
A Methodology for Enterprise Resource Planning Automation Testing
Application to the Open Source ERP-ODOO

Thierno Birahime Sambe2 a, Stephane Maag1 b and Ana Cavalli1 c

1Institut Mines-Télécom/Télécom SudParis, Université Paris-Saclay, CNRS UMR 5157 Samovar, France
2Institut Supérieur d’Informatique, ISI-DAKAR, Dakar, Senegal

Keywords: ERP, Business Processes, Automated Testing, Test Generation, Test Execution, Business Driven Testing.

Abstract: This paper presents an approach for the automated testing of Enterprise Resource Planning (ERP) systems.
ERPs are complex software systems that provide a chain management covering all corporate activities. Testing
of these systems is a complex task given the close interrelation between the functionalities of system modules.
Test automation is also an important issue, in order to reduce testing time and cost. To this end, our approach
for the automation of ERP systems testing, is based on the system modeling as a set of business processes
to meet the needs of the business and reduce, for this purpose, the risks of errors. The methodology used in
this context is to combine the system modeling and the tools to manage automation of ERP-tests. Following
this approach, from the basic requirements, a number of test purposes are defined and test cases are generated
using a test generation tool, which are then run on the ERP system. In order to illustrate the application of the
proposed method, test experiments have been performed on a real case study, the ERP ODOO.

1 INTRODUCTION

Enterprise Resource Planning (ERP) Systems are
complex bundle of software that are well-integrated
in such a way that they present a one stop informa-
tion bay for all operations in the organization. They
encompass many modules and with every module in-
tegration comes a challenge and an opportunity for
testing (Nagpal et al., 2015). Enterprise Resource
Planning (ERP) system is an information system that
helps the organization to coordinate and integrate in-
formation within departments (Chen et al., 2016).

ERP software automates core corporate activi-
ties, such as manufacturing, human resource, finance,
and supply chain management, by incorporating best
practices to facilitate rapid decision-making, cost re-
ductions, and greater managerial control (Holland and
Light, 1999).

As stated in (Nagpal et al., 2015), there is an ex-
ponential rise in complexity of software testing with
the increase in the number of modules implemented.
With the rise in the implemented modules, functional
complexity increases, there is an increase in the inter-
faces between the modules that lead to an increase in
the user authorizations and access rights that further

a https://orcid.org/0000-0002-6594-1077
b https://orcid.org/0000-0002-0305-4712
c https://orcid.org/0000-0003-2586-9071

aggravate the testing complexity of ERP implementa-
tions. Many of the ERP Implementation projects fail
because of the improper test planning and testing pro-
cess. To understand the importance of ERP testing,
testing professionals need to understand the variations
of the ERP systems (Software-Testing-Help, 2018).

The software vendors have their own methodolo-
gies for testing, but these focus on process flows
through configured components. Such tests prove the
software ”does what it does” (Gerrard, 2007).

ERP Testing is really critical if the testing plans
do not cover the complete road-map of the implemen-
tation phase. All the modules within the system are
completely integrated and interrelated, it means that
all the functionalities are dependent on the function-
alities of other modules or other systems. The main
challenge is in collecting input data for testing the
feature and analyzing the correctness of the output
data, which requires domain knowledge (Software-
Testing-Help, 2018).

The customization that goes along with an ERP
system, plus the amount of complex business func-
tionality involved, can make testing ERP systems a
challenge of strategic importance. ERP is not just a
software, it is also a business process. It needs a ded-
icated workforce to maintain and test it. Given the
business orientation of most of ERP tests along with
the repetitive reruns of tests necessary when there are
new releases, testing can benefit greatly from mainte-

Sambe, T., Maag, S. and Cavalli, A.
A Methodology for Enterprise Resource Planning Automation Testing Application to the Open Source ERP-ODOO.
DOI: 10.5220/0007923004070415
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 407-415
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

