two sub-
algorithms in (Wang et al., 2015). The first outputs
an array deepest[1, . . . ,L], where deepest[i] stores
the level of the deepest block that can legally store
in bucket Path(tag, i). The second outputs an array
target[1, . . . ,L], where target[i] stores which level the
deepest block in Path(tag, i) will be evicted to. Due
to the space limitation, we omit the details of these
two sub-algorithms. Readers can refer to (Wang et al.,
2015) for details. Therefore, the remaining challenge
is to implement the move down operation and clear
noisy operation obliviously.
Move Down Operation. There is at most 1 block that
has to be moved down in each bucket along the evict
path based on the results from the pre-processing al-
gorithm. And there is no intersection bucket between
the moving ways of any two data blocks. In order to
keep obliviousness, this block should be moved down
along the path one bucket by one bucket, i.e., if we
want to move block b from Bi to Bi+ j, then we have
to move it to Bi+1 firstly and then to Bi+2 and arrive

Bi+ j after j moves. Without loss of generality, we
show the approach of how to move block b from Bi to
Bi+1.

• Firstly, the client retrieves a copy of header of Bi,
and changes other real blocks’ mark from “real”
to “noisy” in the duplicate header H ′i .

• Secondly, the client generates a permutation Π ac-
cording to H ′i and Hi+1, which ensures all ”real”
blocks in both buckets corresponding to “empty”
slots.

• Thirdly, the server performs Π to Bi and merges it
into Bi+1 by homomorphic additions.

• Finally, update the headers Hi, Hi+1, and delete
the duplicate H ′i .

Clear Noisy Operation. After the moving down op-
eration, some noisy blocks appear since two buckets
are merged. A clear noisy algorithm is needed to
guarantee that there are enough empty room for the
following move down operation. We show the sim-
ple algorithm and its improvement. Both of them are
built on a two-server oblivious clear protocol(2SOC
Protocol).

By sending two clear vectors to two servers re-
spectively, 2SOC protocol supports performing clear
noisy and keeps real operations obliviously. For con-
venience, we use α to denote the size of each ele-
ment in clear vector. The length of the clear vector
is equal to the bucket size(µz = O(1)) since each ele-
ment in the clear vector is corresponding to one block.
The client designs two clear vectors for each bucket,
so O(logN) vectors are needed in one eviction op-
eration. Then the total communication overhead be-
tween the client and servers in clear noisy operation is
O(µzα logN) =O(α logN), which should be bounded
by the block size in our result.

Next, we introduce an improved clear noisy algo-
rithm to further reduce the bandwidth:

• At the beginning of an evict operation, the client
generates a configuration of bucket D1 randomly
together with a corresponding header HD1 . D1 in-
cludes z real blocks and µz−z empty blocks. Sim-
ilarly, a configuration of bucket D2 randomly to-
gether with a corresponding header HD2 . D2 in-
cludes z + 1 real blocks and µz− (z + 1) empty
blocks is also generated by the client. Then
two pairs of clear vectors (W A

D1,W
B
D1) for D1 and

(W A
D2,W

B
D2) for D2 is designed according to the

2S-DCNA Protocol.

• After the server merges Bi into Bi+1 by taking
moving down operation, the client generates a
permutation Π′ according to two headers Hi and
D1 under the condition that all real blocks in Bi

OC-ORAM: Constant Bandwidth ORAM with Smaller Block Size using Oblivious Clear Algorithm

155

are in the same position as D1 after performing Π′

to Bi. Then do the same operation to Bi+1 and D2.
It is easy to know that the real blocks in Hi is at
most z and the real blocks in Hi+1 is at most z+1,
so the permutations always exist.

• Finally we use (W A
D1,W

B
D1),(W

A
D2,W

B
D2) for the two

buckets to do the clear operation, after which at
least µz− z blocks in Bi and µz− (z+1) blocks in
Bi+1 will become an empty block.

