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Abstract: This paper proposes a safe formation control technic based on the virtual leader-follower principle 

employed to build agents’ trajectory. Each agent tracks its own trajectory using exclusively constrained 

linear Model Predictive Control (MPC). To ensure non-collision during formation control and transient 

phases such as formation reconfigurations, and thanks to the flexibility of MPC, a simple and flexible 

method for establishing collision and obstacle avoidance linear constraints is proposed. The efficiency of the 

approach is illustrated by the safe formation control and reconfiguration of a swarm of quadrotor 

helicopters. 

1 INTRODUCTION 

Since few years, Model Predictive Control (MPC) 

has become one of the most popular intelligent 

control technics due to several decisive features: its 

efficiency to take into account constraints in real 

time, its capability to control simply multivariable 

and nonlinear plants and its ability to be easily 

reconfigurable in case of fault detection. The reader 

should have a good introduction to this control 

technic in (Rawlings et al, 2017). Moreover some 

powerful works dealing with stability (Mayne et al, 

2000), (Dutta, 2014) and robustness (Bahadir Saltik 

et al, 2018), (Mayne et al, 2007) have made MPC be 

one of the major ingredients in autonomous 

activities especially for guidance where volatile 

constraints (for instance depending on external 

environment such as collision and obstacle 

avoidance) have to be considered simultaneously 

with other more classical ones such as actuators 

limitations. 

A safe formation control technic requires two 

essential ingredients: 

- a formation control mechanism characterized by 

a nominal distance between agents, 

- a collision and obstacle avoidance scheme 

enforcing a safety distance between agents and 

obstacles.  

Indeed, using only a collision avoidance scheme 

doesn’t prevent each agent from moving freely 

locally (while following globally the swarm 

trajectory) provided that distance between each 

agent is upper than a safety one. And similarly, 

using only a formation mechanism cannot prevent 

each agent from colliding to each other (for instance 

in case of formation reconfiguration or in presence 

of unpredicted disturbances). Of course the nominal 

distance has to be higher than the safety one. 

Numerous works dealing with safe formation 

control using the MPC framework can be found in 

literature. Most of them are considering MPC in its 

non-linear formulation - denoted NMPC - mainly 

due to the complexity of the proposed obstacle 

avoidance and formation mechanisms (Garimella et 

al, 2017), (Xi et al, 2007), (Nikou et al, 2017), which 

makes their implementation difficult although 

several advances have been realized in embedded 

non-linear optimization since last few years (Gros et 

al, 2016), (Ferreau et al, 2017). That’s why in this 

work only linear MPC will be considered due to its 

facility of implementation. 

Formation control consists in modifying the 

reference trajectory of each agent depending on the 

required geometrical formation the swarm has to 

design or the behaviour it has to model. Thus in 

(Iskandarani et al, 2014), (Hafez et al, 2014) one 

finds works based on the leader-follower principle 

where the reference trajectory of each agent 

70
Feyel, P.
Safe Formation Control with Constrained Linear Model Predictive Control.
DOI: 10.5220/0007918100700081
In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2019), pages 70-81
ISBN: 978-989-758-380-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

(denoted as follower) is directly obtained from the 

trajectory realized by a leader, but locally modified 

by mean of relative bias describing the figure to be 

designed by the swarm. Each agent is guided using a 

linear MPC. In spite of its simplicity, the strategy 

becomes inefficient in case of a defective leader 

unless another agent becomes the leader with the 

problem of transient reconfiguration. However this 

technic allows a swarm to be guided by sending the 

trajectory only to the leader of the formation. Based 

on the same principle, the virtual leader-follower 

formation technic (Antonelli, 2013) designates the 

global planned swarm trajectory as the (virtual) 

leader. On the contrary to the precedent case, 

planned trajectory has to be sent to all agents but the 

stability of the formation doesn’t depend on the state 

of the leader any more. Those two formation 

technics, although quite performing from the 

formation point of view, don’t prevent agents from 

colliding with each other’s in case of unpredicted 

disturbance or transient phases such as formation 

reconfiguration for instance, which justifies working 

on collision and obstacle avoidance schemes to 

ensure safety in formation control. 