407



nance friendly automation (Christine Paras, 2018).
To tackle the shortcomings of these traditional ap-

proaches, there is a growing need for solutions to
automate testing processes. Test automation is an
ideal approach to test software quality across regres-
sion cycles with reduced efforts, time and cost. With
these evolutions from time-to-time, test automation
has not just remained a traditional testing practice, it
has evolved to become a mature, business-driven test-
ing (BDT) program that ensures better test-coverage,
scalability and productivity in the entire testing ef-
forts to deliver quality software applications and sys-
tems (TestingWhiz, 2017). To this end, our approach,
for the automation of ERP systems testing, is based
on the modeling of business processes to meet the
needs of the business and reduce, for this purpose, the
risks of error compared to business processes initially
expressed by the top level ”top management”. The
methodology used in this context is to combine a set
of modeling methods (high-level business processes)
and tools to manage automation of ERP-tests. In this
test automation approach, the top management team
and business analysts intervene right from the start of
the project to define business rules and test cases and
generate automated scripts, which are then run on the
application.

Our paper is organized as follows. Section 2
presents the related work and Section 3 introduces
the basic concepts and the tools that will be used by
our testing approach. Section 4 presents our test au-
tomation approach based on the modelling of the ERP
business processes. Section 5 presents the results of
the test experiments we have performed on a real case
study: the ERP ODOO. Finally, Section 6 concludes
this work.

2 RELATED WORKS

Testing processes have been worked for a while and
there exist several proposals in the literature for ERP
Testing. We present in the following the ones we get
inspired.

Schliesser (Schliesser, 2007) points out that tra-
ditional software testing methods are not sufficient
and not designed for meeting the challenges posed by
ERP implementations. He condescends that built in
mechanisms and documentations available from the
ERP vendors can be utilized to effectively plan mean-
ingful business test cases.

Gerrard (Gerrard, 2007) has noted the lack of
research in ERP testing. Few books that exist are
more focused on product centric testing rather than on
wholesome ERP testing, thus software ‘does what it

does’. The authors bring forth that testing in ERP im-
plementations is critical, but is often neglected. They
have presented ground work to define test methods
and tools specific to ERP implementations.

Wieczorek et al. (Wieczorek et al., 2008) dis-
cussed that software development and testing of ERP
systems require methods that are dedicated to tackle
the special features of ERP systems. The complex
ERP systems make manual testing cumbersome, and
even effective automated testing requires appropriate
test data. The authors came up with challenges and
possible solutions for the test data required for auto-
mated testing in case of ERP systems.

Wieczorek and Stefanescu (Wieczorek and Ste-
fanescu, 2010) point out that system level testing is
the dominant testing approach in case of ERP sys-
tems. Recent shift of ERP systems towards SOA has
led to the demand of black box testing techniques.
They advocate more research in system testing with
specific focus on user interfaces in ERP systems.

In (Downing, 2006), a comprehensive report on
twelve mistakes that should be avoided is written.
The authors also depict Best Practices that need to
be adopted in order to manage quality in an ERP im-
plementation. Ensuring quality itself is a team effort
from the ERP vendor, implementation partner, host-
ing provider, technical and business teams.

Deanna Legge (Legge, 2011) underlined the need
for structuring a robust testing strategy in her paper on
ERP testing methodology approach. She emphasized
that since ERP systems are complex that encompass
several integration points, geographies, customiza-
tions, etc.; organizations continuously face challenges
to deliver quality ERP solutions.

3 BASICS PRELIMINARIES

3.1 Extended Finite State Machine –
EFSM Model

This section introduces the notations related to the
definition of an Extended Finite State Machine. As
defined in (Maag et al., 2008), an Extended Finite
State Machine (EFSM) is an ordinary Finite State Ma-
chine (FSM) augmented with context variables, in-
put/output parameters, predicated and update func-
tions. Given input and output alphabets I and O, we
denote by Ri the set of input parameters i I, and by Qo
the set of output parameters for o O. We also denote
by R the union of Ri over all i in I and by Q the union
of Qo over all o in O. The finite set of context vari-
ables is denoted by V. As usually, we use N to denote

ICSOFT 2019 - 14th International Conference on Software Technologies

408



the set of natural numbers. An Extended Timed Finite
State Machine, in short ETFSM, is a tuple M = (S, s0,
I, O, T, δ, v0) where:

• S is a non-empty finite set of states with the initial
state s0;

• I and O are input and output alphabets;

• T is the set of transitions;

• δ : S−→ S×{N×{∞}} is a timeout function; and
v0 is the vector of initial values of the context vari-
ables

3.2 IF-Language

3.2.1 IF-Model

IF is a formal method based on communicating timed
automata in order to model asynchronous commu-
nicating real time systems (Bozga et al., 2002). In
IF, a system is expressed by a set of parallel pro-
cesses communicating asynchronously through a set
of buffers.

