
Differential Privacy meets Verifiable Computation: Achieving Strong
Privacy and Integrity Guarantees

Georgia Tsaloli and Aikaterini Mitrokotsa
Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

Keywords: Verifiable Computation, Differential Privacy, Privacy-preservation.

Abstract: Often service providers need to outsource computations on sensitive datasets and subsequently publish statis-
tical results over a population of users. In this setting, service providers want guarantees about the correctness
of the computations, while individuals want guarantees that their sensitive information will remain private. En-
cryption mechanisms are not sufficient to avoid any leakage of information, since querying a database about
individuals or requesting summary statistics can lead to leakage of information. Differential privacy addresses
the paradox of learning nothing about an individual, while learning useful information about a population.
Verifiable computation addresses the challenge of proving the correctness of computations. Although verifi-
able computation and differential privacy are important tools in this context, their interconnection has received
limited attention. In this paper, we address the following question: How can we design a protocol that provides
both differential privacy and verifiable computation guarantees for outsourced computations? We formally
define the notion of verifiable differentially private computation (VDPC) and what are the minimal require-
ments needed to achieve VDPC. Furthermore, we propose a protocol that provides verifiable differentially
private computation guarantees and discuss its security and privacy properties.

1 INTRODUCTION

Recent progress in ubiquitous computing has allowed
data to be collected by multiple heterogeneous de-
vices, stored and processed by remote, untrusted
servers (cloud) and, subsequently, used by third par-
ties. Although this cloud-assisted environment is very
attractive and has important advantages, it is accom-
panied by serious security and privacy concerns for all
parties involved. Individuals whose data are stored in
cloud servers want privacy guarantees on their data.
Cloud servers are untrusted and thus, often need to
perform computations on encoded data, while service
providers want integrity guarantees about the correct-
ness of the outsourced computations.

Encryption techniques can guarantee the confi-
dentiality of information. Nevertheless, querying a
database about individuals or requesting summary
statistics can lead to leakage of information. In
fact, by receiving the response to different statistical
queries, someone may draw conclusions about indi-
vidual users and could be exploited to perform differ-
encing and reconstruction attacks (Dwork and Roth,
2014) against a database. Differential privacy (Dwork
et al., 2006) addresses the paradox of learning nothing

about an individual, while learning useful information
about a population. Verifiable delegation of computa-
tion (Gennaro et al., 2010) provides reliable methods
to verify the correctness of outsourced computations.
Although differential privacy and verifiable compu-
tation have received significant attention separately,
their interconnection remains largely unexplored.

In this paper, we investigate the problem of
verifiable differentially private computation (VDPC),
where we want not only integrity guarantees on the
outsourced results but also differential privacy guar-
antees about them. This problem mainly involves the
following parties: (i) a curator who has access to a
private database, (ii) an analyst who wants to perform
some computations on the private dataset and then
publish the computed results, and (iii) one or more
readers (verifiers) who would like to verify the cor-
rectness of the performed computations as well as that
the computed results are differentially private.

(Narayan et al., 2015) introduced the concept
of verifiable differential privacy and proposed a sys-
tem (VerDP) that can be employed to provide ver-
ifiable differential privacy guarantees by employing
VFuzz (Narayan et al., 2015), a query language for
computations and Pantry (Braun et al., 2013), a sys-

Tsaloli, G. and Mitrokotsa, A.
Differential Privacy meets Verifiable Computation: Achieving Strong Privacy and Integrity Guarantees.
DOI: 10.5220/0007919404250430
In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 425-430
ISBN: 978-989-758-378-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

425



tem for proof-based verifiable computation. Although
VerDP satisfies important privacy and integrity guar-
antees, it is vulnerable to malicious analysts, who may
intentionally leak private information.

In this paper, we formalize the notion of verifiable
differentially private computation and provide its for-
mal definition as well as the requirements that need
to be satisfied in order to achieve it. Furthermore, we
propose a detailed protocol that can be employed to
provide verifiable differential privacy guarantees and
we discuss the security and privacy properties it sat-
isfies and why it resolves the identified weaknesses in
VerDP (Narayan et al., 2015).