One can find several works dealing with obstacle 

and collision avoidance using the linear MPC 

framework. Some of them propose to modify the 

MPC cost with an additional term whose value is 

increasing while distance between agents and/or 

obstacles is decreasing (i.e. when the collision risk is 

increasing). Several papers succeed in expressing 

this additional term by using convex quadratic 

programming formalism typical of linear MPC 

problems (Jiang et al, 2016), (Gao et al, 2010), 

(Rasekhipour et al, 2017): the main drawback of 

such strategies deals with the tuning of the MPC cost 

which may appear difficult. Moreover, because the 

non-collision strategy is not formulated as 

constraints, one cannot certify if agents will collide 

with each other’s or not; each agent can just try to 

avoid others depending on a trade-off between 

guidance and non-collision. To bypass those 

drawbacks, a common way is to work with obstacle 

avoidance constraint.  

Writing collision avoidance constraints using 

linear formulations is a hard task due to non-convex 

property of a spatial area avoidance constraint. In 

(Boucek, 2016) one finds an UAV guidance 

approach with linear MPC accompanied by linear 

obstacle avoidance constraints. The main idea 

consists in defining a forbidden circular area around 

the obstacle to avoid and then finding the conditions 

preventing the guided UAV from moving inside the 

plane tangent to this area, belonging to the same side 

and normal to the motion. The drawback of this 

approach is that the obstacle avoidance constraint is 

2-dimensional limited and its 3-dimensional 

extension is complex to formulate. Furthermore its 

flexibility is limited so that special avoidance rules 

can’t be taken into account easily. In (Papen et al, 

2017), (Richards et al, 2002), one can find other 

approaches using binary logical variables within 

Mixed-Integer Linear Programming (MILP) to 

encode non-convex avoidance constraints using 

linear formulation. Although efficient, those 

approaches are restricted to linear MPC criteria such 

as the Minimum Time Trajectory criterion, and are 

not adapted for more complex criteria such as the 

usual MPC quadratic criterion. 

This paper is composed as follows. In section 2 

we recall some features of stable linear MPC for 

reference tracking subject to constraints. A slightly 

focus is made on the MPC weights setting task and 

the quadratic programming formulation. In section 

3, the formation control based on the virtual leader-

follower principle is reminded and coupled with 

agents’ MPC controllers, similar to the one 

presented in section 2 with slightly modifications 

related to safe formation control. Indeed, thanks to 

the MPC flexibility, we propose to ensure safety 

through a new simple and flexible linear formulation 

of collision avoidance constraints. Same strategy is 

retained for obstacle avoidance. Finally the section 4 

proposes an illustrating example based on the safe 

formation control of a swarm of quadrotor 

helicopters with formation reconfigurations in 

presence of obstacles. 

2 MPC FOR REFERENCE 

TRACKING 

2.1 MPC Problem Formulation 

At discrete-time k, we denote as 

  3, ,
T

k k k kY x y z  the Cartesian coordinates of 

an agent modelled by the linear discrete state-space 

equation (1). 

1k k k

k k

X AX BU

Y CX

  




  

(1) 

For simplicity state-matrices are assumed to be 

time invariant. 
n

kX   and 
m

kU   denote 

respectively the state-vector and the input control 

vector of the agent. The state-vector kX is assumed 
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to be fully measured or fully estimated. We denote 

as 
path

kY  the planned trajectory to be tracked by the 

agent at time k. To this end, the agent is controlled 

using a linear model predictive controller which 

consists in on-line solving the constraint 

optimization problem (2) at each sampling time k. 

All predicted data are noted with a hat and N denotes 

the size of the prediction horizon. Due to actuators 

limitations, control signal is bounded. Note that 

using control variations formalism in the cost 

function aims to provide the controller with an 

integral action, allowing thus offset-free tracking 

(Maciejowski et al, 2002). 

 

 

0 1

1
, ,

2 1

1 1 1

0 0

1 1 1

1 0

min max

min ,

subject to

ˆ ˆ, :

ˆ ˆ:

ˆˆ

,

ˆ ˆ ˆ,

ˆ ˆ

T T
N

k k
U u u

N N
T T T

k k j j j j N

j j

T
N N N

path
j jk j

j j j k

j j j k

j j

j

J X U

J X U Q u R u J

J P

Y Y

u u u u U

X AX Bu X X

Y CX

U u U




    
 

 

  

 



  




      




 

  

   

  



 

   

(2) 

Criterion matrices 
3 3Q   and m mR  are 

respectively semi-positive and positive definite; 

given the prediction horizon N, a difficulty of MPC 

controllers is related to Q and R settings depending 

on the trade-off between performance and 

robustness/energy. One can find several studies 

dealing with this problem (Garriga et al, 2010). An 

interesting approach coming from the Generalized 

Predictive Control (GPC) framework can be found 

in (Boucher et al, 1996) which we propose to extend 

to the MPC proposed here. Q and R are set once for 

all using the following rules providing a maximum 

phase margin and a good gain margin (in the case of 

a non-constrained problem). 