The size of permutation is µz logµz, so the total over-
head of this improved operation is O(µz logµz logN+
α) = O(α+ logN). A logN factor is saved compared
with the original one when α> logN, which is always
true. In the rest of paper, we will use this improved
clear noisy operation. In Section 5, we will prove that
such permutations will never leak any information re-
lated to the bucket load to the server, with the help of
the reverse lexicographic eviction order.

4.3 2SOC Protocol and Clear Vector

In this section, we will introduce the basic proto-
col for clear vector construction, two-server oblivious
clear protocol(2SOC Protocol), which is inspired by
(Catalano and Fiore, 2015), and followed by the con-
struction of the clear vector.

2SOC Protocol is a technique that obliviously per-
forms one of these two operations: 1) Change data
into Enc(0); 2) Keep the value unchanged and re-
encrypt it. By sending clear vectors to servers and per-
forming some computations between the vectors and
data blocks, we can clear some blocks from noisy to 0
while keeping others’ value unchanged. The protocol
is based on any additively homomorphic encryption.

Before showing the construction, there is a very
mild property (i.e. public-space homomorphic en-
cryption) that the additively homomorphic encryption
needs to satisfy. The details can be referred to (Cata-
lano and Fiore, 2015). Most existing additively ho-
momorphic encryption schemes based on number the-
ory are public-space. Furthermore, we note that also
the more recent lattice-based homomorphic encryp-
tion schemes also satisfy our notion of public-space.

A 2SOC Protocol. Our construction builds upon
a public-space additively homomorphic encryption.
The construction includes three parts, server A, server
B and client. Now comes the precise descriptions of
our scheme (based on a public-space additively ho-
momorphic encryption H E = (KeyGen,Enc,Dec)),
where ⊕ is the homomorphic addition:

Encryption and Storage Organization: The ran-
domized encryption algorithm chooses two random

value x,y←M and run H E .KeyGen(1λ) to get the
public key pk. Then set C(1) = (Enc(pk,x),m+ x) =
(c1,m+ x) ∈ C ×M , which is stored in A, and set
C(2) = (Enc(pk,y),−m+y) = (c2,−m+y)∈ C×M ,
which is stored in B.

Clear Noisy: Client chooses k1,k2 ← M uni-
formly under the condition that k1,k2 both have
inverse in M . We can make this condition
easy to satisfy by choosing suitable additively
homomorphic encryption scheme. Then send
V (1)

0 = V (2)
0 = (k1,k2) to A and B respectively.

Then, A computes that C(1)
k1

= (k1 · c1,k1(m + x)),

C(1)
k2

= (k2 · c1,k2(m + x)), and sends C(1)
k2

to B.

B computes that C(2)
k1

= (k1 · c2,k1(−m + y)),

C(2)
k2

= (k2 · c2,k2(−m + y)), and sends C(2)
k1

to A.
Finally, A does that C′(1) = ((k1 ·c1)⊕(k1 ·c2),k1(m+
x) + k1(−m + y)) = (Enc(pk,k1(x + y)),k1(x + y)),
and B can do the similar computations to get
C′(2) = (Enc(pk,k2(x+ y)),k2(x+ y)). It is obvious
that both C′(1) and C′(2) are representatives of
encryption of 0.

Keep Real: Similarly, client chooses k′1,k
′
2 ← M

uniformly under the condition that k′1,k
′
2 both

have inverse in M . Then send V (1)
1 = (k′1,k

′
2 − 1)

to A and sends V (2)
1 = (k′1 − 1,k′2) to B. A and

B perform same computation to get C′(1) =
(Enc(pk,k′1x + (k′1 − 1)y),m + k′1x + (k′1 − 1)y),
C′(2) = (Enc(pk,(k′2 − 1)x + k′2y),−m+ (k′2 − 1)x +
k′2y), which are representatives of re-encryption of m.