A process instance can be created and destroyed
dynamically during system execution. An IF process
is described as a timed automaton extended with dis-
crete data variables. A process has a set of control
states and a private buffer for input messages, and can
have local data, such as discrete variables and clocks.
There are two types of control states: stable states and
unstable states. An unstable state is a temporary state
where no interleaving between processes is possible.
In other words, if a process moves to an unstable state
by an action, the atomicity of the execution is guaran-
teed until it reaches a stable state.

Transitions describe the behavior of a process on
stimuli. A transition can be triggered either by (timed)
guards or by an input message where an urgency at-
tribute (eager, delayable or lazy) defines the priority
of the transition execution over time p.

When an eager transition is executable, time
progress is blocked until the transition is executed.
If there is an executable delayable transition, time
can progress as long as the transition is executable.
If time progress makes the delayable transition
non-executable, time progress is blocked until the
transition is executed. For lazy transitions, time
can progress although the transitions become non-
executable. The action of a transition may include
sending output messages, setting/resetting clocks, as-
signment of variable values, and creation/destruction
of processes.

3.2.2 IF Toolset

The IF toolset (Bozga M, 2004) provides an environ-
ment for modeling and validation of an IF specifica-
tion. The core components of the toolset are the IF
static analyzer and the IF exploration platform. The
IF static analyzer transforms an IF specification into
an abstract syntax tree which is a collection of C++
objects. The IF exploration platform performs the
simulation of process executions using the abstract
syntax trees. A set of APIs is provided by the IF ex-
ploration platform, which allows implementation of
user-specific exploration.

In the IF toolset, it is possible to check if given
properties hold for an IF specification using ob-
servers. Once a property is described in the IF lan-
guage using a specific syntax for observers, e.g. mon-
itoring of events and cutting off generation of irrel-
evant states, it is executed in parallel with the target
system.

3.3 Selenium Webdriver

• Selenium

Selenium IDE is a one of the most popular free open-
source automated testing tool which provides a test-
ing framework for testing web applications and sup-
porting multiple kinds of frameworks. It can be eas-
ily downloaded from internet as a plug-in for some
browsers. It is basically used by the web devel-
opment community to perform automated testing of
web applications. We choose in our study Selenium
Webdriver because Selenium IDE does not support
record-playback feature and also it is most supported
for web-application testing (Monier and El-mahdy,
2015).

Selenium is a web testing tool which uses simple
scripts to run tests directly within a browser (Holmes
and Kellogg, 2006). It uses JavaScript and iframes
to embed the test automation engine into the browser.
This allows the same test scripts to be used to test
multiple browsers on multiple platforms. Selenium
gives the user a standard set of commands such as
open (a URL), click (on an element), or type (into
an input box); it also provides a set of verification
commands to allow the user to specify expected val-
ues or behavior. The tests are written as HTML ta-
bles and run directly in the browser, with passing
tests turning green and failing tests turning red as
the user watches the tests run. Because Selenium
is JavaScript-based and runs directly in the browser
(the user can see the test running), it overcomes some
of the problems encountered by users of HttpUnit or
Canoo WebTest, particularly problems related to test-

A Methodology for Enterprise Resource Planning Automation Testing Application to the Open Source ERP-ODOO

409



ing JavaScript functionalities. Two additional useful
tools are also available for use with Selenium: 1. the
Selenium IDE (originally called the Recorder), which
allows users to navigate their applications in Firefox
and record their actions, forming tests; and,

2. a “Remote Control” server which allows users
to write test directly within the programming lan-
guage of their choice – thus enabling conditional
logic within tests, try/catch blocks, and other power-
ful functionalities available only within programming
languages.