 3 1

1

1

1

1

, , ,

for 1: , do

0, , 1, , 0

ˆ ˆ
ˆ1,..., , 0

ˆ ˆ

1 ˆ ˆ

end for

m

T

p p m

j j p

j j

N
T

p j j

j

Q I R diag r r

p m

u u u u

X AX Bu
j N X

Y CX

r Y Y
N





 



     

  
 

 

 

 
(3) 

 

Note that the previous general rules can also be 

used in non-linear case. 

For nominal close-loop stability (Mayne et al, 

2000), a terminal quadratic cost has been defined 

with a positive definite matrix P solution of the 

Discrete Algebraic Riccati Equation (4).  

   

 
1

0
T T

T T

A BK P A BK K RK Q

K R B PB B PA


    

  

 (4) 

Note that the state-feedback K can also be used 

to extend the MPC previous controller in the tube-

based robust MPC framework (Mayne et al, 2007) to 

enhance performance robustness in case of plant’s 

variations. 

Once (2) is solved at each time k and according 

to the receding horizon principle, the control signal 

applied at time k to the agent is written in (5).  

*
1

1

0 0k m m m k

N times

U I U U 



 
   
 
 

 (5) 

where *U is the solution of problem (2). 

2.2 Quadratic Programming (QP) 

Formulation 

The QP formulation consists in writing problem (2) 

under the form (6) to be usable with commercial 

solvers such as the well-known quadprog routine 

(Wang, 2009).  

min

subject to

T

U

iq iq

U U U

A U b


   

 

 (6) 

2.2.1 Main Cost QP Formulation 

It is straightforward to show that: 

1 1
ˆ ˆ ˆ

ˆ

j j j

j j

X X X

A X B u

   

   

 (7) 

Moreover:  

1 1
ˆ ˆ ˆ

ˆ

j j j

j j

Y Y Y

CA X CB u

   

   

 (8) 

Then: 

1
ˆ ˆ ˆ
j j j jY Y CA X CB u       (9) 

Collecting last equations into an augmented 

state-space, one obtains:  
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1

ˆ

j j j

j j

X AX B u

Y CX

   



 
(10) 

With: 

3

3

ˆ 0
,

ˆ

, 0

j

j

j

X A
X A

CA IY

B
B C I

CB

   
    
    

 
      
 

 
(11) 

Assuming 0

T
T T

k kX X Y  
 

 is measured or 

estimated at time k, the state prediction along the 

horizon is recursively written as follows:  

1 0 0

2
2 0 0 1

1
0 0

2
2 1

N N
N

N
N

X AX B u

X A X AB u B u

X A X A B u

A B u B u






  

    

   

   

 
(12) 

And then the output prediction:  

1 0 0

2
2 0 0 1

1
0 0

2
2 1

ˆ

ˆ

ˆ N N
N

N
N

Y CAX CB u

Y CA X CAB u CB u

Y CA X CA B u

CA B u CB u






  

    

  

    

 
(13) 

This can be written in the matrix form:  

0

1 0

1

2

ˆ

ˆ

ˆ , ,

ˆ N
NN

N

Y WX Z U

Y u CA

Y U W

u CAY

CB

CAB CB
Z

CA B CB





  

     
     

        
     

    

 
 
 

  
 
 
 

 

(14) 

The MPC cost is then QP formulated as bellow: 

   ˆ ˆ:

, ,

T
path path T

path
k

path

path
k N

J Y Y Y Y U U

Y Q R

Y

P RY 

     

     
     

       
         

 
(15) 

Developing (15), we arrive quickly at a quadratic 

expression with respect to U : 

 

0

1
: 2

2

T T T T

path

J Z U U Z Z U

Y WX

          
 

  

 
(16) 

Note that minimizing J or J2 (17) with respect to 

U is equivalent.  

