
Fuzz Testing with Dynamic Taint Analysis based Tools for Faster Code
Coverage

Ciprian Paduraru1,2,3, Marius-Constantin Melemciuc2 and Bogdan Ghimis1,2

1The Research Institute of the University of Bucharest (ICUB), Romania
2Department of Computer Science, University of Bucharest, Romania

3Electronic Arts Romania, Romania

Keywords: Fuzzing, Tainted Analysis, Automatic, Generative Model, Test Data.

Abstract: This paper presents a novel method for creating and using generative models for testing software applications.
At the core of our method, there is a tool performing binary tracing using dynamic taint analysis. Our open-
source tool can learn a connection between code variables that affect the program’s execution flow and their
content in a set of initial training examples, producing a generative testing model which can be inferred later
to produce new tests. This work attempts to maximize the code coverage metrics by focusing only on those
parts of the input that affect the control flow of a program. The method can be used to automatize the test data
generation on any binary x86 application. Evaluation section shows that it is producing better code coverage
on applications accepting binary input formats, especially when the feedback from the test system is needed
in a short time.

1 INTRODUCTION

Software security is a hot topic nowadays, especially
because of the wide interconnectivity between soft-
ware and hardware pieces. Before releasing software
on the market, and even during development, compa-
nies are investing important resources for testing the
quality of their software. We think that it is impor-
tant to automatize as much as possible the generation
of inputs and automatically test software pieces with-
out human effort. One of the main purposes of an
automatic test data generation system is to generate
test data that covers as many lines of code of a pro-
gram. A common technique is Fuzz testing (Gode-
froid, 2007), which looks for inputs causing errors
such as buffer overflows, memory access violations,
null pointer dereferences, etc, which in general have
a high rate of being exploitable. Using this technique,
testing data is generated using random inputs and the
program under test is executing them for the purpose
of detecting issues like the above mentioned ones.
One of the main limitations of fuzz testing is that it
takes a significant effort to produce inputs that cov-
ers almost all branches of a program’s source code.
This comes from the fact that using randomness, it re-
sults in a high chance of producing inputs that are not
correct and rejected in the early outs of a program’s

execution.
Alternative methods that augment the classic ran-
dom fuzz testing with different methods were created.
Such ideas involved the use of genetic algorithms for
better guiding the test data generation towards uncov-
ered areas (Paduraru et al., 2017), or by using re-
current neural networks and predicting the probabil-
ity distribution of the next character knowing a previ-
ously generated context (Godefroid et al., 2017), (Ra-
jpal et al., 2017).

This paper discusses an open-source tool (from
the authors’ knowledge, the first one at the
moment of writing this paper; publicly avail-
able here: https://github.com/AGAPIA/river-trace-
analysis-and-fuzz) that given an x86 binary file un-
der test, is able to learn a generative model for new
tests, starting from a set of training examples (i.e.,
a starting set of input tests), which concentrates the
fuzz process exactly on the parts used by branches in-
side the program. A tracer tool that uses tainted anal-
ysis (Stoenescu et al., 2016) is at the foundation of
this work. The main idea of our method is that only
specific parts of an input stream given to a program
are used to evaluate the branch conditions, and our
attempt is to concentrate more on learning the con-
tent of those parts in valid tests. Obtaining a model
that describes where those parts are and their content

82
Paduraru, C., Melemciuc, M. and Ghimis, B.
Fuzz Testing with Dynamic Taint Analysis based Tools for Faster Code Coverage.
DOI: 10.5220/0007921300820093
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 82-93
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

format (as a general regular expression, or recursive
neural networks in our current implementation), it is
an important way to ensure that fuzzed inputs are not
rejected from early out branches of a program and can
potentially generate better code coverage.

The rest of the paper is structured as follows. Sec-
tion 2 discusses related work in the field. The backend
tools used for tracing and performing tainted analysis
are described in Section 3. Section 4 describes our
method in details, while Section 5 compares it against
other new methods with the same purpose. Finally,
the last section presents the conclusions and future
work.

2 RELATED WORK

In the field of fuzzing techniques, there are three main
categories currently: blackbox random fuzzing (Sut-
ton et al., 2007), whitebox random fuzzing (Gode-
froid et al., 2012), and grammar based fuzzing (Pur-
dom, 1972), (Sutton et al., 2007). The first two
are automatic methods proving efficiency in finding
vulnerabilities in binary-format file parsers. These
methods are also augmented with others for better re-
sults. For example, in (Paduraru et al., 2017) authors
present a distributed framework using genetic algo-
rithms that generate new tests by looking at the prob-
ability of each branch encountered during the execu-
tion. Their fitness function scores a newly generated
input test by the probability of the branches encoun-
tered in the program’s execution trace. This way, the
genetic algorithm tries to create input data that drives
the program’s execution towards rare (low probabil-
ity) branches inside the program’s control flow. They
use Apache Spark for parallelization and dynamic
tainting to know the paths taken during the execution.
Their method obtains better scores than classical ran-
dom fuzzers and it is one of the solutions that we com-
pare against, using the same two examples: an HTTP
parser and an XML parser.

