The Saga Pattern in a Reactive Microservices Environment

Martin Stefanko', Ondiej Chaloupka' and Bruno Rossi2®?
lRed Hat, Brno, Czech Republic
2Masaryk University, Faculty of Informatics, Brno, Czech Republic

Keywords:

Abstract:

Saga Pattern, Compensating Transactions, Reactive, Microservices, Distributed Systems.

Transaction processing is a critical aspect of modern software systems. Such criticality increased over the years

with the emergence of microservices, calling for appropriate management of transactions across separated
application domains, ensuring the whole system can recover and operate in a possible degraded state. The
Saga pattern emerged as a way to define compensating actions in the context of long-lived transactions. In this
work, we discuss the relation between traditional transaction processing models and the Saga pattern targeting
specifically the distributed environment of reactive microservices applications. In this context, we provide a
comparison of the current state of transaction support in four Java-based enterprise application frameworks
for microservices support: Axon, Eventuate Event Sourcing (ES), Eventuate Tram, and MicroProfile Long

Running Actions (LRA).

1 INTRODUCTION

Transaction processing is widely recognized as a crit-
ical aspect of modern applications (Little et al., 2004).
Particularly in a distributed environment, understand-
ing and reaching transaction consistency based on
the currently available technology stack represents a
complex task. The microservices architectural pat-
tern separates the application domain into a set of iso-
lated services that collaborate together to model dif-
ferent business concepts (Sharma, 2017). Due to their
distributed character, microservice systems are sub-
ject to issues associated with failure processing. To
ensure that the system is able to function even in a
degraded state, these applications are commonly de-
signed with certain quality properties which are de-
fined as “reactive systems properties” in the Reactive
Manifesto: responsiveness, resilience, elasticity and
asynchronous message passing (Bonér et al., 2018).
These characteristics extend to the application of
transaction processing in a reactive environment. As
transactions usually include multiple services while
still providing ACID (Atomicity, Consistency, Iso-
lation, Durability) guarantees (Haerder and Reuter,
1983), all participants must reach a shared uniform
consensus on the transaction result. This consensus is
achieved through the utilization of consensus protocol
represented conventionally by the Two-phase Commit

(2 https://orcid.org/0000-0002-8659-1520

Stefanko, M., Chaloupka, O. and Rossi, B.
The Saga Pattern in a Reactive Microservices Environment.
DOI: 10.5220/0007918704830490

protocol (2PC). However, due to their locking nature,
these protocols may present difficulties to achieve the
reactive systems properties (Stonebraker and Cattell,
2011). The Saga pattern (Garcia-Molina and Salem,
1987) represents an alternative approach to transac-
tion processing applicable particularly to long living
transactions — transactions that can span through sev-
eral days. In a long running transaction, consensus
protocols like 2PC may hold locks on resources for
long periods — not acceptable in a reactive environ-
ment as it makes individual services less responsive.

The goal of this work is to detail the relation be-
tween traditional transaction processing models and
the saga pattern in the distributed environment of re-
active microservices. To understand the current sup-
port, we compare four Java-based application frame-
works for microservices support (Axon, Eventuate
Event Sourcing, Eventuate Tram, and MicroProfile
Long Running Actions), in terms of implementation
complexity, support for the saga pattern, and perfor-
mance by using a common scenario.

2 THE SAGA PATTERN

A saga, as described in the original publication
(Garcia-Molina and Salem, 1987), is a sequence of
operations that can be interleaved with other opera-
tions. Each operation, which is a part of the saga, rep-

483

In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 483-490

ISBN: 978-989-758-379-7

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



ICSOFT 2019 - 14th International Conference on Software Technologies

resents a unit of work that can be undone by the com-
pensation action. The saga guarantees that either all
operations complete successfully or the correspond-
ing compensation actions are run for all executed op-
erations to cancel the partial processing.

Operations. An operation represents a particular
work segment that is a part of the saga. Each saga can
be split into a sequence of operations in which each
one individually can be implemented as a transaction
with full ACID guarantees. When the operation com-
pletes, all results of the performed work are expected
to be persisted in the durable storage. This means that
the external observer may see the system in intermedi-
ate states of the saga execution, as well as that it may
also introduce the system into an inconsistent state be-
tween the individual operation invocations.