Furthermore, we will show that our protocol is
IND secure under our the definition in Section 3. We
formalize this property in the following theorem.
Theorem 2. If H E is IND-CPA secure, then Our 2S-
DOCA protocol is a IND secure protocol under Defi-
nition 4.

Proof sketch. We proof Theorem 2 via a sequence
of hybrid experiments from the IND-security game,
and then we show the experiments are indistinguish-
able. Through the sequence of experiments, we show
that it gives the adversary the same view by replac-
ing b by 1−b under the condition that the encryption
scheme is IND-secure. The details of the proof can be
found in Appendix B

4.3.1 Clear Vector Construction

Now, we give the construction of the clear vector.
For any bucket D = (b1, ...bµz), we design two clear
vectors W A

D = (wA
D1, ...,w

A
Dµz) for server A and W B

D =

SECRYPT 2019 - 16th International Conference on Security and Cryptography

156

(wB
D1, ...,w

B
Dµz) for server B. If bi, i ∈ {1, ...,µz} is a

real block, then set W A
Di = (k′1,k

′
2 − 1),W B

Di = (k′1 −
1,k′2) according to the above 2SOC protocol. Other-
wise if b j, j ∈ {1, ...,µz} is a noisy or empty block,
then set W A

Di = (k1,k2),W B
Di = (k1,k2) similarly. Fi-

nally, the client sends W A
D to server A and W B

D to
server B and lets them perform the computations de-
fined in the protocol.

5 OC-ORAM ANALYSIS

We analyze the bandwidth overhead and server stor-
age first, which leads to our main result. The proof of
correctness and security (which are defined in Defini-
tion 2) of OC-ORAM will be given in Section 5.2 and
full version.

5.1 Bandwidth Overhead and Storage
Analysis

In this section, we discuss the bandwidth overhead
and the server storage size of OC-ORAM. The band-
width in OC-ORAM contains two parts: Client-
Server communication bandwidth and Server-Server
communication bandwidth. And the block size can be
derived by Client-Server communication bandwidth
overhead.

Client-server Bandwidth Evaluations and Block
Size. The bandwidth overhead is defined as the to-
tal amount of communication in one Access process.
The Access is composed of scheduled evict opera-
tions, a PIR read, and no more than two PIR writes.
Compared to the PIR read and write vectors, the size
of headers (O(µz logN)) are negligible. For the sake
of clarity, we therefore avoid including them in our
asymptotic analysis.

The moving down operation of eviction pro-
cess always involves O(logN) permutations with
size O(µz logµz) bits, so the total overhead is
O(logNµz logµz) bits. The clear noisy operation of
eviction process also involves O(logN) permutations
with size O(µz logµz) bits. And two clear vectors for
two servers whose size are O(µz|M |) bits. Therefore,
the total amount of overhead of the eviction operation
is O(2logNµz logµz+2µz|M |).

The size of PIR read vector is O(µz logN), and the
size of PIR write vector’ size is O(γµz) bits, where
γ is the length of ciphertext in additively homomor-
phic encryption, which is obvious larger than |M |.
Finally, the PIR read operation will return a block

with size O(|B|) bits as the result of an access op-
eration. In conclusion, the communication overhead
in the whole process is O(2logNµz logµz+2µz|M |+
µz logN+2γµz+ |B|) = O(logNµz logµz+γµz+ |B|).

To have constant bandwidth, the block size should
be |B| = O(logNµz logµz+ γµz). With z = O(1) and
µ = O(1), we achieve |B|= O(logN + γ). In practice,
we choose γ∈O(λ3) and λ∈ω(logN), the parameter
set of which is the same as Onion ORAM(Devadas
et al., 2016), so γ dominates logN. Therefore, block
size is |B|= O(γ) = O(log3 N). And the constant fac-
tor of |B| is not large, since we will show that µ > 2
and z ≥ 4 is enough to avoid overflowing in section
5.2.