On the other side, the grammar based fuzzing is
not fully automatic: it requires a grammar specifying
the input format of the application under test. Typi-
cally, this grammar is written by hand and the process
becomes time consuming and error prone. It can be
viewed as a model-based testing (Utting et al., 2012),
and the work on it started with (Hanford, 1970), (Pur-
dom, 1972). Having the input grammar, test gen-
eration from it can be done either (usually) random
(Sirer and Bershad, 1999), (Coppit and Lian, 2005)
or exhaustive (Lämmel and Schulte, 2006). Methods
that combine whitebox fuzzing with grammar-based
fuzzing were discussed in (Majumdar and Xu, 2007),

(Godefroid et al., 2008a). Recent work concentrates
also on learning grammars automatically. For in-
stance, (Bastani et al., 2017) presents an algorithm
to synthesize a context-free grammar from a given
set of inputs. The method uses repetition and alter-
nation constructs for regular expressions, then merg-
ing non-terminals for the grammar construction. This
can capture hierarchical properties from the input for-
mats but, as mentioned in (Godefroid et al., 2017) the
method is not well suited for formats such as PDF ob-
jects for instance, which include a large diverse set of
content types and key-value pair.

Autogram, mentioned in (Höschele and Zeller,
2016) learns context-free grammars given a set of in-
puts by using dynamic tainting, i.e. dynamically ob-
serving how inputs are processed inside a program.
Syntactic entities in the generated grammar are con-
structed hierarchically by observing what parts of the
given input is processed by the program. Each such
input part becomes an entity in the grammar. The
same idea of processing input formats from exam-
ples and producing grammars, but this time associat-
ing data structures with addresses in the application’s
address space is presented in (Cui et al., 2008). There
are two main differences between Autogram and our
method:
• Our method concentrates only on the part of the

inputs that affect the branching conditions, while
Autogram is considering all source code variables
that have a connection to the input stream. For this
reason, we expect that our solution is more suit-
able for larger input binary files than Autogram in
practice.

• Autogram is suitable only for Java applications
since it uses JVM to parse the callstack and corre-
late variables in the code to inputs used. In com-
parison, our method can be used to test any kind
of applications which can be translated to assem-
bly code.
Both approaches described above for learning

grammars automatically require access to the pro-
gram for adding instrumentation. Thus, their appli-
cability and precision for complex formats under pro-
prietary applications is unclear. Another disadvantage
of these is that if the program’s code changes, the in-
put grammar must be learned again. The method pre-
sented in (Godefroid et al., 2017) uses neural-network
models to learn statistical generative models for such
formats. Starting from a base suite of input PDF files
(not binaries) they concatenate all and use recurrent
neural networks (RNN, and more specifically a se-
quence - to - sequence network) to learn a generative
model for other PDF files. Their work is focused on
generative models for non-binary objects.

Fuzz Testing with Dynamic Taint Analysis based Tools for Faster Code Coverage

83

Dynamic tainting has numerous applications such
as finding and analyzing security threats (Newsome,
2005), (Arzt et al., 2014), software test generation us-
ing in combination with concolic execution (Bekrar
et al., 2011), or in combination with fuzz testing
and genetic algorithms (Avancini and Ceccato, 2010),
(Mathis, 2017). The last two papers fall in the same
target as ours, but their approach is to mark the parts
of the input tainted by a program execution first, then
applies genetic algorithms over those parts. Instead,
our method is marking the parts of the input which
are both tainted and used inside a branch evaluation
in the program. The intuition is that ours should help
in improving the code coverage since branch condi-
tions can drive the number of paths explored during
execution, which directly impacts the code coverage
metric. As an example, think of an image processing
application that iterates over some areas of an input
image sent by the user, but doesn’t actually modify
the control flow of the program based on those iter-
ations. In this case, fuzzing over the entire tainted
data might be useless in getting more code cover-
age. Instead, concentrating the fuzz process only
over areas used for branching can get better result
in shorter time.

One of the most appreciated tools for practi-
cal fuzzing today, AFL (american fuzzy lop) (AFL,
2018), is based on genetic algorithms and various
heuristics to find faster vulnerabilities and achieve
good code coverage. We compared it against our so-
lution to find out that is the difference between them.
On short, AFL tends to be better on text-based inputs,
while ours can get better results on binary like kind of
inputs. An improved fuzzing tool, with reported re-
sults above AFL is Angora (Chen and Chen, 2018). It
uses runtime taint analysis and keeps stack context on
branch transitions to achieve improved code coverage
and bugs finding. However, it is dependent on LLVM
and needs access to the source code. Instead, our tool
works at binary level (i.e. doesn’t need access to the
source code), and this is the reason we don’t compare
our methods against Angora.

3 BACKEND DESCRIPTION

This section is an overview of the technical tools that
we use as backend for implementing the core ideas of
this paper.

3.1 RIVER Tool

The tool we use to perform dynamic taint
analysis and meaningful tracing from a pro-

gram execution is named RIVER (Stoenescu
et al., 2016), and it is available open source at
https://github.com/bitdefender/river.

RIVER works at the binary level and doesn’t need
any other source code information from the user. At
test time, different modules can be registered and pro-
duce inputs to test the user’s application against them.
The runtime reads instructions starting from the user’s
application entry point and performs dynamic instru-
mentations of the x86 instructions, such that they can
be interpreted and executed similarly to something
running inside a virtual machine (more technical de-
tails are described in (Stoenescu et al., 2016)). A ba-
sic block in our terminology represents a contiguous
set of instructions that ends with a branch decision.
Considering assembly code, basic blocks can be rep-
resented by the code inside an if statement, a loop
one, or the entire code of a function if it doesn’t have
any branching decision.