The ability to commit a partial operation breaks

the isolation (serializability) property as it makes the
segment changes available before the saga ends. In-
termediate saga states may also introduce consistency
contraventions. However, the saga utilizes the even-
tual consistency model which guarantees that the state
will become eventually consistent after the saga com-
pletes (both successfully or by compensations calls).
Compensations. Each operation in a saga needs to
have an associated compensation action. The purpose
of the compensating action is to semantically undo
the work performed by the original operation. This
is not necessarily the contradictory action that puts
the system into the same state as it was before the
operation began or generally the saga started.
BASE Transaction. In contrast to the traditional
transaction approach, the Saga pattern relaxes the
ACID requirements to achieve availability and scal-
ability with built-in failure management. As the saga
commits each operation separately, updates of the not
fully committed saga are immediately visible to other
parallel operations (Gray, 1981) which directly breaks
the isolation property.

Sagas utilize an alternative BASE model (Helland,
2007; Helland and Campbell, 2009) which values the
availability over the consistency provided by ACID —
the so-called CAP theorem (Gilbert and Lynch, 2012).
The specified system properties are:

* Basically Available — The system guarantees
availability with regards to the CAP theorem.

» Soft State — The state may change as time pro-
gresses even without any immediate modification
request due to the eventual consistency.

* Eventual Consistency — The state of the system
is allowed to be in inconsistent states, but if the
system does not receive any new update requests,
then it guarantees that the state will eventually get
into the consistent state (Vogels, 2009).

484

In practice, many modern applications are not al-

ways entirely restricted to all of the ACID transaction
guarantees, so the saga pattern with the BASE model
is emerging as a real alternative to traditional transac-
tional approach.
Distributed Sagas. The notion of sagas can be natu-
rally extended into distributed environments (Garcia-
Molina and Salem, 1987). The saga pattern as an
architectural pattern focuses on integrity, reliability,
quality and it pertains to the communication patterns
between services (Sharma, 2017; Nadareishvili et al.,
2016). This allows the saga definition in distributed
systems to be redefined as a sequence of requests
that are being placed on particular participants invo-
cations. These requests may provide ACID guaran-
tees, but this is not restricted and it must be ensured
by individual participants. Similarly, each participant
is also required to expose the idempotent compen-
sating request handler which can semantically undo
the request that is handled by this participant in the
saga. Analogously to the centralized system, the dis-
tributed saga management requires a transaction log
and a Saga Execution Component (SEC) which in
an optimal environment needs to be distributed and
durable.

As all components are now distributed, the saga
management system needs to deal with a number of
additional problems that are not present in the local-
ized environment with the main problem being net-
work and participant failures that may happen be-
tween remote invocations. However, generally ap-
proaches from the non-distributed environment still

apply.

3 SAGA IMPLEMENTATIONS
COMPARISON

In this section we compare four implementations of
the saga pattern that can be utilized in the enterprise
Java applications — Axon', Eventuate Event Sourcing
(ES)?, Eventuate Tram® and MicroProfile Long Run-
ning Actions (LRA)* with its current implementation
based on the Narayana project®. Table 1 summarizes
the main differences of the frameworks. As of the
time of this writing, these four frameworks are the
only Java projects which support saga implementa-
tions to some extent.

Thttps://axonig.io

Zhttps://eventuate.io
3https://eventuate.io/abouteventuatetram.html
“https://github.com/eclipse/microprofile-1ra
Shttps://github.com/jbosstm/narayana/tree/master/rts/Ira



The Saga Pattern in a Reactive Microservices Environment

Table 1: Saga implementations comparison.

Problem Axon Eventuate ES Eventuate LRA
Tram

CQRS restriction Yes Yes Optional No

Asynchronous by Yes Yes No No

default

Saga tracking and No No Yes No

definition

Single point of failure No Yes Yes Yes

Communication restrictions Yes Yes Yes No

Distributed by default No Yes Yes Yes

As a part of the investigation of the each discussed
framework, we created a sample application simu-
lating the saga processing in the production environ-
ment. The main goal of this quickstart projects is to
compare the base attributes of the investigated saga
solution provided by these frameworks. This includes
the comparison of the development model, microser-
vices feasibility, maintainability, scalability, perfor-
mance and the applicability of the reactive principles
within the saga execution. All samples are microser-
vices applications that represent a backend processing
for orders with a simple REST user interface.
Common Scenario. A user is able to create an or-
der by a REST call to the dedicated endpoint of the
order-service microservice. This endpoint expects
a product information in the JavaScript object no-
tation (JSON) format containing the product id, the
commentary, and the price. For simplicity reasons, an
order always consists only of a single product.

