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Abstract: The measure of divergence and the corresponding Hellinger-Tsallis mutual information have been introduced 
within the information-theoretic approach to system identification based on Tsallis divergence and Hellinger 
distance properties for a pair of probability distributions to be used in statistical linearization problems. The 
introduced measure in this case is used ambivalently: as mutual information, a measure of random vector 
dependence, — as a criterion of statistical linearization of multidimensional stochastic systems, and as a 
measure of divergence of probability distributions — as an anisotropic norm of input process used to quantify 
the correspondence between the observable data and the assumptions of the original problem statement as 
such. 

1 PRELIMINARIES 

The measure of inequality between continuous 
multiple probability distributions, such as  and 

 of a -dimensional random vector , are well 
known as measures of divergence, including 
Kullback-Leibler divergence, 

 

(1)

is probably the most widely known and applied tool 
in various problems related to stochastic system 
analysis. In (1) and below, ⋅  is a mathematical 
expectation with respect to probability distribution .  

Meanwhile, there are broader approaches that 
enable the characterization of inequalities between 
two probability distributions, including Kullback-
Leibler divergence. In particular, this includes α order 
Tsallis (2009) divergence of continuous 
multidimensional probability distributions, e. g. 

 and , which is defined as follows: 

(2)

                                                                                                                                                                                          
a http://orcid.org/0000-0003-4637-6161 

As is known, if parameter α tends to 1 then value 
‖  in (2) tends to ‖  in (1), and, 

therefore, Kullback-Leibler divergence may be 
treated as Tsallis divergence of the order 1. 

The expedience of considering Tsallis divergence 
in construction of an anisotropic norm is due to the 
fact that Kullback-Leibler divergence (1) is a marginal 
case of Tsallis divergence of the order α with α tending 

to 1. Specifically, Tsallis divergence  21 ppDT
  

1,0    in (2) is a straightforward generalization 

of Kullback-Leibler divergence in replacing the 
logarithm with an appropriate exponential: 

 

At the same time, 

 

In turn, Figure 1 depicts the function ℓ  
behavior with certain α values compared with the 
conventional logarithmic function. 
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Figure 1: Plots of the logarithm and function ℓ  under certain values of parameter α. 

From the computational point of view, especially 
when calculations are based on sampled data, Tsallis 
divergence is more useful compared to Kullback-
Leibler divergence as the latter includes an “integral 
of logarithm”, which is generally recognized as more 
complex for computational purposes compared to 
Tsallis divergence, which includes no logarithm at all. 
Meanwhile, the choice of a specific α order value is 
important as the larger it is, the more complex the 
computational process. On the other hand, there is 
only one α value that renders Tsallis divergence 
symmetrical relative to the probability distribution 
densities being compared. This value is, obviously, 

1
2. Consequently, its analytic expression is as 

follows: 

 

(3)

 

On the other hand, it can be noted that 

⁄ ‖  is neither more nor less than double 
Hellinger (1907) distance between probability 
distributions defined as 

 
(4)

where dim . Based on expressions (3) and (4), 
Hellinger-Tsallis divergence is naturally defined as 
follows: 

 

(5)

Apart from the symmetry, ‖  is 
characterized by the fact that its values fall within the 
unit interval. This particular case of Tsallis 
divergence will form the basis for further 
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constructions within the framework of the approaches 
applied in this article. 

Measures of divergence may be treated as a 
quality criterion in the context of various theoretical 
and practical problems. 

In particular, Hellinger-Tsallis divergence that is 
defined by (5) results in an expression, which can be 
referred as Hellinger-Tsallis ,  mutual 
information for random vectors  and  of 
dimensions  and , respectively, where one 
probability distribution density in ‖ , i. e. 

, , is a joint probability 
distribution density of these random vectors, while 
the other probability distribution density,  

, is the product of marginal 
probability distribution densities of  and . 
Similarly, the corresponding Hellinger-Tsallis 

divergence  provides an 

information theoretic quality criterion that may be 
treated as a basis for creating an identification 
criterion, which in turn defines the information 
theoretic approach to system identification: 

(6)

Handling the system identification problems is 
always based on the use of various measures of 
dependence of random values as is the case with the 
input-output representation of the system in question 
or with the approach to state-space description. In the 
majority of cases, conventional linear 
correlation/covariance measures of dependence are 
used whose direct application results from the 
identification problem statement itself if the case is 
based on a conventional root mean square criterion. 
The main advantage of these measures of dependence 
is their usability: the feasibility of finding explicit 
analytic expressions to define the necessary system 
features and the relative simplicity of formulation of 
their respective estimates, including those based on 
the need to apply dependent observations. 
Nonetheless, the chief deficiency of the linear 
correlation-based measures of dependence is their 
possible vanishing even in the presence of 
deterministic dependence between random values 
(Rajbman, 1981, Rényi, 1959). 