3.2 Taint Analysis Description

The method of dynamic taint analysis works by mark-
ing all data originating from untrusted sources (e.g.
user input, files opened, network traffic, etc). Then,
at runtime, instructions having operands marked as
tainted can propagate tainting to destination operands.
RIVER’s backend uses dynamic taint analysis at bit
level (similar to the work described in (Yadegari
and Debray, 2014)), tracking at runtime any source
of tainted data by interpreting each instruction from
the user’s provided executable at the assembly level
and continuously updating its internal data structures.
When a branch instruction is executed, we add infor-
mation about this operation such as the memory re-
gion used or the type of branch evaluation, the poten-
tial forward address, etc.

3.3 Tainted Tracer Tool

The component inside RIVER that is built over the
taint analysis system to get detailed information from
a program execution is called tainted tracer tool. The
output of this tool is a combination of operations in-
volving taint analysis operations, and addresses of ba-
sic blocks encountered in the program’s execution.
For each such block, we capture different informa-
tion. The most important for our current paper are
the module and address where the block resides, the
jump instruction information (return, jump, condi-
tional jump, call or syscall), and the option available
for continuing the execution depending on the jump
condition evaluation. Other details include the cost
for executing a block and the number of instructions

ICSOFT 2019 - 14th International Conference on Software Technologies

84

used in the block.
Omitting the taint analysis operations, Figure 1

shows a snippet from an output log file explaining the
data provided by the tracer for each basic block oc-
curred during execution of a program.

The full output log also adds data flow analysis
on top of the basic blocks tracing. The analysis is
done by marking the initial input given to a program
as tainted and propagating tainting information dur-
ing a program execution depending on data flow and
usage. Each taint propagation produces a new vari-
able in the SSA format (Single Static Assignment).
Variables are marked as I[index], where index is in in-
creasing order during program execution (i.e. inside a
loop execution, even if an instruction is computed for
the same variable name, in SSA format there will be
many different increasing variables associated with it
in the final output log).

The four operations that show taint propagation in
the output log are defined below.

• Extract: Cutting a part from the tainted data to a
new variable, by specifying the offset where to
cut from and size in bits. A concrete example for
this operation in a programming language would
be getting a slice of an array or the last two bytes
of an integer represented on four bytes.

I[k]<= I[index][o f f set : size]

• Concatenation: Concatenate two tainted variables
to another. Consider operations where the code
puts together a new variable from two existing
ones.

I[k]<= I[p] | I[q]

• Generic execution: Represents a set of instruc-
tions on one or two variables that propagates
tainting to the resultant. Consider math opera-
tions in programming languages as an example
for this, both unary and binary transformations.

I[k]<= I[p] ++ I[q]

• Constants: Every constant used in the code is
considered tainted since it modifies the data flow
execution.

I[427]<= const0x0000000A(32)

A snippet of a full output log can be observed in
Figure 2. Other than the explanation given below the

figure, a key observation here is that when in as-
sembly code there is a jump instruction evaluated
by a condition related to parts of the input stream,
that condition evaluation depends in the end on a
single tainted variable if SSA format is used.. The
variable in the cause is the last one appearing before
the block description entry in the log file. In Figure
2, variable I[431] is evaluated for checking the branch
condition. This is a key aspect because it shows how
we connect the branch decisions in a program by the
input stream, i.e. through SSA variables outputted by
the tainted tracer tool.

4 CREATING AND USING THE
MODEL TO GENERATE NEW
TEST DATA

This section presents the solution we use for obtain-
ing a generative model by learning the patterns from
the tainted tracer output logs using an existing set of
training inputs. The purpose is to learn the general
format of the inputs given to a program, and the input
data patterns especially around the parts that are used
in the source code for branching decisions. By con-
centrating fuzzing only on those parts we expect to hit
two targets:
• Use more efficiently the computational resources

for fuzz process and thus obtain faster a good cov-
erage than other fuzzing methods.

• Obtain a good pass rate (i.e., number of inputs not
rejected in the early branches of a program’s exe-
cution) for inputs generated using our generative
model since it learns the valid format of the parts
used for branching.
With enough input training examples, we also ex-

pect that our model to generalize well and create
enough diversity.

4.1 Overview

Considering that we have a software application and a
database of recorded user inputs to it, our target is to
find a generative model that can explain the existing
sets of inputs and produce similar new inputs.
As a concrete example, consider a program doing
image processing and where its control flow de-
pends mostly on a small part of the input, the im-
age’s header. The format of most of the inputs will
be [header | image content in bytes], where
header can be binary data such as 4x2 bytes de-
scribing the resolution of the image, 1 byte spec-
ifying the number of channels, and a string of

Fuzz Testing with Dynamic Taint Analysis based Tools for Faster Code Coverage

85

Figure 1: The figure shows a part of the output returned by the tracer using raw tracing option (omitting the taint analysis
output for easier presentation).The first two columns tell the module name and offset where the block resides. Jump type
shows where the condition for branch evaluation resides and can be a value in the set:0 - immediate jump, 1 - memory, 2 -
register. Jump instruction column shows the kind of jump instruction that ends the block, and can be a value in the set: 0 -call,
1 -return, 2 - syscall, 3 - jmp, 4 - jcc. The last four columns specify the pairs of modules and offsets of the following basic
block if the branch is taken or not.

Figure 2: Figure showing a snippet of output log using tainted tracer tool. The first part of the image shows some taint
propagation instructions. Note that the initial input stream is marked with p in the log, and the default memory addressing
is on 4 bytes, i.e. p[0] extracts the first four bytes from the initial input stream sent by the user. The other extraction and
concatenation operators used in the picture are explained in Section 3.3. In the second part of the picture, there is a related
taint propagation and block execution. The tainted instructions used inside a block appear before the entry of that block in the
output log. For example, variables I[430] and I[431] are generated by tainting inside the block. In this case, if the branch is
taken, the next block will be inside the same module at address 0x00000540, while if not taken, the new offset is 0x0000055F.