Generally, each microservice is a standalone Java
application that must run in a separated Java environ-
ment. By default, all examples are accessible on the
local address. Every microservice is also able to run
in the Docker platform and all quickstarts can be eas-
ily set up using the Docker Compose project. Details
can be found in repositories of individual projects.

Every order request (saga invocation) is asyn-
chronous - the REST call to the order endpoint imme-
diately returns a response. All of the following inter-
actions are documented by messages that are logged
by the individual microservices. The overall saga pro-
cess can be examined in the order-service or in the
case of LRA in the api-gateway modules.

The persisted saga data (orders, shipments, and
invoices) can be queried by the respective REST
endpoints in individual services. For the CQRS
based examples, this information is available at the
query-service microservice, otherwise each mi-
croservice is expected to be responsible for maintain-

Shipment service

2. shipment response

1. shipment request

Order service

3. invoice request

Shipment service

6. confirmation

4. invoice response

5. complete / compensate

Order service

5. complete / compensate

Invoice service

Figure 1: The saga model.

6. confirmation

ing its individual persistence solution which corre-
sponds to the microservices pattern definition.
Order Saga. The saga pattern applied in this appli-
cation performs the order requests (Fig. 1). The or-
der saga consists of three parts — the production of
shipping and invoice information and if both invoca-
tions are successful, the actual order creation. If any
part of the processing fails, the whole progress is ex-
pected to be undone. For instance, if the shipment is
successfully created but the invoice assembly is not
able to be confirmed, the persisted shipment infor-
mation, as well as the order, must be canceled (also
optionally notifying the user that the order cannot be
created). To initiate failures scenarios in examples
both shipment-service and invoice-service ex-
pect product information containing a specific prod-
uct identification: failShipment or faillnvoice
respectively.

485



ICSOFT 2019 - 14th International Conference on Software Technologies

3.1 Axon Service

Axon is a lightweight Java framework that helps de-
velopers build scalable and extensible applications by
addressing these concerns directly in the core archi-
tecture. It builds upon the Command Query Respon-
sibility Segregation (CQRS) pattern (Fowler, 2018).
The individual services contain separated aggregates
each processing its respective commands and produc-
ing events. Any inter-service interaction is restricted
to the use of the command and event buses.
Platform. Axon service is a Java Spring Boot mi-
croservices application. Individual projects repre-
sent standalone runnable applications (fat java archive
(jar)) which is the preferred distribution method for
the Spring Boot applications.

As a CQRS based quickstart, Axon service uses
two different and separated communication channels
to exchange information between services: the com-
mand bus and the event bus. By default, Axon frame-
work constraints both channels to a single JVM and
therefore one microservice. However, developers are
also able to specify several specific ways of the con-
figuration to distribute messages between different
services which is used in this Axon quickstart.

3.1.1 Problems

Maintenance of the Saga Structure. The main sub-
stantial problem of the saga processing in Axon is the
missing structure of the internal lifecycle of the saga.
The only operations provided by the platform are the
start and the stop of the saga. The actual invocation
of participants, collecting of responses and handling
of the compensations is up to the developer as the
only way of communication with the saga is through
events.

In this application, the OrderManagementSaga

contains two internal classes — OrderProcessing
and OrderCompensationProcessing which are re-
sponsible for tracking of the saga execution and com-
pensation respectively. This kind of the saga defini-
tion can be harder to maintain and more error prone
as sagas as expected to be generally more complex
processes.
AMQP Usage with Sagas. When the distributed
event bus is processing events from an AMQP queue
which the saga class is listening to, the framework
does not deliver events correctly to the attached han-
dlers. This issue has been reported to the Axon frame-
work and it will be fixed in the next release. The
workaround that was used in the quickstart was to ar-
tificially wait 1000 milliseconds before delivering the
event from the queue to the framework.

486

CQRS Restrictions. As CQRS is a pattern that man-
ages the domain formation of the application, Axon
can place hard requirements for the projects that do
not follow the CQRS domain separation. Sagas in
Axon are only a specialized type of the event listener.
The only way Axon produces events is through an in-
teraction with the aggregate instance - events are pro-
duced purely as a response to the received command.
Therefore, the use of Axon sagas in the non-CQRS
environment may be too restrictive to the user imple-
mentation.