More complex, nonlinear measures of 
dependence are engaged to eliminate this deficiency 
and to solve the stochastic system identification 
problems. Among these measures, consistent 
measures of dependence represent the main priority.  

In accordance with A. N. Kolmogorov's 
terminology, a measure of dependence for two 
random values is treated as consistent where it 
vanishes if and only if the above random values are 
stochastically independent. 

Statistical linearization of the system input-output 
representation is actually related to nonlinear 
identification problems whose solution is largely 
defined by the characteristics of the input and output 
processes dependence within the system in question. 
On the other hand, the existing statistical linearization 
approaches are based on the application of 
conventional linear correlation, which, for reasons 
stated above, may result in construction of models 
with an output variable that is identically zero. In 
particular, the likelihood of such result is shown using 
an example in Section 5 in this article, which suggests 
an approach focused on eliminating the identified 
deficiencies and on applying consistent measures of 
dependence within the framework of system 
identification using linear representations of their 
respective input/output models. The information 
theoretic approach involves statement of the statistical 
linearization problem for multidimensional discrete-
time systems. 

2 PROBLEM STATEMENT 

Let us assume that 

 

is the n-dimensional output random system process 
and 

 

is the m-dimensional input random system process 
within a multidimensional nonlinear dynamical 
stochastic system. Within the framework of the above 
process description, the processes  and  are 
treated as stationary processes or mutually stationary 
processes in a narrow sense. Then, the process  
is white Gaussian noise with a covariance matrix , 
while the dependence of input and output system 
processes is characterized (of which the researcher is, 
naturally, not aware) by probability distribution 
densities 

      

.
),(

)()(
1

)()(),(

1,

21

21

212121

21

21

21

21

1 2

2121

2121



















 

zz

zz
E

zzzzzz

ZZ

zz

zz

zzzz

zzzz

zz p

pp

ddppp

IpppD

p

R R

HTHT

 

 T)(,) ,()( 1 tvtvtV n

 T)(,) ,()( 1 sususU m

Tsallis Divergence of Order 1/2 in System Identification Related Problems

525



 

(7)

For the sake of simplicity, but without loss of 
generality, the vector-valued process components 

 and  are treated with a zero mean and unit 
variance, 

 

(8)

where ⋅  is variance. Under the above terms, 

(9)

A corresponding linear input/output system model 
characterized by probability distribution densities (7) 
is sought in the following form: 

(10)

where 

 

is the output process of the model,  
, ∈ 1,∞ , , 1, 2, … are 

matrix-valued (dimensions ) weight function 
coefficients of a linearized model to be identified as 
per the information theoretic criterion of statistical 
linearization. 

This criterion is a condition for coincidence of the 
Hellinger-Tsallis mutual information (6) for the ith 
component, , the system output process , 
and the jth component, ,the system input process 

, which are characterized by the probability 
distribution densities (7) and the Hellinger-Tsallis 
mutual information (6) the for ith component, 

, , the output process , ,, and the jth 
component, , the input process  of model 
(10) for all 1,… , , 1,… , . From the 
analytical point of view, this information-theoretic 
criterion is expressed as follows: 

 
 

(11)

As regards designations in criterion (11), it should 
be noted that in the case of stationary and mutually 
stationary, in the strict sense, random processes, e. g. 

 and ,  Hellinger-Tsallis mutual 
information is the corresponding function of time 

: 

 

where , ; , ,  are mutual 
and marginal probability distribution densities of 

 and , , respectively. 
By all means, from the viewpoint of a statistical 

linearization problem, condition (11) must be 
supplemented with a condition of coincidence of 
mathematical expectations regarding the system and 
model output processes, 

 (12)

It is evident that, within this problem description, 
condition (12) is met automatically. 

Moreover, in accordance with normalization 
condition (8), model (10) output process components 
are imposed upon the unit variance condition, 

 (13)

and, consequently, the sequences of matrix-valued 
weight function coefficients of model (10) must meet 
the following condition: 

 

(14)

where 

 

is the ith sequence of matrices , 1, 2, … in 
(10). 