Additionally, notice that the bandwidth overhead
of the clear noisy operation is O(µz logµz logN +
µz|M |) = O(logN + |M |) bits. When setting |M | =
logN, the bandwidth is O(logN) bits, which is
smaller than O(1

logcD N) blocks (O(1
logcD N) blocks

equals to O(1
logcD N)× |B| > logN bits). So our new

clear algorithm can bypass the lower bound in (Abra-
ham et al., 2017).

Server-server Bandwidth Evaluations. The com-
munication between two servers mainly occurs in
the evict operation. For each bucket in the evict
operation, the two servers will send a ciphertext-
form-message to the other according to our 2SOC
protocol, the length of which is O(µz(γ + |M |)).
Since there are O(logN) buckets in one evict path,
so the total amount of communication between two
servers are O(logNµz(γ + |M |)). When applying
the above parameters, we get O(logNµz(γ+ |M |)) =
O(logNµzγ) = O(log4 N), which is the same as the
client-server bandwidth overhead in (Moataz et al.,
2015b; Hoang et al., 2017). The communication be-
tween servers is much cheaper than it between the
client and the server, so our scheme is more practi-
cal than their schemes.

Server Storage Size. The storage structure in the
server side is two binary trees (one in each server),
whose height is O(logN), and the size of each bucket
is O(µz) = O(1) blocks. So the total server side
storage is O(2µz · 2logN) = O(N) blocks. But in ex-
isting constructions (Moataz et al., 2015b; Devadas
et al., 2016; Moataz et al., 2015a; Abraham et al.,
2017; Hoang et al., 2017), the size of each bucket
is O(logN) blocks, so the total server side storage is
O(N logN) blocks. Compared with them, we reduce
a logN factor in the server storage.

OC-ORAM: Constant Bandwidth ORAM with Smaller Block Size using Oblivious Clear Algorithm

157

5.2 Correctness Analysis for
OC-ORAM

In this section, we discuss the correctness of OC-
ORAM. As defined in Definition 2, the correctness
states that the ORAM returns correct results for any
input sequence~y with probability≤ 1−negl(|~y|). Al-
ternatively, we can prove the correctness by showing
the probability of a failure occurs is negligible. To be-
gin with the analysis, we outline two failure types in
OC-ORAM:

- F1: Blocks with value of encrypted zero in the
evict path is less than z

- F2: Overflow of the stash on the client side

Lemma 1. When the constant factor µ > 2 (which is
always true in OC-ORAM), the number of blocks with
value of encrypted zero in each bucket along the evict
path is at least z after the eviction.

The proof of Lemma 1 can be found in Appendix
B.

Lemma 2. Let z≥ 4. Let st(ORAMµz[~s]) be a random
variable denoting the stash size after access sequence
~s for OC-ORAM with bucket size µz (µ > 2). Then, for
any access sequence~s,

Pr[st(ORAMµz[~s])> R]≤ e−R

where probability is taken over the ORAM algo-
rithm’s randomness.

The proof of Lemma 2 can be refer to (Wang et al.,
2015).

Theorem 3. OC-ORAM is a correct ORAM scheme
by Definition 2 (1).

The proof of Theorem 3 can be found in Appendix
B.

6 CONCLUSIONS

In this paper, we propose a secure constant band-
width ORAM scheme (OC-ORAM) with smaller
block size. Recently, (Abraham et al., 2017) gives the
lower bound in number of operations is O(logcD N)
when combining ORAM with PIR operations. How-
ever, the operations (read, write, PIR read and PIR
write) involved in lower bound computation in ex-
isting schemes have large bandwidth (at least O(1)
blocks). Therefore the lower bound in bandwidth is
also O(logcD N). According to our analysis, if we
can design a new operation that has small bandwidth,
then it is possible to achieve constant bandwidth while
use logarithmic operations. Technically, we propose

a new 2-server oblivious clear protocol (2SOC Pro-
tocol) which is proved IND-secure, and is applied
in our eviction phase to achieve constant bandwidth
ORAM. With this improved eviction algorithm, we
can reduce the bucket size to O(1) blocks, resulting
in reducing both the size of block and server stor-
age by a O(logN) multiplicative factor. We believe
that our scheme achieved the lower bound for block
size for existing additively homomorphic encryption
schemes.