4 bytes for specifying the order of the chan-
nels. (e.g. of headers ”1024—768—4—ARGB”,
”1920—1080—3—BGR”). Giving such a set of im-
ages to our model training methods, it will learn a
model where the input that does most of the control
flow of the program resides in the first part of the in-
put, and where the first two numbers have a memory
footprint of 4 bytes, with values within some range,
the third is a single byte number which is either 1,3
or 4, then a string of 4 bytes representing a string
that satisfies a regular grammar. Then, this model
can be used to produce new inputs by fuzzing only
on those areas. It is up to the user to decide how
to fuzz those areas of interest. Our current out-of-
the-box implemented methods offer customized regu-
lar grammars and recursive neural networks to under-
stand certain categories of inputs such as numbers /
strings / date, but the user is free to inject other meth-
ods such as genetic algorithms to learn and fuzz over
the targeted content (Godefroid et al., 2017), (Padu-
raru et al., 2017).

It is important to note that the rest of the content
which is not used for any branching evaluation is not

of interest for our method since it doesn’t affect the
control flow of the program, thus, neither affects the
code coverage if we modify it. Going back to the ex-
ample above, think that pixels in the image are not
used for any kind of branch evaluation. Randomizing
that image’s pixels doesn’t modify the program’s con-
trol flow at all. This is the reason why in our method,
we concentrate the fuzzing process only over areas
detected as being used in branch evaluation, while the
rest is randomized just to keep a similar structure to
the original input.

The foundation of our system is based on the
tainted tracer tool described in Section 3. The gen-
erative model is obtained by executing the program
against each input in the training set and understand-
ing the patterns in the resulted logs for various parts
of the input stream used in branch decisions. The
only type of applications that are not currently sup-
ported in our method are the ones that can imply
asynchronous / non-deterministic read of the input
streams. These streams cannot be currently learned
as a generative model since pattern matching poses
some serious challenges, but this is added in our fu-

ICSOFT 2019 - 14th International Conference on Software Technologies

86

ture work investigations.
Figure 3 shows in more details the flow of obtain-

ing a generative model by tracing and learning the pat-
terns inside tainted logs, from various input streams
recorded. The input streams can have different for-
mats and lengths, there is no restriction on their con-
tent.

Figure 3: Overall flow for obtaining a generative model,
from a set of inputs. It starts with a recorded set of inputs
for the evaluated program. The tainted tracer tool is exe-
cuting the program against each input in the set, obtaining
an output log. Then, this log is parsed and patterns over
different input sequences are analyzed to create the final
model. The green areas are corresponding to parts of an
input structure which are used for branch decisions. Thus,
by concentrating the fuzz methods over those areas, it is the
same result as doing fuzzing everywhere in the input, but
with less computational resources used.

4.2 Steps to Create the Generative
Model

There are four steps involved in creating the model,
defined below.

Step 1 - Create a DAG Associated with the Output
Logs

The first step when analyzing a tainted output log
is to create the DAG (Directed Acyclic Graph) of
the tainted variables. For each variable, we store
the interval of bits used from the initial input stream
(more specifically, a union of intervals). For example,
Figure 4 sketches a set of tainted instructions along
with the DAG obtained from it. The initial input
stream given to the evaluated program is marked with
the variable named p. The graph contains as nodes

Listing 1: Simple loop using parts of input stream: array a.

f o r (i n t i = 0 ; i < N ; i ++)
{

x = a [i] ;
y = a [i + 1] ;

}

all the tainted variables, while the edges mark the
data dependencies between them.

Step 2 - Cluster the Nodes Corresponding to the
Same Variable in the Program’s Source Code

A disadvantage when using the SSA format for in-
structions is that when looping over variables con-
suming directly or indirectly input data in the user’s
program assembly, a new SSA variable is created for
each original variable at each loop iteration. As an
example, for the source code associated with the one
in Listing 1, there will be N SSA variables created
for both x and y in the output log (I[index], where in-
dex varies between 0 and 2 ∗N− 1, variable x being
represented by even indices, while variable y by odd
indices. Each of these tainted variables consume a
single entry of the input stream.). This is a disadvan-
tage because our model has to understand that all the
odd indices for example actually belong to the same
cluster, i.e. pointing to the same purpose variable in
the source code. Same is valid for the even indices. In
the end, the purpose of the second step is to replace all
the intermediary tainted variables nodes in the exam-
ple, with just two tainted variable nodes which store
the union of all input stream intervals used in the clus-
ter they represent (x uses even entries, while y uses
odd entries of the input stream a).

Fortunately, this can be easily obtained by parsing
the output log and simulating a stack using the mod-
ules and offsets information for the lines describing a
block entry. Following them, we can understand if a
jump was made and where. When a group of tainted
variables I[index] appears at the same stack context
(module, offset), it means that they are in the same
cluster. At parsing time, we hold a hashing scheme
(indexed by the pair module and offset) for finding if
a variable is in the same cluster with another, and if it
is, then its interval of used input stream is appended
to the existing variable, otherwise the new tainted
index variable is added to the DAG. A concrete
example of this behavior based on a sample output
log can be observed in Figure 5.