3.2 Eventuate Service

Eventuate is a platform for developing asynchronous
microservices with the main focus placed on the dis-
tributed data management. The platform consists of
two products — Eventuate Event Sourcing (ES) and
Eventuate Tram. Similarly to Axon, Eventuate ser-
vice is also based on the event sourcing and the CQRS
pattern. The business execution is managed in the ag-
gregates which correspond to the respective microser-
vices projects. The communication is as a result re-
stricted to the command processing and the event ap-
plication. However, conversely to Axon, the com-
mand and event buses are not distributed. The re-
mote messaging is restricted to the REST protocol.
This quickstart represents the pure CQRS approach to
the saga processing. This means that the whole saga
implementation is created by the developer using the
platform only for the event and command distribution.
For this reason, the Eventuate service is more com-
plex than any other quickstart but for the example pur-
poses, it distinctively demonstrates how sophisticated
is the saga administration provided by all remaining
platforms.
Platform. Eventuate service is a microservices ap-
plication consisting of a set of Spring Boot business
services, one backing module and a number of sup-
port services provided by the Eventuate platform.
This quickstart is established as an Eventuate Lo-
cal version of the platform. This means that it uses
underlying SQL database for the event persistence
and the Kafka streaming platform for the event dis-
tribution. Eventuate Local provides five services used
by the quickstart that are managed by the platform,
namely, Apache Zookeeper, Apache Kafka, MySQL
database, the change data capture component (CDC)
and the Eventuate console service. The example em-
ploys these services as Docker images included in the
provided docker-compose configuration.



3.2.1 Problems

Complexity. As this project represents a plain CQRS
based example, it demonstrates the background pro-
cess required for the saga execution. Therefore, the
complexity of this quickstart may appear more criti-
cal than in other projects as the background saga ex-
ecution often contains many optimizations. The main
complexity problem is that the project contains a high
number of command and event classes. This is re-
quired as aggregate classes are only able to consume
commands and produce events. For this reason, the
communication between components often demands
additional steps.

Command Bus Distribution Restrictions. This
quickstart uses the REST architectural style for the
remote distribution of commands between services.
Even if all of the microservices are connected to the
same MySQL database, they cannot directly propa-
gate commands between each other. This is due to
the way Eventuate dispatches commands through the
aggregate repository. The aggregate repository rep-
resents the database table that is restricted to one ag-
gregate and it is provided by the platform through the
dependency injection. For this reason, it must declare
the target aggregate class and the command type. The
sharing of the aggregate class type may be very re-
strictive, especially for microservices applications.
Aggregate Instantiation. The Eventuate framework
creates the instances of aggregate classes by a call
to the default constructor. This effectively prohibits
the use of aggregate instance managed by the under-
lying server container. For this reason, each aggre-
gate in this project is separated into two classes — the
actual aggregate responsible for the command pro-
cessing and the event subscriber instance managing
incoming events. This restriction is seconded by the
rule stating that each produced event from the aggre-
gate’s command processing method must also be ap-
plied by the different method of the same aggregate.
This limitation exists because of the event sourcing
feature providing the ability to replay already exe-
cuted commands to reconstruct the aggregate’s state
in the case of failure. The aggregate then may contain
unnecessary empty methods as the saga also requires
the propagation of the information to different com-
ponents (e.g., the REST controller).

Event Entity Specification. As well as the com-
mand type, Eventuate also requires the definition of
the event type each aggregate is able to apply. The
problem rises when the events need to be shared be-
tween several modules. This is a common require-
ment as the CQRS pattern requires the query domain
to be separated. The event interfaces are therefore

The Saga Pattern in a Reactive Microservices Environment

included in the shared library module same as the
service-model used in this project. The hard coded
information of the full name of the aggregate class
used in the @EventEntity annotation then may be-
come hard to maintain.

Platform Structure. The platform structure places
the obligation on each developed microservice to con-
duct with the connecting requirements. This means
that every service must provide linking information
for the Eventuate platform services described in the
previous section, namely, MySQL database, Apache
Kafka, Apache Zookeeper and CDC component. This
information is replicated in all individual services and
therefore predisposed to errors.