 2

0

: 2T T T

path

J U Z Z U Z U

Y WX

      

  

 (17) 

2.2.2 Control Constraints QP Formulation 

According to definition (14) and initializing the 

recursion with 1 1ku U  , it is easy to show that:  

0 1 0 1

1 0 1 1 0 1

1

0 ... 0

... 0

k k m m m

k

k m m m

u U u U I U

u u u U u u

U I I U

 





       

       

    

 
(18) 

Or equivalently: 

1

0

1

1

0 0

0
, ,

k

m m m m

m m m m

m m m m N

U EU H U

I I u

I I I u
E H U

I I I I u





  

     
     
       
     
     
     

 
(19) 

Thus the control constraint is written with 

respect to U :  

1

1

min max

min max

,

k

k

U EUH
U

H U EU

U U

U U

U U





   
    

    

   
   

    
   
   

 
(20) 

3 SAFE FORMATION CONTROL 

Now we consider a swarm of M agents. The global 

planned trajectory of the swarm is the Ypath defined 

previously. At time k, we denote as 

  3, ,
T

i i i i
k k k kY x y z  the Cartesian coordinates of 

the ith agent of the swarm. Each agent is controlled 

using the linear MPC controller introduced in 

section 2 but with slightly modifications dealing 

with formation control and additional collision 

avoidance constraints which we describe below.  
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3.1 Formation Control based on the 

Virtual Leader-follower Principle 

According to the virtual-leader follower principle 

(Antonelli, 2013), the ith agent follows its own 

trajectory obtained by i -shifting the swarm 

trajectory. Thus Ypath stands for the virtual leader 

trajectory and each agent stands for a follower. The 

ith agent is controlled by the MPC (2) slightly 

modified by substitution (21).  

, 1, ,
path path i

k jk j k jY Y j N     (21) 

The M bias vectors i
k  3, i=1,…,M are set 

according to the formation agents have to design 

and/or the behaviour the swarm has to model. 

Although the bias may be time-dependent, it will be 

considered (for practical reasons) constant 

throughout the prediction, i.e.: 

, 1, ,
path path i

kk j k jY Y j N     (22) 

Basically the bias shifting main idea consists in 

designing the formation structure by specifying 

directly agents’ coordinates inside the swarm in 

relation to the virtual leader such as in (Iskandarani 

et al, 2014), (Hafez et al, 2014). A trivial line 

formation example is depicted in Figure 1 in which 

the coordinates of agents are chosen so that nominal 

distance between each of them is upper than a 

specified one dnom. Here the agent n°1 is arbitrary 

chosen as the virtual leader. 

 

Figure 1: A basic line formation strategy. 

The reader will find other more complex 

formation methods in literature for computing 

suitable , 1, ,i
k i M   that can be directly 

employed in the virtual leader-follower approach 

proposed here. Depending on the behaviour the 

swarm has to model, one can cite artificial potential 

field methods (De Vries et al, 2011), elliptical 

formation structures (Kahn et al, 2013), swarm 

intelligence methods or flocking-based control (Soni 

et al, 2018). 

3.2 Safe Formation Control with 

Collision and Obstacle Avoidance 

Linear Constraints 

For a safe formation control, thanks to the MPC 

flexibility, we propose a simple and flexible linear 

obstacle avoidance constraints formulation in this 

subsection.  For that purpose we model the (firstly 

static) object to avoid as a classical rectangular 

parallelepiped with edges denoted as  , ,x y zd d d  

and centered at point   3, ,
T

o o o oY x y z  . To 

avoid collision between the object and the ith agent 

(i.e. to avoid ith agent entering inside the object) 

constraints (23) have to be verified at time k.  

or
2 2

and

or
2 2

and

or
2 2

i o i ox x
k k

y yi o i o
k k

i o i oz z
k k

d d
x x x x

d d
y y y y

d d
z z z z

    
       

    

    
          

     

    
       

    

 

(23) 

For readability, we denote the relative 

coordinates of the 6 corners as

 , , , , ,
o o oo o ox x y y z z  so that constraints (23) can 

be rewritten as (24). 

   

   

   

or

and

or

and

or

oi o i
k k

oi o i
k k

oi o i
k k

x x x x

y y y y

z z z z

  
  

  
  

  
  

 
(24) 

In the MPC framework, constraints (24) have to 

be enforced all along the prediction horizon, which 

leads to the non-convex 3N exclusion constraints 

(25). Hats stand for predictions.  

   

   

   

ˆ ˆor

and

ˆ ˆ ˆor 1, ,

and

ˆ ˆ ˆor

oi o i
j j

oi o i
j j

oi o i
j j

x x x x

y y y y j N

z z z z

  
   



     




   
   

 
(25) 

To transform (25) into convex and linear 

constraints, a simple idea is to force getting out the 
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object when the prediction plans to get inside it. The 

great advantage of this approach lies in its flexibility 

because it becomes easy to choose the best rules to 

get around the object (with a high-level heuristic for 

instance). Thus the algorithm computing the 

collision avoidance constraints will have the form 

(26). 