REFERENCES

Abraham, I., Fletcher, C. W., Nayak, K., Pinkas, B., and
Ren, L. (2017). Asymptotically tight bounds for com-
posing oram with pir. In IACR International Workshop
on Public Key Cryptography, pages 91–120. Springer.

Boneh, D., Mazieres, D., and Popa, R. A. (2011). Remote
oblivious storage: Making oblivious ram practical.

Cachin, C., Micali, S., and Stadler, M. (1999). Compu-
tationally private information retrieval with polylog-
arithmic communication. In International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, pages 402–414. Springer.

Catalano, D. and Fiore, D. (2015). Using linearly-
homomorphic encryption to evaluate degree-2 func-
tions on encrypted data. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1518–1529. ACM.

Chor, B., Goldreich, O., Kushilevitz, E., and Sudan, M.
(1995). Private information retrieval. In Foundations
of Computer Science, 1995. Proceedings., 36th An-
nual Symposium on, pages 41–50. IEEE.

Chung, K.-M., Liu, Z., and Pass, R. (2014). Statistically-
secure oram with\ tilde {O}(\ logˆ 2 n) overhead.
In Advances in Cryptology–ASIACRYPT 2014, pages
62–81. Springer.

Devadas, S., van Dijk, M., Fletcher, C. W., Ren, L., Shi,
E., and Wichs, D. (2016). Onion oram: A constant
bandwidth blowup oblivious ram. In Theory of Cryp-
tography, pages 145–174. Springer.

di Vimercati, S. D. C., Foresti, S., Moretti, R., Paraboschi,
S., Pelosi, G., and Samarati, P. (2016). A dynamic
tree-based data structure for access privacy in the
cloud. In 2016 IEEE International Conference on
Cloud Computing Technology and Science (Cloud-
Com), pages 391–398. IEEE.

di Vimercati, S. D. C., Foresti, S., Paraboschi, S., Pelosi,
G., and Samarati, P. (2011). Efficient and private ac-
cess to outsourced data. In 2011 31st International
Conference on Distributed Computing Systems, pages
710–719. IEEE.

Gentry, C., Goldman, K. A., Halevi, S., Julta, C., Raykova,
M., and Wichs, D. (2013). Optimizing oram and us-
ing it efficiently for secure computation. In Privacy
Enhancing Technologies, pages 1–18. Springer.

Gentry, C. and Ramzan, Z. (2005). Single-database private
information retrieval with constant communication

SECRYPT 2019 - 16th International Conference on Security and Cryptography

158

rate. In International Colloquium on Automata, Lan-
guages, and Programming, pages 803–815. Springer.

Goldreich, O. (1987). Towards a theory of software protec-
tion and simulation by oblivious rams. In Proceedings
of the nineteenth annual ACM symposium on Theory
of computing, pages 182–194. ACM.

Goldreich, O. and Ostrovsky, R. (1996). Software protec-
tion and simulation on oblivious rams. Journal of the
ACM (JACM), 43(3):431–473.

Goodrich, M. T. and Mitzenmacher, M. (2011). Privacy-
preserving access of outsourced data via oblivious ram
simulation. In Automata, Languages and Program-
ming, pages 576–587. Springer.

Goodrich, M. T., Mitzenmacher, M., Ohrimenko, O., and
Tamassia, R. (2011). Oblivious ram simulation with
efficient worst-case access overhead. In Proceedings
of the 3rd ACM workshop on Cloud computing secu-
rity workshop, pages 95–100. ACM.

Goodrich, M. T., Mitzenmacher, M., Ohrimenko, O., and
Tamassia, R. (2012). Practical oblivious storage. In
Proceedings of the second ACM conference on Data
and Application Security and Privacy, pages 13–24.
ACM.