Fuzz Testing with Dynamic Taint Analysis based Tools for Faster Code Coverage

87

Figure 4: A set of tainted instructions and their corresponding DAG. On the right side of each node, it is shown the interval in
bits from the input stream used by that node, in the same format as the extraction operation: [startbit : size inbits]. Tainting
starts from the original stream p, and by default, if not specified, the tainting is done on 4 bytes. In this case, I[0] uses the
first 4 bytes from the initial input stream. I[1] does an extraction operation and uses the first 3 bytes from the initial input.
Since I[3] uses p[1], its real used interval in bits is starting at bit 32 and has length 32 bits, thus bytes 4 to 7 inclusive are used.
I[4] is part of an operation involving extracted parts of I[1] (the first byte from it) and I[3] (its last two bytes). On complex
applications, these intervals can grow significantly and overlap.

Figure 5: Figure showing a snippet of output log for a program containing a loop statement. The loop can be recognized by
observing multiple basic block entries at the same address (module libsimple.so and offset 0x00000540), each of these with a
jump to a different block address if the branch condition is no longer evaluated as true (jumping to the same module, but offset
0x0000055F . In the complete output log, after all iterations are finished, the next basic block entry will show the same module
and address 0x0000055F if the loop is a simple iteration over iterative code which doesn’t crash or performs any exception).
The only variables retained by our DAG after step 2 are I[430] and I[431], since all others are in the same cluster with them.
Also, notice that variable I[430] holds an interval of 8 bits (I[17][24 : 8] means that starting from bit 24 of I[17] it uses the next
8 bits), and in the next instruction the log says that I[431] depends on the entire interval used for I[430]. Therefore, after step
3, the only leaf node (and the remaining node of interest) is variable I[431]. To identify and connect this variable between the
execution of the same program with different inputs, the DAG will contain instead of I[431], a label containing the module
and offset where it belongs to: [”libsimple.so”,00000540]. If in a different execution the same corresponding source code
variable would have index I[498] because the program took a different flow by using a different input, the variable/cluster is
still recognizable by its module and offset origin, i.e. it will have the same label.

Step 3 - Finding the Leaf Nodes in Each Input Test
Example; Connect and Cluster the Leaf Nodes
between Different Examples’ Execution Logs

The concept of leaf node in our context is not the
usual one in the graph theory. In our context, a leaf
node represents a node that doesn’t have its entire
stored interval being reused by the set of nodes de-
pending on it. For instance, in Figure 4, I[0] is not a
leaf node because its input interval is reused by nodes
I[1] and I[2], while node I[3] is still a leaf node since
its first two bytes are not reused by I[4]. The leaf
nodes in our context are therefore I[4], I[3] and I[2].

Internally, for each of the leaf nodes, we also store
the basic block (the pair [module, block offset]) asso-
ciated with that variable. An important observation at

this point is that for each basic block, there will be
at most one leaf node. The explanation is based on
remembering the key observation discussed in Sec-
tion 3, that each basic block will propagate tainting
information to a single variable used for evaluating
the jump condition, and considering our contextual
definition for leaf nodes given above. The group of
internal variables which use parts of the input stream
and in the end contributes to the branching condition
of a basic block (i.e. affecting the execution flow of
the program), are therefore grouped in a single node
variable.

An example of these two last steps can be visu-
alized in Figure 5. There is only one leaf node in
the end: I[431]. All other variables are either be-

ICSOFT 2019 - 14th International Conference on Software Technologies

88

ing reused by dependants or in the same cluster with
I[431].

Executing the same program with different inputs
can cause different SSA variable indices for the
same corresponding source code variables. More
specifically, if before the loop in Listing 1 there
would be a simple decision statement (if statement)
based on the input, then if we compare the tainted
variables in the SSA format, the variable indices
created for x and y could be different between two
executions of a program if one would take the branch
before loop, while the other doesn’t (e.g. inside
the simple decision statement there could be other
variables consuming tainted input data, and a new
SSA variable index is therefore created for each one).
We can still connect the variables between different
execution paths in a cluster variable by observing
that after each variable usage, the output log contains
the basic blocks information where that tainting was
propagated. If indices in two (or more) execution
logs were created in the same basic block entry,
then they actually represent the same variable. Thus,
in the final DAG (and model output) we store the
pair [module,o f f set] instead of the variable index.
We still denote this pair as tainted variable in the
continuation of the paper.

Step 4 - Format and Store the Model for Inference

Depending on how an input stream is used by a pro-
gram, each leaf node variable can use different areas
from it, corresponding to the union of intervals stored
inside the node (Figure 6). Some variables might not
appear at all in a tainted log output, for example, if the
program execution with an input stream doesn’t use
at all those specific variables. The content detected as
used by each individual variable in each of the input
test examples is concatenated into a contiguous array
of bytes (a string), then (by default) a regular expres-
sion generator (DevonGovet,) is used to create a regu-
lar expression that is able to match all the strings from
each individual input stream. The user has the op-
tion to hook a function and decide what to do with the
detected pattern and try other methods too. Another
method used by us, as stated in the evaluation section,
is by using recursive neural networks for learning the
format and the possible content used for a variable.

The output of this step is a set containing meta-
data for all variables. The meta-data stored for each
variable is in the form
{[module,o f f set],DataPattern}, where
DataPattern is the data pattern learned for the
respective variable (i.e. by default a regular expres-
sion matching all data in the input streams; user
has another out of the box option to chose a RNN

model instead of regular expression to learn and
produce content for that specific variable; another
generic option is to attach own hooks and create
customized models based on the existing frame-
work), and the pair [module,o f f set] is the address
where this variable was used as a branch condition
evaluation. A mapping from all variables to their
corresponding meta-data is created and denoted
further by VarToDataPattern.