Selenium allows the identification of elements us-
ing the browser’s DOM object, the test can be writ-
ten using specific identifiers of the necessary element,
such as name, id, or xpath (Holmes and Kellogg,
2006) (Table 1).

Table 1: Input data for a Selenium Test.

type name=theField Text to submit
clickAndWait id=SubmitButton

assertText xpath=//h1/span Success!

This test might be written for an HTML page as
simple as (Fig. 1):

Figure 1: HTML test cases in selenium.

When the test is run, each command is highlighted
as it executed, and the assert steps turn red or green
to indicate success or failure. After the whole test is
complete, the test is marked as red or green in the
Suite.

• Robot Framework

Robot Framework (Pajunen et al., 2011) is a generic
keyword-driven test automation framework meant for
acceptance level testing. The tool uses keyword ab-
straction for test design. Keywords are divided into
higher-level user keywords and lower-level library
keywords. The user keywords are built by creating
combinations from the keywords presented in the key-
word libraries. Test cases are described with scripts
that use the keywords and control structures, such as
loops. The available keywords of Robot Framework
are defined in libraries. New libraries can be imple-
mented with Python or Java. There are two types of li-
braries: standard and external. The standard libraries

are distributed with Robot Framework and the exter-
nal libraries are released in separate packages:
Standard libraries

- BuiltIn: Keywords for generic testing needs,
such as variable verification, conversions and delays.

- Operating System: Keywords for operating sys-
tem tasks,such as file system operations and executing
commands.

- Telnet: Keywords for Telnet connection han-
dling.

- Collections: Keywords for handling lists and
dictionaries.

- String: Advanced string handling keywords.
- Dialogs: Keywords for getting user input during

test execution.
- Screenshot: Keywords for capturing and storing

screenshots.

4 ERP TEST AUTOMATION:
APPROACH BASED ON THE
MODELING OF HIGH LEVEL
BUSINESS PROCESSES

4.1 Approach based on Business Process
Modeling (Business Driven Testing)

The problem to be solved is how to manage the au-
tomation of ERP systems tests, based on the modeling
of business processes to meet the needs of the busi-
ness and to reduce, for this purpose, the risks of error
compared to business processes initially expressed by
the top level ”top management”.

The methodology used, in this context, consists
of combining a set of modeling methods (high-level
business processes) and tools to manage test automa-
tion of ERP, which involves the following different
steps:

Step 1: We use Business Driven testing (BDT) to
Model the High Level Business Processes defined by
the Top Management; which we have called ”HLBP”
in our architecture, to contribute to approach based on
business needs. Behavior Driven Tests (BDT) focus-
ing on high level design, not on the technical imple-
mentation nor the technical terminology. Stakehold-
ers or Users, Business Analysts, Testers, Developers
will involve and perform their Respective roles. Users
and business Analysts participate in test cases review
process and give their feedback to enhancement. Be-
haviour driven tests (BDT) are easier to modify and
hence. It is then very easy to maintain.

In this step, it is a question of referencing (gath-
ering) all the Business Processes defined by mutual

ICSOFT 2019 - 14th International Conference on Software Technologies

410



Figure 2: Level Business Process Model.

agreement between the various stakeholders. Then
we proceed to the tree of these processes starting with
those of rank 1 (high-level process) then by the pro-
cesses of the following ranks. At this stage, the fol-
lowing elements will be retained (illustrated by Figure
2:

• Objectives of the process

• Purpose of the process

• Main actor(s) of the process

Step 2: Explode all Rank 1 processes (high level)
in Tier 2 processes that will cover all processes and
behaviors of the business processes of Rank 1. We
will apply the Behavior Driven Testing (BDT) from
model based testing by using the IF-language. The
automation of tests generation from a formal model,
also known as a formal model-based testing, was inte-
grated into the software development process and was
adopted in this step in our test automation architec-
ture. This technique is known as model-based testing
and it refers to the ability to detect failures which are
not conform to a model. There are several approaches
used for model-based testing that include finite state
machines -FSM- and labeled transition systems -LTS-
with several extensions and variations. The use of fi-
nite state machines is the traditional technique used
for testing, originating in the domains of communi-
cation protocols and sequential circuits. The formal
model proposed for ERP-Testing Automation is based
on finite state machines augmented with time and pa-
rameters, allowing the representation of basic units of
the real-time system. In order to represent temporal
requirements, timeouts are used since they allow the
easy modeling of some internal critical issues of the
system. The Figure 3 illustrates the concept of a finite
state machine with timeouts.