3.3 Eventuate Tram Service

The Eventuate Tram service quickstart is based on
the recently introduced Eventuate Tram framework.
The Eventuate Tram framework extends the platform
with asynchronous messages that can be sent as a part
of a database transaction. It utilizes the traditional
Java Database Connectivity (JDBC) and Java Persis-
tence API (JPA) to provide the transactional messag-
ing. This enables the microservice to atomically up-
date its state and to publish this information as a mes-
sage or as an event to other services.

Platform. Similarly to the Eventuate ES distribu-
tion, the Eventuate Tram establishes four services that
form the Tram platform: Apache Zookeeper, Apache
Kafka, MySQL database and CDC component. The
fifth service, Console server, is not included as the
platform does not present this functionality by the
time of this writing. All services are deployed by the
docker-compose configuration distributed with the
framework.

The most important element in this application is
the saga definition that is located in the OrderSaga
class of the order-service. This definition uses the
declarative approach with the fluent API to denote
the saga in steps of execution. Every step declares a
handler method representing a participant request that
will be invoked when this step is reached by a refer-
ence to the private method in this class as well as the
reference to its compensation handler.

3.3.1 Problems

Destination Identification. The destination channels
in Tram are characterized by a simple string which
may cause problems in the case of name conflicts.
The choice of the handler to be invoked when mes-
sage is received depends on two values — the name
of the channel and the command dispatcher id. When

487



ICSOFT 2019 - 14th International Conference on Software Technologies

both strings match the same destination even in dif-
ferent services, the platform delivers the commands
between handlers in the random fashion which may
become a complex issue in larger projects.
Command Handlers. Handler methods that are ref-
erenced in the definition are restricted to the commu-
nication model provided by the platform. This allows
a single command to be sent to the required desti-
nation. Unfortunately, the platform does not allow
the saga to perform any other operation without the
participant invocation which may lead to unnecessary
empty commands and channels declarations.

Similarly, the saga may need to send multiple dif-
ferent commands to the same participant. This may
cause problems with definitions of compensation and
reply handlers as the developer needs to mind the log-
ical grouping of participant invocations.

3.4 LRA Service

MicroProfile Long Running Actions (LRA) is a spec-
ification developed in collaboration with the Eclipse
MicroProfile initiative (Stefanko, 2017). There are
several companies currently participating and con-
tributing to it (e.g., Red Hat or Payara). It proposes
a new API for the coordination of long running ac-
tivities with the assurance of the globally consistent
outcome and without any locking mechanisms. The
LRA specification is based on the Context and Depen-
dency Injection (CDI) and Java API for RESTful Web
services (JAX-RS) Java EE specifications. The com-
munication is handled over HyperText Transfer Pro-
tocol (HTTP) and the Representational State Transfer
(REST) architectural style.
Platform. This quickstart is composed as a set of
WildFly Swarm microservices. Every service is de-
signed to be deployed to the OpenShift container ap-
plication platform provided by Red Hat, Inc.
Narayana’s implementation (http://narayana.io) of
the Long Running Actions specification is not com-
posed as a platform, but rather as a standalone co-
ordination service. This project employs the stan-
dalone Narayana LRA coordinator which is con-
structed as a WildFly Swarm microservice called
lra-coordinator. All other traditional microser-
vices requirements are handled by the OpenShift
platform. This covers service discovery and loca-
tion transparency, monitoring, logging, resiliency and
health checks (failure discovery) which is why this
configuration is not included in example services.

3.4.1 Problems

REST Restriction. The Narayana Long running ac-
tions are a very efficient development model for the

488

microservices applications. Although it mainly aims
for the compatibility with the MicroProfile specifica-
tion (REST and CDI), it does not restrict microser-
vices to essentially any other particular implementa-
tion restrictions. Even if the MicroProfile is restricted
to REST invocations, Narayana LRA specification
does not require the usage this architectural style for
the communication with the coordinator. However,
the only implementation that is currently available is
based on REST, but it certainly can be extended to
other communication protocols in the future.

LRA Execution. The current implementation is that
the LRA framework provides only coordination and
management capabilities, it does not handle the saga
structuring and execution. Extraction of these capa-
bilities directly to the LRA processing would be cer-
tainly applicable in many common specifically reac-
tive applications use cases which can ease the devel-
opment and orchestration of the saga execution.
Single Point of Failure. By the time of this writing,
the LRA coordinator represents a single point of fail-
ure for the LRA processing in Narayana because it
contains the object store that is used for storing the
LRA information. User services also need to be ad-
justed for the situations when the coordinator is not
available.