Paper Organization: The paper is organized as fol-
lows. In Section 2, we describe the related work. In
Section 3, we provide an overview of the general prin-
ciples of the main building blocks – verifiable com-
putation and differential privacy – where verifiable
differentially private computation (VDPC) is based
on. In Section 4, we describe the minimal require-
ments needed to achieve verifiable differentially pri-
vate computations, provide the formal definition of
VDPC and describe our proposed public VDPC pro-
tocol. In Section 5, we discuss the security and pri-
vacy properties that our protocol satisfies and how it
resolves open issues in the state-of-the-art. Finally,
Section 6 concludes the paper.

2 RELATED WORK

Verifiable computation (VC) is inherently connected
to the problem of verifiable differential privacy.
VC schemes based on fully homomorphic encryp-
tion (Gennaro et al., 2010; Chung et al., 2010) nat-
urally offer input-output privacy because the inputs
and correspondingly the outputs are encrypted. How-
ever, they do not provide public verifiability in case
multiple readers want to verify the correctness of out-
sourced computations. VC schemes based on homo-
morphic authenticators have some restrictions with
respect to the supported function class, nevertheless,
some offer input privacy. For instance, (Fiore et al.,
2014) have proposed a VC scheme for multivariate
polynomials of degree 2, that offers input privacy,
yet provides no public verifiability. (Parno et al.,
2012) showed how to construct a VC scheme with
public verifiability from any attribute-based encryp-
tion (ABE) scheme. If the underlying ABE scheme
is attribute-hiding, the function’s input is encoded in
the attribute and, thus, the VC scheme is input pri-
vate. However, existing VC schemes largely ignore
the problem of VDPC.

(Narayan et al., 2015) proposed the VerDP system
that provides important privacy and integrity guaran-
tees based mainly on the Pantry (Braun et al., 2013)
VC scheme and the VFuzz (Narayan et al., 2015)
language that can be employed to guarantee the use
of differentially private functions. However, in the
VerDP system, the analyst has access to the dataset
and thus, jeopardizes the privacy of the data. We ad-
dress this challenge by making sure that analysts may
access only encoded data. Equally important is the
random noise used to guarantee differentially private
computations. We make sure that this noise is gen-
erated based on a randomness u on which the reader
and the curator mutually agree and therefore, no one
can control the random noise term on his own.

3 PRELIMINARIES

In this section, we briefly overview the general prin-
ciples and recall the definitions of the main building
blocks – verifiable computation and differential pri-
vacy – where verifiable differentially private compu-
tation is based on.

3.1 Verifiable Computation

A verifiable computation (VC) scheme can be em-
ployed when a client wants to outsource the computa-
tion of a function f to an external untrusted server.
The client should be able to verify the correctness
of the returned result (by the server), with less com-
putation cost than performing the computation itself.
Below we provide the definition of a verifiable com-
putation scheme (VC) as introduced by (Parno et al.,
2012) and (Fiore and Gennaro, 2012).

Definition 1 (Verifiable Computation (Parno et al.,
2012; Fiore and Gennaro, 2012)). A verifiable com-
putation scheme VC is a 4-tuple of PPT algorithms
(KeyGen, ProbGen, Compute, Verify) which are de-
fined as follows:

• KeyGen( f ,1λ) → (PKf ,EKf): This randomized
key generation algorithm takes the security pa-
rameter λ and the function f as inputs and out-
puts a public key PKf to be used for encoding the
function input and a public evaluation key EKf to
be used for evaluating the function f .

• ProbGenPKf
(m)→ (σm,VKm): This randomized

problem generation algorithm takes as input the
key PKf and the function input m and outputs σm,
which is the encoded version of the function input,
and VKm, which is the verification key used in the
verification algorithm.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

426



• ComputeEKf
(σm)→ σy: Given the key EKf and

the encoded input σm, this deterministic algo-
rithm encodes the function value y = f (m) and
returns the result, σy.

• VerifyVKm(σy)→ y∪⊥: The deterministic veri-
fication algorithm takes as inputs the verification
key VKm and σy and returns either the function
value y = f (m), if σy represents a valid evalua-
tion of the function f on m, or ⊥, if otherwise.