The fundamental components of finite State Mod-
els include:

• State represents the “mode of being” for the sys-
tem at any given time.

• Transition describes a single pathway from a state
to another state. The set of all Transitions describe
all possible paths among the defined states. A
Transition contains an event that it is subscribing

Figure 3: Finite state machine with timeouts.

Figure 4: Tier 1 ”Manage Store Trade” process.

to (the event that triggers execution of the Tran-
sition), a Condition and an Action. A Transition
also contains references to the state from which
the Transition is exiting (i.e. the “from” state) and
the state to which the Transition is entering (i.e.
the “to” state).

• Event is the mechanism that the system uses to
interact with external systems and with itself.

• Condition represents a set of logic that evaluates
to a Boolean result. A Condition is used to deter-
mine if a Transition is to be executed.

• Action is the logic to be executed when a Transi-
tion is executed.

Example: for an ERP of commercial manage-
ment of a store, where the top management decides to
”Manage the store’s trade”. We define all processes
and activities in the Tier 1 ”Manage Store Trade” pro-
cess (Fig. 4).

• Step 3: it consists in defining the test objectives
emanating from the activities and behavior of the
business processes.
A test objective describes a particular function-
ality of the implementation under test, by spec-
ifying the property to be checked in the system
implementation. It is an observable action of the
system that once described in IF-language is used
for guiding the space exploration of the system’s
states. A test objective is described as a conjunc-
tion of conditions, including optionally the fol-
lowing: an instance of a process with an iden-
tifier, a state of the system (a source state or a
destination state), an action of the system (a mes-
sage sent, a message received, an internal action),

A Methodology for Enterprise Resource Planning Automation Testing Application to the Open Source ERP-ODOO

411



a variable of the process or a clock of the process,
specifying a value and its state (active or inactive).
A test objective obj is formally described as in the
figure below (Figure 5):

Figure 5: Test-objective structure.

• Step 4: derivation of objective, measurable and
manageable test objectives with the TestGen-IF
tool (hwa, 2009). The tool was defined and
implemented for modeling and simulating asyn-
chronous timed-systems such as telecommunica-
tion protocols or distributed applications. It is
based on active testing techniques, allowing au-
tomatic generation of test cases from a formal de-
scription of the studied system. The generation is
made according to specific objectives called test
purposes, which are described more in detail in
the next section.
TestGen-IF tool allows to construct the accessi-
bility graph from an IF specification. Therefore,
the inputs necessary for TestGen-IF tool are the
formal functional specification of the system and
the specification of test objectives that we wish
to check on the system implementation. Then, the
tool makes a partial exploration of the states space
of a model, guided by the tests objectives (Fig. 8).
Illustration 1: Example Process Model: in Sale
Module on ERP

Figure 6: Process Model : in Sale Module on ERP.

In this example (Fig. 6), we will build an overly
simplified control process. The order process is:
order received, inventory control, cancel the order
if the product is not in stock. Otherwise, complete
the command.
Illustration 2: Example Process Model Processes
and Asynchronous Events : Unlike our first exam-
ple which showed a very simple order manage-
ment process. In this example (Fig. 7), the pro-

Figure 7: Sale Order: in Sale Module on ERP.

cess is short-lived and synchronous - as soon as it
is started, it runs without any dependency on in-
coming events. The second example is similar to
the first, but with added asynchronous behavior.
In this example, the process waits and responds
to asynchronous events that indicate changes to
the inventory. When the command is created, if
the stock is available to execute the command, the
command is terminated normally. Otherwise, the
process waits until it receives a notification that
the appropriate inventory is available when the
process is complete. The new state template is
shown below:

• Step 5: It translates the Objectives into the
Automation Tool ”Selenium” with WBA (Web
Brother Automation) for the automatic execution
of test cases in ERP;

• Step 6: A verdict is provided by the system to con-
firm if the tests are ”OK” or ”NOK”

5 EXPERIMENTS: APPLICATION
TO THE ERP-ODOO

Odoo is not simply an ERP software shipped by Odoo
SA. It is an open source project with an important
community of partners, clients, individuals or com-
panies, who believe in the value of sharing: code of
course, but also tips and ideas.