Hoang, T., Ozkaptan, C. D., Yavuz, A. A., Guajardo, J., and
Nguyen, T. (2017). S3oram: A computation-efficient
and constant client bandwidth blowup oram with
shamir secret sharing. Cryptology ePrint Archive, Re-
port 2017/819. http://eprint.iacr.org/2017/819.

Kushilevitz, E. and Ostrovsky, R. (1997). Replication is not
needed: Single database, computationally-private in-
formation retrieval. In Foundations of Computer Sci-
ence, 1997. Proceedings., 38th Annual Symposium on,
pages 364–373. IEEE.

Lu, S. and Ostrovsky, R. (2013). Distributed oblivious ram
for secure two-party computation. In Theory of Cryp-
tography, pages 377–396. Springer.

Mayberry, T., Blass, E.-O., and Chan, A. H. (2014). Effi-
cient private file retrieval by combining oram and pir.
In NDSS. Citeseer.

Moataz, T., Blass, E.-O., and Mayberry, T. (2015a). Chf-
oram: a constant communication oram without ho-
momorphic encryption. Technical report, Cryptology
ePrint Archive, Report 2015/1116.

Moataz, T., Mayberry, T., and Blass, E.-O. (2015b). Con-
stant communication oram with small blocksize. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 862–
873. ACM.

Paillier, P. (1999). Public-key cryptosystems based
on composite degree residuosity classes. In Ad-
vances in cryptology-EUROCRYPT’99, pages 223–
238. Springer.

Shi, E., Chan, T.-H. H., Stefanov, E., and Li, M. (2011).
Oblivious ram with o ((logn) 3) worst-case cost. In
Advances in Cryptology–ASIACRYPT 2011, pages
197–214. Springer.

Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu,
X., and Devadas, S. (2013). Path oram: An extremely
simple oblivious ram protocol. In Proceedings of the

2013 ACM SIGSAC conference on Computer & com-
munications security, pages 299–310. ACM.

Wang, X., Chan, H., and Shi, E. (2015). Circuit oram: On
tightness of the goldreich-ostrovsky lower bound. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 850–
861. ACM.

Williams, P. and Sion, R. (2012). Single round access pri-
vacy on outsourced storage. In Proceedings of the
2012 ACM conference on Computer and communica-
tions security, pages 293–304. ACM.

APPENDIX

A PRE-PROCESSING
ALGORITHM IN SECTION 4.2

Algorithm 1: Pre-processing algorithm.

procedure PRE-PROCESSING(path)
Call the PrepareDeepest and PrepareTarget

subroutines to pre-process arrays deepest and
target

(f lag, pos,des)L← (0,0,0)L
for i← 0toL do

if target[i] 6=⊥ then
pos[i]← 0
for j← 0toµz do

if path[i][j] can be move deeper
than path[i][pos[i]] then

pos[i]← j
end if

end for
f lag[i]← 1
des[i]← target[i]

end if
end for
return (f lag, pos,des)m

end procedure

B PROOFS

B.1 Proof of Theorem 2

Proof. We proof the security via a sequence of
hybrid experiments, and then we show they are
indistinguishable.

Hybrid H1: This is the IND game (Table 2).

OC-ORAM: Constant Bandwidth ORAM with Smaller Block Size using Oblivious Clear Algorithm

159

Table 2: H1: IND-Security Game.

Experiment Exp2S.IND
2SOC,A(λ)

(pk,sk)← 2SOC.KeyGen(1λ)
(m, i)← A(pk)
(C(1),C(2))← 2SOC.Encrypt(pk,m)

(V (1)
b ,V (2)

b)← 2SOC.VecGen(b, pk)
T M(1)

b ← 2Sb(C(1),V (1)
b); T M(2)

b ← 2Sb(C(2),V (2)
b

b′← A(C(i),V (i)
b ,T M(1)

b ,T M(2)
b)

If b′ = b return 1. Else return 0.