We note here that a publicly verifiable computation
scheme is a VC scheme, where the verification key
VKm is public, allowing in this way the public veri-
fication of the outsourced computation.

3.2 Differential Privacy

Differential privacy is a framework which can be em-
ployed in order to achieve strong privacy guarantees.
Intuitively, via a differentially private mechanism, it is
impossible to distinguish two neighboring databases
(i.e., databases that differ in a single record) storing
private data when the same query is performed in
both, regardless of the adversary’s prior information.
For instance, differential privacy implies that it is im-
possible, given the result of the queries, to determine
if an individual’s record is included in the databases
or not. (Dwork et al., 2006) formally introduced dif-
ferential privacy as follows:

Definition 2 (ε-Differential Privacy (Dwork et al.,
2006)). A randomized mechanism M : D → R with
domain D and range R satisfies ε-differential privacy
if for any two adjacent inputs d,d′ ∈ D and for any
subset of outputs S⊆ R it holds that:

Pr[M (d) ∈ S]≤ eεPr[M (d′) ∈ S]

In this notation, ε denotes the privacy parameter
which is defined in positive real numbers. A privacy
promise can be considered strong when its ε is close
to zero.

Let us consider a deterministic real-valued func-
tion f : D→ R. A common method used to approxi-
mate the function f with a differentially private mech-
anism is by employing additive noise incorporated in
f ’s sensitivity S f . The sensitivity S f of a function f
is defined as the maximum possible distance between
the replies to queries (i.e., | f (d)− f (d′)|) addressed to
any of the two neighboring databases (d and d′). By
intuition, larger sensitivity demands a stronger coun-
termeasure. A commonly employed differentially pri-
vate mechanism, the Laplace noise mechanism, is de-
fined as follows:

M (d), f (d)+Laplace(λ)

We should note here that except of providing strong
privacy guarantees, it is rather important to consider
the utility of the data when employing a differentially
private mechanism. Indeed, each query may lead to
leakage of information about the data stored in the
queried database. By increasing the noise, we can
provide high privacy guarantees but this could also
lead to low utility of the used information. Thus,
achieving a good trade-off between utility and privacy
is what needs to be achieved by an efficient differen-
tially private mechanism.

4 VERIFIABLE
DIFFERENTIALLY PRIVATE
COMPUTATION

We consider the problem of verifiable differentially
private computations where a curator (e.g., National
Institute of Health (NIH)) has access to a private
database m (e.g., medical information). An analyst
(e.g., a researcher) wants to perform some computa-
tions on the private dataset and publish the results.
One or more readers would like to verify not only the
correctness of the computations but also that the com-
putations were performed with a differentially private
algorithm. To guarantee differential privacy, the ana-
lyst has to execute a differentially private query f on
a dataset m, resulting in an output y, without having
access to m. The reader then should be convinced that
y is the correct result.

In differential privacy (DP), we assume that the al-
gorithm is randomized which we can model by adding
a uniformly distributed input u to a deterministic func-
tion g( f ,ε,u,m). More precisely, the reader should be
able to verify that:

y = g( f ,ε,u,m) = f (m)+ τ( f ,ε,u)

where u ∼ U (i.e., U denotes the Uniform distribu-
tion) and ε determines the level of differential privacy
provided. In the right-hand side, we have decom-
posed the differentially private (DP) computation into
two parts: f (m), which produces the exact query re-
sponse, and τ, which transforms the uniform noise ap-
propriately in order to achieve the required differen-
tial privacy guarantees. For any given query denoted
by f , the noise described by τ is fixed (e.g., Laplace or
Gaussian noise). All in all, the reader needs to verify
that all the following requirements hold:

1. g is an ε-DP computation for the query f . The
way this is done is outside the scope of this pa-
per and could be achieved using the VFuzz lan-
guage (Narayan et al., 2015).

Differential Privacy meets Verifiable Computation: Achieving Strong Privacy and Integrity Guarantees

427



2. u is from a high-quality pseudo-random source.