3.5 Performance Test

To compare examples for their applicability in real
systems from the performance perspective, a simple
performance test has been created to investigate how
they behave under large load. Tables 2 and 3 present
a summary of the performance test executions. The
processing delay defines the time between the last
sent request and the last processed order and the to-
tal time denotes time from the first request to the last
completed order. The format for both times is mm: ss.
Results presented in Table 3 represent the best result
of three performed test executions in scenario 2. The
test has been run in the cloud computing platform
Digital Ocean (www.digitalocean.com). The virtual
machine specification:

Fedora 27 x64, Kernel: 4.13.9-300.fc27.x86_64
6 vCPUs (Intel(R) Xeon(R), E5-2650 v4 2.20GHz)
RAM: 16 GB, SSD: 320 GB, OpenJDK 1.8.0_144,
Maven 3.5.0, Gradle 2.13

The performance test is using the PerfCake (http://
perfcake.org) testing framework to generate requested
number of order requests. As all investigated frame-
works perform the saga execution asynchronously,
the test first requests the number of orders and then
performs the get orders call to the respective service



The Saga Pattern in a Reactive Microservices Environment

Table 2: Performance test, time in mm:ss — scenario 1 (1 000 requests, 10 threads).

Project Processing delay Total time Completed requests
Axon service 00:46 00:51 1 000
Eventuate service 00:49 00:58 2000
Eventuate Tram service 00:27 00:34 1 000
LRA service 00:04 01:10 1 000

Table 3: Performance test, time in mm:ss — scenario 2 (10 000 requests, 100 threads).

Project Processing delay Total time Completed requests
Axon service 06:53 07:44 5657

Eventuate service 14:05 14:46 19 791

Eventuate Tram service 03:20 03:56 10 000

LRA service 00:22 08:58 10 000

in periodic intervals. The test ends when all orders are
processed or the defined timeout is reached (Fig. 2).
Every example has been tested in two modes —
1000 order requests with 10 threads (scenario 1) and
10 000 order requests with 100 threads (scenario 2).
The reason was that some of the frameworks are not
able to handle the second test because of various prob-
lems discussed in the following sections. Scenario 2
has been run three times for each individual example,
and the presented results are taken from the best exe-
cution. Each test execution has been run in the same

setup on a new virtual machine.
| start test > rnefq";s;e:; Yes

5 a1l orders
completed?

timeout
reached?

No

v

s{ wait delay

Figure 2: Saga performance test execution.

Axon Service. The major performance problem
of this example was the artificial one second delay
placed on the shipment and invoice response retrieval
in the order-service. This problem has been re-
ported to the Axon framework and this quickstart has
been provided with a fixed configuration that removed
the need for the timeout. This setting will be included
by default in the Axon next release.

Another problem were synchronous REST calls
for inter-service command dispatching over dis-
tributed command bus. This issue has been reported
and was still investigated by the time of this writing.

The performance test in the scenario 1 has been
executed successfully in 51 seconds. The scenario 2
met the limits of the platform when the database lock
for the first command could not be taken after about
5000 requests. This scenario was run three times with
the best result of 5657 completed orders in 7 minutes
and 44 seconds.

Eventuate Service. This performance test discov-
ered a new issue in the Eventuate Local platform —
when order requests are created in fast succession, the
database update may fail which results in redelivery
of the same events and therefore several orders for
one request. This problem has been reported to the
Eventuate project.

In the scenario 1, the 1000 requests have been cre-
ated in 58 seconds, but because of the mentioned issue
the final count reached 2 000 orders. Scenario 2 was
executed three times where each run produced differ-
ent amount of completed orders. The presented test
execution finished after 14 minutes and 46 seconds
with 19 791 completed orders.

Eventuate Tram Service. The Eventuate Tram
project performed well in the scenario 1 which has
been finished in 34 seconds with all completed or-
ders. However, scenario 2 in some cases produced
an exception in the Kafka service that timed out on
the session.timeout.ms — a timeout that is used to
detect consumer failures. The default value for this
property is hardcoded in the Eventuate code base and
cannot be customized. This issue has been reported to

489



ICSOFT 2019 - 14th International Conference on Software Technologies

the platform as the feature request. The representing
successful run has been completed in 3 min. 56 sec.
LRA Service. This quickstart was for the perfor-
mance test adjusted to be run directly in the Docker
platform to simulate a similar environment for all ex-
amples. The test presented that the LRA coordinator
orchestration does not influence the processing per-
formance. The scenario 1 has been finished with ex-
ceptional overhead only 4 seconds and total time 1
minute and 10 seconds while the scenario 2 finished in
8 minutes and 58 seconds with just 22 seconds spent
on the additional saga processing. Both scenarios suc-
cessfully completed all order requests.