Relationship (14) is evidently defined by the 
sequence as follows: 
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based on the description of model (10) and 
normalization conditions (8), (9). (13). 

Therefore, expressions (11) and (12) are 
information-theoretic criteria of statistical 
linearization of the system that is represented by 
probability distribution densities (7). 

3 SOLUTION TECHNIQUE 

As the first step, one can consider a sequence of 
random values 

 

being evidently Gaussian ones with the zero mean 
and variance, due to (10), expressed as follows: 

 

Then, within this set of notations, 1 -
dimensional vector 

 

is Gaussian with corresponding covariance matrix 

 

and the correlation for a bivariate Gaussian random 
vector ;  can be written as 
follows:  

 

where 2 1 -dimensional matrix Ψ  is 
expressed as follows: 

 

and, as stated above, , … ,  are the 
elements of the ith row of matrices  from (10). 

Hence, random vector ;  is 
Gaussian with corresponding covariance matrix 

 expressed as follows: 

 
(15)

Calculation of the right side of (15) results in 

 
(16)

where  is the jth component of the column vector 
. 

Therefore, formula (6), above reasoning, and 
formula (16) suggest that Hellinger-Tsallis mutual 
information (6) , , ;  on input and 
output model processes (10) (in other words, bivariate 
Gaussian random vector ;  
with covariance matrix defined by (11)) is expressed 
as 

 

which, in turn, based on condition (11), results in 
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(17)

Expression (17), in turn, directly results in 

(18)

Then, based on condition (11), the required 
expressions for rows  of the matrix-valued 
weight function coefficients , 1, 2, …  of 

model (10) appear as follows:  

 
(19)

where 

(20)

In formulas (19) and (20)  is a regression 

of  on ; sign 1 as 0, 
sign 1 as 0 is a corresponding regression 
function sign that represents “relative orientation” of 
input and output process components, while value 

, ;  in (19), (20) is always non-
negative. 

Moreover, the measure of dependence 
, ;  defined by expressions (6) and 

(18) meets all Rényi (1959) axioms for measures of 
random values dependence. Meanwhile, the 
calculations here are much simpler than in the case of 
the maximum correlation coefficient (Rényi (1959, 
Sarmanov, 1963a,b). 

The behavior of measure of dependence (18) as a 
function of , ;  is shown in Figure 2. 

 

Figure 2: Behavior of measure of dependence 
, ;  (18) as a function of 
, ; . 

Therefore, vanishing of the weight function 
coefficients of linearized model (10) within a 
nonlinear system characterized by probability 
distribution densities (7) is equivalent to vanishing of 
Hellinger-Tsallis mutual information (6) on input and 
output processes within the system in question. The 
latter, in turn, is possible if and only if these processes 
are stochastically independent. The direct 
consequence of the above is that vanishing of all 
weight function coefficients of linearized model (10) 
indicates that the original nonlinear system is 
unidentifiable. Meanwhile, as stated above, there are 
examples of traditional measures of dependence 
vanishing if there is stochastic dependence between 
the system variables. 

4 ZERO CORRELATION OF 
INPUT AND OUTPUT 
VARIABLES: EXAMPLE 

There are multiple examples where the use of 
conventional correlation methods within the 
framework of the models obtained fails to provide 
satisfactory results. Among such systems, it is 
possible to distinguish those where input and output 
processes dependence is characterized by probability 
distribution densities that belong to O. V. Sarmanov 
distribution class (Sarmanov, 1967, Kotz et al., 2000) 
and expressed as 

 (21a)

with marginal probability distribution densities  
and , 
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(21b)

where parameter λ meets the condition: 

 (21c)

Correlation coefficient and correlation ratio for 
probability distribution densities (21) are equal to 
zero. Let’s consider the following probability 
distribution density that belongs to O. V. Sarmanov 
distribution class: 

(22)

Its marginal probability distribution densities are 
Laplacian ones. 

Meanwhile, the maximum correlation coefficient 
for probability distribution density (22), hereinafter 
designated as , is expressed as follows:  

 

The value of parameter λ has a significant impact 
on the form of probability distribution density (22). 
Figure 3 depicts probability distribution density (22) 
for certain values of parameter λ. 

Let us assume that in (7), the joint probability 
distribution density is p_λ (v,u) of (22). Then, the 
Hellinger-Tsallis mutual information for the 
probability density function p_λ (v,u) may be a 
corresponding function of parameter λ to be 
designated as I^HT (λ). Consequently, measure of 
dependence (18) for probability distribution density 
p_λ (v,u)  (22) will be designated as ι^HT (λ), 
respectively. 