How to make and execute the tests: Recording ac-
tions using Selenium :

• We install Selenium on Odoo (Selenium, 2018).
This addons adds tags in the XML of Odoo that
help Selenium recorder to understand the HTML
structure and record it. .

• We install selenium recorder on Firefox (Builder,
2018). This addons adds in your browser an op-
tion to ”start recording”|”stop recording”.

• 1. Add context in HTML code : first, the web-
selenium Odoo module generates semantically
richer HTML elements. By using Odoo’s tem-
plate extending mechanism, this module adds the

ICSOFT 2019 - 14th International Conference on Software Technologies

412



Figure 8: Our TestGen IF tool.

Figure 9: ERP-System Test Automation.

A Methodology for Enterprise Resource Planning Automation Testing Application to the Open Source ERP-ODOO

413



Figure 10: The Web-Selenium module.

model’s name as an attribute of each related ele-
ments.

5.1 Test Automation: Workflow Sale
Order in the ODOO ERP System

We automatically create a Sale Order, confirm it and
deliver it as illustrated on the Figure 7.
• Install and configure ODOO;
• In ODOO, activate the modules Sale and Stock,

with demo data;

5.2 Web Selenium Module Setting

Go to a directory set in the –addons-path of Odoo.
In the application, go to ”Settings>Users”, ”Edit Ad-
ministrator” and tick the “Enable Technical Features”
checkbox. Save and refresh the page: an “Update
Modules List” entry appears in the left menu. Pro-
cess with the update. You are now enable to find and
install the Web-Selenium module (Fig. 10). Inspect
the “Create” button from ”Sales > Sales Orders List
View”: a data-bt-testing-model-name attribute set to
“sale.order” is now set up.

5.3 Odoo Robot Framework

• Install Robot Framework first;
• Robot Framework start-up script pybot is now

available;
• Setting Firefox Profile : Firefox is used as the de-

fault browser for our tests. Whenever Pybot ex-
ecutes the Open Browser keyword, Selenium cre-
ates a brand new Firefox profile;

• Get odoo-robot-framework.
Now we are ready to run the test suite (Fig. 11).

6 CONCLUSION

The paper presented an automated model-based test-
ing approach for the test of ERP systems. A number

Figure 11: PyBot demo-80-full-workflow.robot.

of major activities in model-based testing are included
in the experiments: modeling, test generation and test
execution. A number of basic requirements are identi-
fied from the ERP specification and then described as
properties in the IF language. From the basic require-
ments, a number of test purposes are defined and test
cases are generated using the TestGen-IF tool where
the generated test cases satisfy the transition coverage
criterion. This approach offers several advantages:

- it covers all the steps of the software develop-
ment cycle, from the business process modelling to
the test generation and test execution;

- it is based on the modelling of business pro-
cesses, specifying their requirements and reducing the
risk of errors when compared with other models (for
instance these based on the top management level);

- it provides a testing methodology that combines
a set of modeling methods (high level business pro-
cesses) and tools to manage the automation of ERP
test generation and execution;

- it reduces time and cost of the testing procedure
for ERP System.

The approach has been applied to a real case study,
the ERP ODOO, and the experimental results are very
promising concerning the use of model-based testing.

As future work, we plan to complete the test ac-
tivity by:

- the application of monitoring techniques to ana-
lyze the behavior of the system without disrupting its
operation;

- implementing an algorithm for the test architec-
ture and measuring its complexity;

- the implementation of the improved Selenium

ICSOFT 2019 - 14th International Conference on Software Technologies

414



script.
We will perform other experiments applied to

much more complex work flows. In the future applied
to proprietary ERP like SAP and People soft. Also a
comparative study will be carried out with similar re-
search.

REFERENCES

(2009). Blind review. In Formal Techniques for Distributed
Systems, pages 122–136. Springer.