Summary. In general, both Eventuate Tram and LRA
performed in this test better than Axon or Eventu-
ate ES because the main focus of these frameworks
is placed on saga development. However, Axon and
Eventuate ES still present a simplified integration of
the saga pattern in CQRS based applications.

4 CONCLUSIONS

This paper covered transactions concepts that can be
utilized for the transaction commit problem in modern
software architectures. It covered conventional trans-
actional approaches utilizing two-phase commit pro-
tocol and application to the distributed environment of
microservices. The saga pattern (Garcia-Molina and
Salem, 1987) has been introduced as an alternative
approach to traditional transaction processing.
Development support of the saga pattern for pro-
duction environments was explored through the in-
vestigation of saga processing in four Java frame-
works — Axon, Eventuate ES, Eventuate Tram and
Narayana LRA. All of the frameworks were examined
in terms of the implementation of an order process-
ing microservices application utilizing the saga exe-
cution. Both Axon and Eventuate ES provide sim-
plified definitions of the saga pattern, however, at the
expense of the manual saga execution tracking and
the mandatory CQRS pattern application. Conversely,
Eventuate Tram and LRA are frameworks specifically
designed for saga executions. Both frameworks pro-
vide easy integrations and transparent executions of
sagas in enterprise Java applications. These quickstart
applications were also compared from a performance
perspective through a created test that examined saga
processing under large applied load. These perfor-
mance experiments resulted into several suggestions
of possible improvement points in the saga process-
ing of individual frameworks. In conclusion, the saga
pattern (Garcia-Molina and Salem, 1987) provides a
sophisticated alternative to conventional transaction

490

processing by means of its non-blocking nature — use-
ful in modern microservices applications.

ACKNOWLEDGEMENTS

The research was supported from ERDF/ESF ”Cy-
berSecurity, CyberCrime and Critical Informa-

tion Infrastructures Center of Excellence” (No.
CZ.02.1.01/0.0/0.0/16_.019/0000822).

REFERENCES

Bonér, J., Farley, D., Kuhn, R., and Thompson, M. (2018).
Reactive manifesto. https://www.reactivemanifesto.
org.

Fowler, M. (2018). Cgqrs. https://martinfowler.com/bliki/
CQRS.html.

Garcia-Molina, H. and Salem, K. (1987). Sagas. ACM SIG-
MOD Record, 16(3):249-259.

Gilbert, S. and Lynch, N. (2012). Perspectives on the CAP
theorem. Computer, 45(2):30-36.

Gray, J. (1981). The transaction concept: Virtues and lim-
itations. In Proceedings of the Seventh Int. Confer-
ence on Very Large Data Bases - Volume 7, VLDB
’81, pages 144—154. VLDB Endowment.

Haerder, T. and Reuter, A. (1983). Principles of transaction-
oriented database recovery. ACM Computing Surveys,
15(4):287-317.

Helland, P. (2007). Life beyond distributed transactions: an
apostate’s opinion. In CIDR, pages 132-141.

Helland, P. and Campbell, D. (2009). Building on quick-
sand. CoRR, abs/0909.1788.

Little, M., Maron, J., and Pavlik, G. (2004). Java transac-
tion processing. Prentice Hall.

Nadareishvili, 1., Mitra, R., McLarty, M., and Amundsen,
M. (2016). Microservice architecture: aligning prin-
ciples, practices, and culture. ” O’Reilly Media, Inc.”.

Sharma, U. R. (2017). Practical Microservices. Packt Pub-
lishing Ltd., 1 edition.

Stonebraker, M. and Cattell, R. (2011). 10 rules for scalable
performance in ’simple operation’ datastores. Com-
mun. ACM, 54(6):72-80.

Stefanko, M. (2017). Saga implementations com-
parison. http://jbossts.blogspot.cz/2017/12/saga-
implementations-comparison.html.

Vogels, W. (2009). Eventually consistent. Communications
of the ACM, 52(1):40.