 

 
 

 

 
 

 
 

 
 

Figure 3: Shape of probability distribution density (22) for 
certain values of parameter λ. 

Figure 4 depicts the behavior of  as a 
function of parameter λ of probability distribution 
density (22) compared with the corresponding values 
of the maximum correlation coefficient . 

 clearly shows the dependence between 
random values, which basically matches (formally, 
even to a greater extent) the maximum correlation. 

For example, if stochastic dependence (7) between 
the components of the output process, , and the 
input process, , of a nonlinear stochastic system  
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Figure 4: Behavior of  (unbroken line) as a function of parameter λ of probability distribution density (22) compared 
with the corresponding values of the maximum correlation coefficient  (broken line). 

is defined by a probability distribution density (of 
which the researcher is, naturally, not aware) of type 
(21) with parameter , , then the 
use of conventional correlation methods within the 
framework of model (10) being constructed will 
result in a representation of the output model process 
as a null equation, which is excluded within the 
framework of the proposed information-theoretic 
approach. 

5 HELLINGER-TSALLIS 
MUTUAL INFORMATION 
ESTIMATION 

As far as the problem of obtaining estimates for 
weight function coefficients (19) of linearized model 
(10) by using the data from sample observation of the 
input and output process values in a system 
characterized by joint probability distribution 
densities (7) is concerned, a need arises for a 
corresponding estimation of the Hellinger-Tsallis 
mutual information (6); this type of problems allows 
for a direct application of the Sklar (1959) theorem 

regarding the representation of joint probability 
distribution densities through their copula functions. 
In particular, for joint probability distribution density 

,  of random values V and U with 
corresponding marginal probability distribution 
densities , , the following expansion is 
valid: 

 (23)

where 

 

are the functions of marginal probability distribution 
densities of random values V and U, and 

,  is the copula density function (for 
copulas, refer to book of Nelsen (2006) and other 
sources). 

In accordance with representation (23), Hellinger-
Tsallis mutual information (6) is expressed as 
follows: 
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(24)

Representation (24) enables the application of the 
mutual information estimation (according to Shannon 
type) (Zeng and Durrani, 2011). Meanwhile, an 
example of Hellinger-Tsallis mutual information 
shown in formula (24) within the context under 
consideration is even more simple since the copula 
density function based on representation (23) in the 
case of Shannon mutual information still includes the 
logarithm of the copula density function: 

 

Meanwhile, complications inherent in the division 
operations may be avoided through the use of methods 
for copula density function estimation instead of 
probability density function estimation. 

6 ANISOTROPIC NORM BASED 
ON THE HELLINGER-TSALLIS 
DIVERGENCE 

The approach in question is based on the assumption 
that the m-dimensional process of the input system 

 is 1) white noise, and 2) is Gaussian. These 
assumptions may be checked by using an anisotropic 
norm as a quantitative measure. Anisotropic norm for 
a random vector was shown in (Vladimirov et al., 
1995, 1999) based on the Kullback-Leibler 
divergence, which automatically results in its 
nonsymmetry.  

Namely, the definition of the anisotropic norm for 
random m-dimensional vector U with covariance 
matrix C and probability distribution density )(UpU

, which is based on Kullback-Leibler divergence, and 
is expressed as follows: 

,
)(

)(
ln)(min

0 


mR

U
Ua

dU
UG

Up
UpU


 

where )(UG  is the probability distribution density of 

an n-dimensional Gaussian random vector with a so-
called a scalar covariance matrix mI , where mI  is 

a unit mm -matrix: 
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The key feature and benefit of using Kullback-
Leibler divergence to define the anisotropic norm 

a
U  in that form is the possibility to solve explicitly 

the optimization problem that is behind definition of 
the anisotropic norm 

a
U , since such a solution is 

determined by equation 

,0
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ln)( 
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where optimum value  is expressed as 
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m

UE
  

Under this value of , the above definition of the 
anisotropic norm 

a
U  immediately takes on its 

closed form  
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where )(UCS  is Shannon entropy of m-dimensional 

random vector U with the covariance matrix C: 

  .)(ln)()( 
mR

UUC dUUpUpS U  

It should be noted that this simple solution is 
achieved solely through introducing logarithm of 
exponent in definition of the anisotropic norm 

a
U . 