To support different inference methods, the im-
plementation also saves a snapshot of different in-
put streams examples resulted from the outputs logs
(variable InputsDatabase). Concretely, for a sub-
set of the inputs from the training examples set,
we store a data structure with the following format:
{InputIndex ; InputLength ;
VariablesUsed ; O f f sets ; Intervals}. The first two
parameters represent the index and the length of the
input stream in the original set. The third parameter
is a set of tainted variables used, sorted by the order
of their appearance in the respective stream of input,
while the fourth parameter is the offset in the input
stream where each variable is used (i.e. the first byte
used by the variable). The last parameter represents
the union of intervals used by each variable on the
initial input stream.

4.3 Producing New Inputs using
Inference

To generate a new input, one of the saved snapshots
is sampled and the method tries to produce an input
that follows the same structure, but for each variable
used inside the snapshot we use the global data pat-
tern learned from all training examples. Basically, we
follow the next steps:

(1) Select one random test (index) from
InputsDatabase (we need to follow its
structure closely to obtain a valid input),
and create a random array (NEW INPUT)
of bytes with its original length (using
InputsDatabase[index].InputLength).

(2) For each variable V in
InputsDatabase[index].VariablesUsed

(a) Generate a new string (S) using the registed
model (i.e. by default regular expression):
VarToDataPattern[V].

(b) Apply the generated string over
NEW INPUT S array, starting at the off-
set specified by the attribute

Fuzz Testing with Dynamic Taint Analysis based Tools for Faster Code Coverage

89

Figure 6: Considering a set of M input streams in the training examples, the green areas show the parts used by a tainted
variable in each of them. The content in those areas are concatenated in a string, per each input stream, and by default are
given to the regular expression matching, which in the end builds a regular expression matching all usages. If RNN method is
used to learn the data pattern instead of regular expressions, the model learns for that specific variable the probability of the
next character, similar to seq2seq models in (Godefroid et al., 2017). Note that our implementation allows the user to hook a
function for learning on its own the data pattern model, and another one for performing inference to generate new data based
on the learned pattern.

InputsDatabase[index].O f f sets[V] for the
corresponding variable and try to match as
much as possible the set of intervals specified
in InputsDatabase[index].Intervals[V].

4.4 Practical Usage of Models and
Inference

In practice, inputs sets for a program can be updated
online, i.e. new sets of inputs can be added for im-
proving the existing model. When a new input is
added, it must be executed through the tracer and a
new tainted log is obtained. The existing model is up-
dated by:

• Adding the transformed log data to
InputsDatabase.

• Updating the generative model for the vari-
ables used in the new test, i.e. data structure
VarToDataPattern, because the new test could
contain new patterns for those variables.

The next time inference is used, it will take into
account the new input test too. The intervals used
by the variables can still overlap sometimes when ap-
plied NEW INPUT array. Also, the offsets where
generated strings are applied might be dependent on
the content of the generated strings (e.g. think about
branching variables representing the size of an im-
age). Still, by using the method described above
we can learn models and generate inputs which intu-

itively should provide better code coverage than many
fuzzing techniques.

5 EVALUATION

The evaluation between different methods was done
using two open source applications that accept binary
files as input -
zlib (http://www.zlib.net/) and libjpeg
(http://www.libpng.org/pub/png/pngcode.html), and
one text based input file - libxml (xmlsoft.org). The
purpose for zlib evaluation is to create a model that
learns to create new compressed files. Same purposes
are targeted for libjpg - create a generator for images
that will be later given to the library to read data from,
and libxml - a generator for XML files.

The three applications will be compared against
the five methods described below. The method pre-
sented in (Höschele and Zeller, 2016) couldn’t be
evaluated since there is no source code / executable
publicly available at the moment.

(1) Method 1: Presented in (Godefroid et al., 2008b),
where Recurrent Neural Networks are used to cre-
ate a model able to create content similar to the
input tests. Our evaluation used the same infer-
ence method which authors suggested as perform-
ing the best in their tests, SampleFuzz, i.e. sam-
pling a new random number after each space char-
acter.

ICSOFT 2019 - 14th International Conference on Software Technologies

90

(2) Method 2: Presented in (Paduraru et al., 2017),
where genetic algorithms are used to improve
fuzzing techniques and get potential more code
coverage.

(3) Method 3: Described in this paper, applying di-
rectly the algorithm in Section 4.

(4) Method 4: On top of Method 3, but using an ad-
ditional fuzzing with probability 5%. This means
that after generating the string with our method, 1
out of 20 bytes will be replaced by a random byte.

(5) Method 5: Using american fuzzy lop (AFL)
(AFL, 2018).

The models trained by Methods 1,3,4 used an in-
ternal collection of input files consisting of 10000
XML files, 5000 jpg pictures, and 10000 small
archived content files, all randomly crawled from the
internet. The Method 1 model was trained for about
15h (until the model converged even on the jpg in-
put files). At the same time, Methods 3 and 4 took
around 13h to parse tainted logs and process data, on
the same system (a cluster of 8 PCs, each one with
12 physical CPU cores, totaling 96 physical cores of
approximately the same performance - Intel Core i7-
5930K 3.50 GHz; Each of the PC had one GPU de-
vice, an Nvidia GTX 1070). One of the advantages
of Methods 2 and 5 related to this aspect, is that they
don’t need any training time.