3. y is correctly computed from g, which is evaluated
on the dataset m with the randomness u.

We first propose the definition of a publicly verifiable
differentially private computation scheme VDPCPub

which is based on Parno et al.’s (Parno et al., 2012)
publicly verifiable computation VC definition. Sub-
sequently, we describe a concrete protocol that can
be employed in order to provide public verifiability
(i.e., all readers are able to verify the correctness of
the computations) as well as the privacy and the in-
tegrity guarantees required in this setting.

Definition 3. (Publicly Verifiable Differentially Private
Computation) A publicly verifiable differentially pri-
vate computation scheme VDPCPub is a 5-tuple of
PPT algorithms (Gen DP, KeyGen, ProbGen, Com-
pute, Verify) which are defined as follows:

• Gen DP( f ,ε,u)→ g( f ,ε,u, ·): Given the function
f , the randomness u and the value ε, this algo-
rithm computes g( f ,ε,u, ·) = f (·)+τ( f ,ε,u) with
τ denoting the used noise.

• KeyGen(g,1λ)→ (PKg,EKg): Given the security
parameter λ and the function g, the algorithm out-
puts a public key PKg to be used for encoding the
function input and a public evaluation key EKg to
be used for evaluating the function g.

• ProbGenPKg(u‖m)→ (σu‖m,VKu‖m): This algo-
rithm takes as input the public key PKg and the
function input m as well as the randomness u and
outputs σu‖m, which is the encoded version of the
function input, and VKu‖m, which is used for the
verification.

• ComputeEKg(σu‖m)→ σy: Given the evaluation
key EKg and the encoded input σu‖m, this algo-
rithm encodes the function value y = g( f ,ε,u,m)
and returns the result, σy.

• VerifyVKu‖m(σy)→ y∪⊥: Given the verification
key VKu‖m and the encoded result σy, this al-
gorithm returns either the function value y =
g( f ,ε,u,m), if σy represents a valid evaluation of
the function g on m, or ⊥, if otherwise.

We assume that the reader has verified that g is an
ε-DP computation for the query f when u is uni-
formly distributed, using for instance the VFuzz lan-
guage (Narayan et al., 2015). We suggest the em-
ployment of a zero-knowledge protocol to prove that
indeed u comes from a high quality pseudo-random
source and a VDPCPub scheme to prove that y is the
correct computation of g in the underlying data m.
We should note here that, in our definition, we focus
on publicly verifiable computation. We can adjust it

though in cases where a single verifier (reader) is re-
quired and thus, a verifiable computation scheme with
secret verification could be incorporated accordingly.

4.1 A Publicly Verifiable Differentially
Private Protocol

We consider three main parties in our protocol: (i) the
curator, (ii) the analyst, and (iii) one or more readers
(verifiers). The reader should obtain the desired result
y, a proof about its correctness as well as differential
privacy guarantees about the performed computation.

The curator has access to some data generated by
multiple data subjects (e.g., patients). As soon as the
curator collects the data, he chooses the randomness
u that will be used to generate the stochasticity in
the ε-DP function g. The randomness u is not re-
vealed to any other party but it is committed so that
the curator cannot change it. On the other hand, the
curator should convince the reader that the random-
ness he selected is indistinguishable from a value se-
lected from a uniform distribution and then use this
value u to compute the ε-DP function g( f ,ε,u,m).
The analyst, even though he does not have any ac-
cess to the dataset m but some encoded information
σu‖m about the dataset and the randomness u respec-
tively, he is still able to generate the encoded value σy
of y = g( f ,ε,u,m). We should note that the computa-
tion of the encoded value σy is of high complexity and
thus, the analyst is the one who will perform this op-
eration instead of the curator. Eventually, the reader,
having the ε-DP function value y and the public veri-
fication key VKu‖m, is able to verify that what he has
received from the analyst is correct.

The workflow of our protocol (depicted in Fig. 1)
is separated into two phases. The first phase focuses
on the differential privacy requirements, while the
second phase is related to the verifiable computation
of the function g.