The bypass strategy has to be chosen. Below we 

give an example of arbitrary rules that can be 

translated into linear collision avoidance constraints. 

For instance one can decide to avoid the object by 

using at first the (x, y) plan and forcing the 

prediction to be on the x-axis ( ox or
o

x ) where it 

tends to establish (see Figure 2). 

When the prediction plans to get inside the object 

and directly on the ox -axis, the previous rule leads 

to an indeterminate; thus one can decide for instance 

to bypass selecting the y-axis ( oy or
o

y ) using the 

same rules as for the previous x-axis as depicted in 

Figure 3. 

   

   

   

ˆ ˆif and

ˆ ˆif and

ˆ ˆif and

1, ,bypass strategy

end

end

end

oi o i
j j

oi o i
j j

oi o i
j j

x x x x

y y y y

z z z z

j N

 



  

 











 

(26) 

Now if the prediction plans to get inside the 

object and directly at point (xo, yo) of the (x, y) plan, 

one can decide to bypass choosing a z-axis using the 

same rules as for the y and x-axis before. And finally 

if the prediction coincide with the object center (xo, 

yo, zo), we can decide to bypass using the z-axis 

direction from above for instance. 

Note that the previous rules are an arbitrary 

choice. Nothing prevents the reader from enforcing 

additional state constraints or changing bypass rules. 

This flexibility is clearly an advantage of the 

method. 

At prediction time j, the previous rules can be 

translated into a suitable “mathematical formulation” 

using the algorithm (27). The corrections of the 

predicted positions stand all along the prediction 

horizon, i.e. for j = 1,…, N. 

 

 

Figure 2: A (x, y) bypass strategy. 

 

Figure 3: A (x, y) bypass strategy for indeterminate x-side. 
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ˆ ˆif and

ˆ ˆif and

ˆ ˆif and

ˆ ˆ ˆif ,

ˆ ˆ ˆelse if ,

else

ˆ ˆ ˆif ,

ˆ ˆ ˆelse if ,

else

ˆ ˆ ˆif ,

el

oi i o
j j

oi i o
j j

oi i o
j j

o oi i o i
j j j

oi i o i o
j j j

o oj j o j
i i i

oj j o j o
i i i

o oj j o j
i i i

x x x x

y y y y

z z z z

x x x x x x

x x x x x x

y y y y y y

y y y y y y

z z z z z z

 

 

 

   

   

   

   

   

ˆse

end if

end if

end if

end if

end if

end if

oj
iz z

 

(27) 

We recall the following equivalences: 

ˆ ˆ
2

ˆ ˆ
2

ˆ ˆ
2

ˆ ˆ
2

ˆ ˆ
2

ˆ ˆ
2

oi i o x
j j

i o i o x
j j

yoj j o
i i

yj o j o
i i

oj j o z
i i

oj j o z
i i

d
x x x x

d
x x x x

d
y y y y

d
y y y y

d
z z z z

d
z z z z


    




   




    



     


   


    


 

(28) 

Now by introducing three integers  , ,x y z
j j j  

that can only taking values 0 or 1, it is 

straightforward to see that algorithm (27) and linear 

obstacle avoidance constraints (29) are strictly 

equivalent at the jth prediction time.  

 

ˆ

, ,

2 2 2

with:

0

ˆ ˆif and

ˆ ˆif and

ˆ ˆif and

ˆ ˆif , 1

ˆ ˆelse if , 1

else

ˆ ˆif

i o
j j j o

x y z
j j j j

T

yx z
o

x y z
j j j

oi i o
j j

oi i o
j j

oi i o
j j

oi i o x
j j j

oi i o x
j j j

oj j o
i i

Y Y L

diag

dd d
L

x x x x

y y y y

z z z z

x x x x

x x x x

y y y y

   

    

 
   
 

     

 

 

 

    

     

   , 1

ˆ ˆelse if , 1

else

ˆ ˆif , 1

else 1

end if

end if

end if

end if

end if

end if

y
j

oj j o y
i i j

oj j o z
i i j

z
j

y y y y

z z z z

 

     

    

    

(29) 

Note that in case of inactive constraints (or 

equivalently in case of non-collision risk) at 

prediction time j, at least one of coefficients of 

matrix j  is zero; in this case, the problem may 

become unfeasible (by nature) because:  

 

ˆ

0 unfeasability
0,0,0

i o
j j j o

o

j

Y Y L
L

diag

    
   