Hybrid H2: This is like H2 except that the vectors
are generated by invoking the algorithm H2.VecGen
defined as follows:
H2.VecGen(b, pk): The algorithm calls
V (i)

b = (k1,k2) ← 2SOC.VecGen(b, pk). If b = 0,
then sets k′1 = k1 +(i−1), k′2 = k2 +(2− i). And re-

turns V
′(i)
b = (k′1− (i−1),k′2− (2− i)). Else if b = 1,

then sets k′1 = k1, k′2 = k2. And returns V
′(i)
b = (k′1,k

′
2).

Table 3: H2 Experiment.

Experiment Exp2S.IND
2SOC,A(λ)

(pk,sk)← 2SOC.KeyGen(1λ)
(m, i)← A(pk)
(C(1),C(2))← 2SOC.Encrypt(pk,m)

(V (1)
b ,V (2)

b)← H2.VecGen(b, pk)
T M(1)

b ← 2Sb(C(1),V (1)
b); T M(2)

b ← 2Sb(C(2),V (2)
b

b′← A(C(i),V (i)
b ,T M(1)

b ,T M(2)
b)

If b′ = b return 1. Else return 0.

Notice that if b = 0, k′1−(i−1) = (k1+(i−1))−(i−
1) = k1, k′2− (2− i) = (k2 +(2− i))− (2− i) = k2.
Else if b = 1, we also have k′1 = k1 and k′2 = k2. So,
H1 and H2 are indistinguishable.

However, after calling H2.VecGen, the function
of b (clear noisy or keep real) has been reversed, i.e.
if b = 0 (which means than the operation is supposed
to be ‘clear noisy’), the experiment does ‘keep real’
operation (based on k′1,k

′
2) actually and vice versa.

Hybrid H3: This is like H2 except that the
vectors are generated by invoking the algorithm
2SOC.VecGen. Notice that the elements in vec-
tors (k1,k2) are generated randomly, and other
computations are independent of b, so H2 and H3
are indistinguishable. Through this sequence of
experiments, we show that it gives the adversary the
same view by replacing b by 1− b. Therefore, when
the additive homomorphic encryption is IND-CPA
secure, the advantage of the adversary is negligible.

Table 4: H3 Experiment.

Experiment Exp2S.IND
2SOC,A(λ)

(pk,sk)← 2SOC.KeyGen(1λ)
(m, i)← A(pk)
(C(1),C(2))← 2SOC.Encrypt(pk,m)

(V (1)
1−b,V

(2)
b)← H2.VecGen(1−b, pk)

T M(1)
1−b← 2S1−b(C(1),V (1)

1−b);
T M(2)

1−b← 2S1−b(C(2),V (2)
1−b

b′← A(C(i),V (i)
1−b,T M(1)

1−b,T M(2)
1−b)

If b′ = b return 1. Else return 0.

B.2 Proof of Lemma 1

Proof. Each bucket contains at least 2z+ 1 slots. In
addition, there are at most z+ 1 real blocks in each
bucket at any time in eviction (at most z original real
blocks and at most 1 block is moved down from its
parent). Thus the sum of noisy blocks and empty
blocks is at least z.

In Clear noisy operation, the client generates clear
vectors which keep at most z + 1 blocks intact and
clear other µz−(z+1)≥ (2z+1)−(z+1) = z blocks
to empty blocks. In particular, the empty block is set
as the encryption of zero. so the number of blocks
with value of encrypted zero along the evict path is at
least z after the eviction operation.

B.3 Proof of Theorem 3

Proof. By Lemma 1, we can infer that when a new
evict operation begins, each bucket in the evict path
has at least z empty slots. Each bucket should contain
no more than z real blocks before a evict operation.
So F1 will never happen. Therefore it can be proved
that the number of empty blocks is enough to perform
the evict operation correctly. By Lemma 2, the proba-
bility of stash overflow is negligible. Combining them
together, OC-ORAM is correct.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

160