We need to stress here that in the first phase, the
main issue we want to address is to make sure that
the random noise used to compute the differentially
private function g from the query function f is gener-
ated with a good source of randomness u. This corre-
sponds to the second requirement that needs to be sat-
isfied in order to achieve verifiable differentially pri-
vate computations as listed in Section 4. To meet the
above requirement, we incorporate in our protocol, a
zero-knowledge protocol that allows us to guarantee
that the random noise is generated based on a random-
ness u (on which the reader and the curator mutually
agree). We describe the two phases in detail:

• PHASE 1: We are interested in computing an ε-
DP function g that depends on the query f . In

SECRYPT 2019 - 16th International Conference on Security and Cryptography

428



EKg,
σu‖m σy

where

Reader

Curator

Choose x ∈ X

p1, p2

x

Data
subjects

m1,m2, . . . ,mk
VKu‖m

generate PKg,EKg

u = PRF(k, x)

p1 = com(k; r1)

p2 = com(u; r2)

y = g(f, ε, u,m1,m2, . . . ,mk)

ProbGenPKg(u‖m) → (σu‖m,VKu‖m)

VerifyVKu‖m(σy) → y ∪ ⊥

ComputeEKg(σu‖m) → σy

Analyst

where u‖m = (u,m1,m2, . . . ,mk)

Figure 1: The workflow of achieving public verifiable differential privacy.

our model, we do not want to place all the trust in
the curator. Thus, the curator should agree with
the reader on the randomness u that will be used
in computing the (Laplace) noise transformation.
However, only the curator should know the value
of u. To achieve this, a protocol is run between
the reader and the curator. More precisely, (i) the
reader chooses an input x ∈ X , where X is the in-
put space and sends it to the curator, and (ii) the
latter picks a secret key k ∈ K of a pseudoran-
dom function PRF, where K is the key space of
a PRF, computes the randomness u = PRF(k,x)
and the commitments p1 = com(k;r1) and p2 =
com(u;r2), where r1,r2 denote randomness. After
sending p1, p2 to the reader, the curator runs an in-
teractive zero-knowledge protocol to convince the
reader that the statement (x, p1, p2) is true. The
statement (x, p1, p2) is true, when the following
holds: ∃ k,r1,u,r2 such that:

p1 = com(k;r1)∧ p2 = com(u; p2)∧u = PRF(k,x).

In this way, the reader and the curator agree on the
randomness u while its value is available only to
the curator.

• PHASE 2: Now, let us see how we may employ
the publicly verifiable differentially private com-
putation scheme VDPCPub in our system.

(a) The curator collects the data from the data
subjects (e.g., patients) into a dataset m =
{m1, ...,mk}.

(b) The curator runs KeyGen(g,1λ)→ (PKg,EKg)
to get a short public key PKg that will be used
for input delegation and the public evaluation
key EKg which will be used from the analyst to
evaluate the function g. The curator sends EKg

to the analyst.
(c) ProbGenPKg(u‖m)→ (σu‖m,VKu‖m) is run by

the curator to get a public encoded value of u
and m, called σu‖m, and a public value VKu‖m
which will be used for the verification. The cu-
rator sends σu‖m to the analyst and publishes
VKu‖m. We note that the curator can directly
send σu‖m to the analyst after computing it (i.e.,
no need to store the value). Note also that, nei-
ther the analyst nor the reader can retrieve any
information about the dataset m from σu‖m .

(d) The analyst runs the ComputeEKg(σu‖m)→ σy
algorithm using the evaluation key EKg and
σu‖m in order to obtain the encoded version of
the function g( f ,ε,u,m1, ...,mk) = y. After per-
forming the evaluation he publishes σy.

(e) Now, the reader uses VKu‖m and σy to run the
algorithm VerifyVKu‖m(σy)→ y∪⊥ which indi-
cates whether σy represents the valid ε-DP out-
put of f or not.