Again, definition of Vladimirov et al. (1995, 
1999) is based on a comparison between this 
Gaussian probability distribution density of random 
vectors with a scalar covariance matrix. The latter 
may be treated as an excessive limitation. In turn, 
Chernyshov (2018) has proposed an approach to 
define anisotropic norms, which would be both 
symmetrical and vanishing for any Gaussian vector 
with a particular focus on Hellinger-Tsallis 
divergence as naturally assuming unit interval values 
by default. Therefore, such anisotropic norm of an m-
dimensional random vector  with a 
probability distribution density  with 

covariance matrix  is expressed as 
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(25)

where  is the probability distribution density for 
Gaussian m-dimensional vector with the same 
covariance matrix . It is evident that 

 ‖ ‖ 0 for the Gaussian property of . 
Then, in order to characterize Gaussian and white 

noise properties (mutual independence) typical of an 
(infinite) sequence of signals, the mean anisotropic 
norm (Vladimirov et al., 2006) is defined by a 
corresponding anisotropic norm for a single random 
vector. In other words, assume 

 (26)

with a sequence of m-dimensional random vectors, 
and 

 
(27)

Then the mean anisotropic norm for sequence (26) 
is defined by Vladimirov et al. (2006) as 

 
(28)

with ‖ ‖  being understood in terms of definition 
of Vladimirov et al. (1995, 1999). 

In turn, as per definition (25), the mean 
anisotropic norm for vector sequence (26) is naturally 
defined as 

 
(29)

where 

 
(30)

In turn,  in (30) designates the probability 
distribution density for ⋅ -dimensional random 
vector (27), and  is a ⋅ -dimensional 
Gaussian random vector with covariance matrix 

(31)

where, as above,  is covariance matrix , 
1, 2,… in (26). 

Therefore, we may arrive at the conclusion that if 
the input process , 1, 2, … meets the 

conditions of statistical linearization problem 
statement, the maximum possible value  of the mean 
anisotropic norm for the input process , 
1, 2,…, defined in (29)-(31), must be set. In other 
words, if 

 
(32)

then the input process  1, 2, … meets the 
conditions of the original problem statement, 
otherwise, the conditions are not met. Meanwhile, if 
a type (32) condition is introduced, it is essential that 
the anisotropic norm is defined by Hellinger-Tsallis 
divergence and its values fall within the unit interval. 

This approach is by all means purely theoretic as 
it suggests that the corresponding probability 
distribution density  

 

is known for any value of N, which is usually not the 

case, and the value of ‖ ‖  is to be found by sample 
observation of the input system  process. In 
practice, cases when such direct estimation is possible 
are rare due to an enormous volume of the sampled 
data to be handled given that N is relatively large. 

On the other hand, within the framework of 
definitions (29)-(31), condition (32) is essentially a 
test for both white noise (mutual independence) and 
Gaussian properties. Thus, condition (32) will be met 
if for any two input vectors in the system, e. g. for 

 and , in particular case (30), i. e. for type 
| 2| , the following condition is met: 

 
(33)

where 

 
(34)

Condition (33) is, naturally, more strict than (32); 
however, it is much easier to check. Therefore, 
Parzen-Rosenblatt kernel density estimates and 
respective methods based on approach (Mokkadem, 
1989) to estimate Shannon mutual information are 
used to build estimates of | |  in (33) via sample 
observation of 2 -dimensional random vector (34). 
Meanwhile, regarding Hellinger-Tsallis divergence 
the estimation procedure becomes considerably 
simpler than that of Shannon mutual information case 
namely due to the absence of the necessity to make the 
limit transfer concerned with presence of the integral 
of logarithm in Shannon mutual information, with 
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being absent the logarithm in Hellinger-Tsallis 
divergence. 

7 CONCLUSIONS 

This paper treats the problem of statistical 
linearization for nonlinear multidimensional 
dynamical stochastic systems described by input-
output representation with an input process of a 
Gaussian white noise type as a construction of 
equivalent linear input-output model as per the 
information-theoretic criterion based on Hellinger-
Tsallis mutual information (6). The latter resulted in 
equations enabling the determination of the linearized 
model weight matrix elements, which define them as 
a function of Hellinger-Tsallis mutual information, 
while vanishing of mutual information is equivalent to 
vanishing of the respective weight matrix elements. 
Meanwhile, this is equivalent to independence of the 
respective components of the input and output 
processes of the initial system under study, which, in 
turn, is indicative of the identifiability of such a 
system. 
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