To evaluate the five methods we use a metric very
similar to code coverage. But instead of showing the
number of lines of code, we show how many branches
(different basic blocks of code) of a program are eval-
uated using all the available tests generated. There
are two main reason for this: counting only the ba-
sic blocks is less intrusive (i.e. the software perform-
ing analysis needs to count only the jumps taken in
the source code), and we are more interested in see-
ing programs taking different flows in the execution
path. This last reason is based on the observations
that sometimes applications have a huge percent of
source code lines on the main execution flow, while
some other interesting blocks of code have just a few
lines. The number of different basic blocks touched
during execution was evaluated using our tracer tool,
but this time with taint analysis disabled. The models
for Method 3 and 4 have no difference in inference
time.

It is important to note that nowadays testing
methodologies are applied to check binaries after each
or a bunch of consecutive source code changes sub-
mitted to a repository to verify against vulnerabili-
ties or bugs. In this context, using fuzz testing can
be a good approach in general since it can get good
code coverage in a short time. Left infinitely to run,

all methods are expected to converge to the same re-
sults. Considering this, we think it is important to
show how our method compare to others in short in-
tervals of time too, since users might want to get quick
feedback from a fuzz test system, testing their new
changes in the source code of a program. To evalu-
ate fairly between the time needed to produce new in-
puts and the quality of the results, first, we let all five
methods produce new tests (inferring their model) for
fixed time moments, choose between 10 minutes and
24 hours. For each time range, method and test appli-
cation, we let each method produce a different folder
of new tests. Then, for each folder with tests, we used
our tracer tool to execute the evaluated libraries and
get the number of different basic blocks executed.

First, Table 1 shows the code coverage for each
method and application with the setup defined above.
The results confirm the initial intuition: our method
is producing generative models which are better in
terms of code coverage metric, for applications which
receive binary files as inputs and whose branch de-
cisions are made only through a small part out of
that file. In comparison with Methods 1 and 5 our
method randomizes the rest of the input content and
concentrates more on modifying the parts of an in-
put that seems to affect the branching conditions and
program’s execution flow, instead of learning a model
for the entire set of training input files. Combined
with a small fuzzing percent at inference, our method
obtains a greater variety which seems to improve the
results. Compared to Methods 1 and 5, the average
improvements were between 13−20%.

However, on applications with inputs based more
on text files (libxml), where the branching conditions
can be affected by the text context, our method is still
better than genetic fuzz testing, but worse than Meth-
ods 1 and 5. This was again expected since there are
too many points of branch conditions in ratio with the
input’s length, thus using a single RNN model for the
entire set of data is faster for inference. Note that for
evaluating the libxml library we also used a RNN to
learn the variables’ data patterns and generate simi-
lar content. In this case, our model stores variables
with sub-models learned from almost the entire input
streams in the set of training examples.

Figures 7 and 8 show that our method is even more
useful when users want to get quick feedback for eval-
uating a bunch of new source code changes. Note that
after 10 minutes of testing, our methods tend to be
50% better than other methods fuzz methods. This
can be a valuable optimization of resources used for
testing software in industry.

Fuzz Testing with Dynamic Taint Analysis based Tools for Faster Code Coverage

91

Figure 7: Shows the number of different basic blocks ex-
ecuted by each fuzzing method for zlib library. The hori-
zontal axis shows the results for different moments of time
(minutes).

Figure 8: Shows the number of different basic blocks exe-
cuted by each fuzzing method for libpng. The horizontal
axis shows the results for different moments of time (min-
utes).

6 CONCLUSION AND FUTURE
WORK

This paper presented a novel method based on dy-
namic taint analysis and a tracer tool to obtain a gen-
erative model starting from a set of training exam-
ples, which can be used to generate a new set of input
tests for different evaluated programs. As the results
show, the method is more efficient than existing ones
for generating inputs for applications where the in-
put stream is binary and the control flow of the pro-
gram is affected only by a small part of it. However,
our future plan include improvements for evaluation
methods such as: getting more libraries for evalua-
tion (similar to the corpus in AFL (AFL, 2018)), in-

Table 1: The number of branch instructions touched in com-
parison between the five methods and the three applications
under test. Each method was let to produce inputs for 24h,
then tracer was executed on each application and generated
test folder to obtain the results below.

Method used zlib libjpg libxml
Method 1 218 783 1286
Method 2 199 698 1129
Method 3 215 789 1150
Method 4 238 875 1227
Method 5 235 781 1240

clude other important metrics (detection of crashes
and their type, overflows, hangs), use LAVA bench-
mark for automatic evaluation (Dolan-Gavitt et al.,
2016). In terms of methods used, our future plans are
to invest more in using machine learning to learn the
relationship between the binary content of a file and
the branch decisions inside a program, and, as previ-
ously mentioned in the paper, to adapt our method to
asynchronous programs that use the input stream in a
non-deterministic way.

ACKNOWLEDGMENTS

This work was supported by a grant of Roma-
nian Ministry of Research and Innovation CCCDI-
UEFISCDI. project no. 17PCCDI/2018 We would
like to thank our colleagues Teodor Stoenescu and
Alexandra Sandulescu from Bitdefender, and to Alin
Stefanescu from University of Bucharest for fruitful
discussions and collaboration.

REFERENCES

AFL (2018). American fuzzing lop (afl). In
http://lcamtuf.coredump.cx/afl/.

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Traon, Y. L., Octeau, D., and McDaniel,
P. D. (2014). Flowdroid: precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for
android apps. In PLDI.