Bozga, M., Graf, S., and Mounier, L. (2002). If-2.0: A val-
idation environment for component-based real-time
systems. In International Conference on Computer
Aided Verification, pages 343–348. Springer.

Bozga M, Graf S, O. I. S. J. (2004). The if toolset, lecture
notes in computer science, vol. 3185. In 2004, The IF
toolset, SFM-04 (Lecture Notes in Computer Science,
vol. 3185). Springer: Berlin, 2004; 237–267.

Builder, G. S. (2018). Githup web selenium builder.
https://github.com/SeleniumBuilder/selenium-
builder/.

Chen, S., Elbashir, M., Peng, X., and Zhu, D. (2016). The
effect of erp systems competences on business process
and organizational performance. International Jour-
nal of Management Theory and Practices, 17(1):5–35.

Christine Paras, T. N. (2018). How to automate or-
acle erp testing. In 2018, How to Automate
Oracle ERP Testing; Posted in Test Automa-
tion. https://www.logigear.com/magazine/test-
automation/how-to-automate-oracle-erp-testing//.

Downing, D. (2006). White paper: Managing quality in
your erp project: 12 mistakes to avoid & best prac-
tices to adopt. In 2006, White paper Mentora Group.
Mentora Group, www.mentora.com.

Gerrard, P. (2007). Test methods and tools for erp im-
plementations. In Testing: Academic and Indus-
trial Conference Practice and Research Techniques-
MUTATION (TAICPART-MUTATION 2007), pages
40–46. IEEE.

Holland, C. and Light, B. (1999). A critical success fac-
tors model for erp implementation. IEEE software,
16(3):30–36.

Holmes, A. and Kellogg, M. (2006). Automating functional
tests using selenium. In AGILE 2006 (AGILE’06),
pages 6–pp. IEEE.

Legge, D. (2011). White paper: Erp testing methodol-
ogy approach and leading practices. In 2011, White
Paper, Hitachi Consulting, www.hitachi.com. Hitachi
Consulting, www.hitachi.com.

Maag, S., Grepet, C., and Cavalli, A. (2008). A formal vali-
dation methodology for manet routing protocols based
on nodes’ self similarity. Computer Communications,
31(4):827–841.

Monier, M. and El-mahdy, M. M. (2015). Evaluation of
automated web testing tools. International Journal
of Computer Applications Technology and Research,
4(5):405–408.

Nagpal, S., Khatri, S. K., and Kapur, P. (2015). Prioritiza-
tion and ranking of erp testing components. In 2015
4th International Conference on Reliability, Infocom
Technologies and Optimization (ICRITO)(Trends and
Future Directions), pages 1–6. IEEE.

Pajunen, T., Takala, T., and Katara, M. (2011). Model-
based testing with a general purpose keyword-driven
test automation framework. In 2011 IEEE Fourth In-
ternational Conference on Software Testing, Verifica-
tion and Validation Workshops, pages 242–251. IEEE.

Schliesser, S. (2007). An approach to erp testing us-
ing services. In IEEE International Conference on
Software-Science, Technology & Engineering (Sw-
STE’07), pages 14–21. IEEE.

Selenium, G. W. (2018). Githup web selenium.
https://github.com/brain-tec/web selenium.

Software-Testing-Help (2018). The beginner’s guide to
erp testing (sap testing). In 2018, Last Update,
The Beginner’s Guide to ERP Testing (SAP Testing)
– Part 1. https://www.softwaretestinghelp.com/guide-
erp-testing-sap-testing-1/.

TestingWhiz (2017). Creating Business Value with
Business-Driven Test Automation. Technical report,
TestingWhiz.

Wieczorek, S. and Stefanescu, A. (2010). Improving test-
ing of enterprise systems by model-based testing on
graphical user interfaces. In 2010 17th IEEE Interna-
tional Conference and Workshops on Engineering of
Computer Based Systems, pages 352–357. IEEE.

Wieczorek, S., Stefanescu, A., and Schieferdecker, I.
(2008). Test data provision for erp systems. In Soft-
ware Testing, Verification, and Validation, 2008 1st In-
ternational Conference on, pages 396–403. IEEE.

A Methodology for Enterprise Resource Planning Automation Testing Application to the Open Source ERP-ODOO

415