Differential Privacy meets Verifiable Computation: Achieving Strong Privacy and Integrity Guarantees

429



5 DISCUSSION

By employing our proposed protocol, the readers
(verifiers) can get strong guarantees about the in-
tegrity and correctness of the computed result. To
provide strong privacy guarantees, we need to make
sure that the random noise used to compute the dif-
ferentially private function g is generated with a good
source of randomness. To address this, we incorpo-
rate in the VDPCPub protocol, a zero-knowledge pro-
tocol. The latter allows us to guarantee that the ran-
dom noise is generated based on a randomness u on
which the reader and the curator mutually agree and
thus, no one can control the random noise term on
his own. Of course the DP level achieved via our
solution depends on the differentially private mech-
anism employed and can be tuned based on the se-
lected ε parameter in order to achieve a good balance
of utility and privacy. Curious readers that want to
recover private data are not able to get any additional
information than the result of the computation. More-
over, our protocol is secure against malicious ana-
lysts, since analysts have access to encoded informa-
tion about the dataset m but do not obtain neither the
dataset itself nor the randomness u. Our security re-
quirement is that the computations performed by the
analysts should be correct and they should not be able
to get any additional information besides what is re-
quired to perform the computation. This is achieved
assuming that the employed (publicly) VC scheme is
secure. Contrary to our approach, in the VerDP sys-
tem the analyst can access the dataset and thus, poses
a privacy risk. In our approach this is addressed by
allowing the analysts to access only an encoded form
of the data.

6 CONCLUSION

Often, when receiving an output, we want to confirm
that it is computed correctly and that it does not leak
any sensitive information. Thus, we require not only
confidentiality on the used data but also differential
privacy guarantees on the computed result, while at
the same time, we want to be able to verify its correct-
ness. In this paper, we formally define the notion of
verifiable differentially private computations (VDPC)
and we present a protocol (VDPCPub) that can be em-
ployed to compute the value of a differentially private
function g (i.e., denoting the ε-DP computation for a
function f ), as well as to check the correctness of the
computation.

VDPC is an important security notion that has re-
ceived limited attention in the literature. We believe

that verifiable differentially private computation can
have important impact in a broad range of applica-
tion scenarios in the cloud-assisted setting that require
strong privacy and integrity guarantees. However, a
rather challenging point for any verifiable differen-
tially private computation protocol is for the end user
to be able to verify that a VDPC scheme is used, and
how we can make sure that he understands the use
of the epsilon parameters. More precisely, we are
interested in further investigating how a link can be
made between the formal verification process and a
human verification of the whole process, especially at
the user level.

ACKNOWLEDGEMENTS

This work was partially supported by the Wallen-
berg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg
Foundation.

REFERENCES
Braun, B., Feldman, A. J., Ren, Z., Setty, S., Blumberg,

A. J., and Walfish, M. (2013). Verifying computations
with state. In Proceedings of SOSP, pages 341–357.

Chung, K.-M., Kalai, Y. T., and Vadhan, S. P. (2010). Im-
proved delegation of computation using fully homo-
morphic encryption. In CRYPTO, volume 6223, pages
483–501.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. D.
(2006). Calibrating noise to sensitivity in private data
analysis. In Proceedings of TCC, pages 265–284.

Dwork, C. and Roth, A. (2014). The algorithmic founda-
tions of differential privacy. Foundations and Trends
in Theoretical Computer Science, 9(3-4):211–407.

Fiore, D. and Gennaro, R. (2012). Publicly verifiable dele-
gation of large polynomials and matrix computations,
with applications. In Proceedings of CCS, pages 501–
512.

Fiore, D., Gennaro, R., and Pastro, V. (2014). Efficiently
verifiable computation on encrypted data. In Proceed-
ings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 844–855.

Gennaro, R., Gentry, C., and Parno, B. (2010). Non-
interactive verifiable computing: Outsourcing com-
putation to untrusted workers. In Advances in
Cryptology–CRYPTO 2010, pages 465–482.

Narayan, A., Feldman, A., Papadimitriou, A., and Hae-
berlen, A. (2015). Verifiable differential privacy. In
Proceedings of the Tenth European Conference on
Computer Systems, page 28.

Parno, B., Raykova, M., and Vaikuntanathan, V. (2012).
How to delegate and verify in public: Verifiable com-
putation from attribute-based encryption. In Proceed-
ings of TCC, pages 422–439.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

430