Avancini, A. and Ceccato, M. (2010). Towards security test-
ing with taint analysis and genetic algorithms. In Pro-
ceedings of the 2010 ICSE Workshop on Software En-
gineering for Secure Systems, SESS ’10, pages 65–71,
New York, NY, USA. ACM.

Bastani, O., Sharma, R., Aiken, A., and Liang, P. (2017).
Synthesizing program input grammars. SIGPLAN
Not., 52(6):95–110.

Bekrar, S., Groz, R., Mounier, L., and Bekrar, C. (2011).
Finding software vulnerabilities by smart fuzzing. In

ICSOFT 2019 - 14th International Conference on Software Technologies

92

2011 Fourth IEEE International Conference on Soft-
ware Testing, Verification and Validation(ICST), vol-
ume 00, pages 427–430.

Chen, P. and Chen, H. (2018). Angora: Efficient fuzzing by
principled search. CoRR, abs/1803.01307.

Coppit, D. and Lian, J. (2005). Yagg: An easy-to-use gen-
erator for structured test inputs. In Proceedings of
the 20th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE ’05, pages 356–
359, New York, NY, USA. ACM.

Cui, W., Peinado, M., Chen, K., Wang, H. J., and Irun-Briz,
L. (2008). Tupni: Automatic reverse engineering of
input formats. In Proceedings of the 15th ACM Con-
ference on Computer and Communications Security,
CCS ’08, pages 391–402, New York, NY, USA. ACM.

DevonGovet, h. Regular expression generator.
Dolan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mam-

bretti, A., Robertson, W. K., Ulrich, F., and Whelan,
R. (2016). LAVA: large-scale automated vulnerability
addition. In IEEE Symposium on Security and Pri-
vacy, pages 110–121. IEEE Computer Society.

Godefroid, P. (2007). Random testing for security: black-
box vs. whitebox fuzzing. In RT ’07.

Godefroid, P., Kiezun, A., and Levin, M. Y. (2008a).
Grammar-based whitebox fuzzing. In Proceedings
of the 29th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI
’08, pages 206–215, New York, NY, USA. ACM.

Godefroid, P., Kiezun, A., and Levin, M. Y. (2008b).
Grammar-based whitebox fuzzing. SIGPLAN Not.,
43(6):206–215.

Godefroid, P., Levin, M. Y., and Molnar, D. (2012).
Sage: Whitebox fuzzing for security testing. Queue,
10(1):20:20–20:27.

Godefroid, P., Peleg, H., and Singh, R. (2017). Learn&fuzz:
machine learning for input fuzzing. In Rosu, G.,
Penta, M. D., and Nguyen, T. N., editors, Proceedings
of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, Urbana,
IL, USA, October 30 - November 03, 2017, pages 50–
59. IEEE Computer Society.

Hanford, K. V. (1970). Automatic generation of test cases.
IBM Syst. J., 9(4):242–257.

Höschele, M. and Zeller, A. (2016). Mining input gram-
mars from dynamic taints. In Proceedings of the
31st IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2016, pages 720–
725, New York, NY, USA. ACM.

Lämmel, R. and Schulte, W. (2006). Controllable combi-
natorial coverage in grammar-based testing. In Uyar,
M. Ü., Duale, A. Y., and Fecko, M. A., editors, Test-
ing of Communicating Systems, pages 19–38, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Majumdar, R. and Xu, R.-G. (2007). Directed test genera-
tion using symbolic grammars. In Proceedings of the
Twenty-second IEEE/ACM International Conference
on Automated Software Engineering, ASE ’07, pages
134–143, New York, NY, USA. ACM.

Mathis, B. (2017). Dynamic tainting for automatic test
case generation. In Proceedings of the 26th ACM

SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA 2017, pages 436–439, New
York, NY, USA. ACM.

Newsome, J. (2005). Dynamic taint analysis for automatic
detection, analysis, and signature generation of ex-
ploits on commodity software.

Paduraru, C., Melemciuc, M., and Stefanescu, A. (2017).
A distributed implementation using apache spark of
a genetic algorithm applied to test data generation.
In Bosman, P. A. N., editor, Genetic and Evolution-
ary Computation Conference, Berlin, Germany, July
15-19, 2017, Companion Material Proceedings, pages
1857–1863. ACM.

Purdom, P. (1972). A sentence generator for testing parsers.
BIT Numerical Mathematics, 12(3):366–375.

Rajpal, M., Blum, W., and Singh, R. (2017). Not all
bytes are equal: Neural byte sieve for fuzzing. CoRR,
abs/1711.04596.

Sirer, E. G. and Bershad, B. N. (1999). Using produc-
tion grammars in software testing. SIGPLAN Not.,
35(1):1–13.

Stoenescu, T., Stefanescu, A., Predut, S.-N., and Ipate, F.
(2016). River: A binary analysis framework using
symbolic execution and reversible x86 instructions.

Sutton, M., Greene, A., and Amini, P. (2007). Fuzzing:
Brute Force Vulnerability Discovery. Addison-Wesley
Professional.

Utting, M., Pretschner, A., and Legeard, B. (2012). A
taxonomy of model-based testing approaches. Softw.
Test. Verif. Reliab., 22(5):297–312.

Yadegari, B. and Debray, S. (2014). Bit-level taint analy-
sis. In Proceedings of the 2014 IEEE 14th Interna-
tional Working Conference on Source Code Analysis
and Manipulation, SCAM ’14, pages 255–264, Wash-
ington, DC, USA. IEEE Computer Society.

Fuzz Testing with Dynamic Taint Analysis based Tools for Faster Code Coverage

93