  

 (30) 

Thus the previous constraints formulation has to 

be modified to avoid unfeasibility in case of non-

collision risk. A solution is to introduce an 

additional matrix 'j  such that ' ( )j jabs   . Thus 

taking (30) again:  

 

 

ˆ '

0,0,0 0 0 not unfeasable

' 0,0,0

i o
j j j j o

j

j

Y Y L

diag

diag

   


    


  

 
(31) 

Finally at prediction time j, the non-collision 

constraint is written:  
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 

 

ˆ '

, ,

2 2 2

'

i o
j j j j o

x y z
j j j j

T

yx z
o

j j

Y Y L

diag

dd d
L

abs

   

    


 
     


   

 
(32) 

Where  , ,x y z
j j j    are always defined by (29). 

Another difficulty of the method is the use of the 

predicted state to predict the collision, but the 

predicted state is determined by the control sequence 

one has to determine with the non-collision 

constraints we search to determine… To overcome 

this difficulty, an estimation of the predicted state 

can be used. Several methods can be envisaged: 

- Using the previous optimal sequence (i.e. at time 

k-1) one step-shifted as a good estimation of the 

predicted position at time k. 

- Assuming the measurement of the position and 

the velocity at time k, an estimation of the 

predicted position can be built with a linear 

extrapolation along the prediction (33). 

ˆ ˆ ˆ, ,i i i i i i i i i
j k e k j k e k j k e kx x jT x y y jT y z z jT z       (33) 

Where Te is the sampling period. Same rule can 

be considered for estimate the future positions of a 

dynamical object one has to avoid, assuming its 

position and velocity are measured at time k (34).  

ˆ ˆ ˆ, ,o o o o o o o o o
j k e k j k e k j k e kx x jT x y y jT y z z jT z       (34) 

In that case, constraints (32) can be easily 

extended to a dynamical object (35).  

 

 

ˆ ˆ '

, ,

2 2 2

'

i o
j j j j j o

x y z
j j j j

T

yx z
o

j j

Y Y L

diag

dd d
L

abs

   

    


 
     


   

 
(35) 

Now we are able to formulate the non-collision 

constraints all along the prediction (36). 

1 1 1 1 1

2 2 2 2 2

ˆ ˆ '

ˆ ˆ '

ˆ ˆ '

i o
o

i o
o

i o
N N N N N o

Y Y L

Y Y L

Y Y L

   

   

   

 
(36) 

Or equivalently in matrix form:  

1 1

1

ˆ ˆ

'

,

'

ˆ

ˆ

ˆ

i o
io io io

o

io io

N N o

o

o

o
N

Y Y

L

L

Y

Y

Y

   

     
    

       
         

 
 

  
 
 

 

(37) 

According to (14) one obtains the linear non-

collision constraints formulation (38) with respect to 

control variations iU  that we need to incorporate 

to the MPC (17)-(20) we have to solve for the ith 

agent in order it to avoid the oth object. 

ˆ 0i i o
io i io i k io ioZ U W X Y       (38) 

Constraints (38) can be easily extended to 

several static or dynamic objects (other agents for 

instance) that ith agent has to avoid. 

4 SAFE FORMATION CONTROL 

OF A SWARM OF QUADROTOR 

HELICOPTERS 

4.1 Safe Formation Problem Statement 

In the following, all coordinates and distances are 

expressed in meters. 

To illustrate the previous developments, one 

considers the safe guidance of a swarm of 5 

quadrotor helicopters. 

Agents are assumed to be identical and modelled 

by (101010) cubes. Dynamic model will be 

considered in the next subsection. The planned 

swarm trajectory Ypath is helical type and is generated 

by equations (39).  

    

 

100

100

0

2 2
50cos 50sin 10

40 40

10 100 10 100 1000

0 0 0

T

path
t

Tpath
t

Tpath

Y t t t

Y t t

Y





     
     

    

  



 (39) 

The initial formation is line type and is defined 

by the five shifting bias vectors given in (40).  

1 2 3 4 5

40 20 0 20 40

0 , 0 , 0 , 0 , 0

0 0 0 0 0

          
         

                  
         
         

 
(40) 

At time tc = 40s, formation changes into (41).  
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1 2 3 4 5

20 40 0 40 20

0 , 0 , 0 , 0 , 0

0 0 0 0 0

          
         

                  
         
         

 
(41) 

We can see that two neighboring agents are 20 

meters apart.  

Initial positions of the 5 UAVs are given below: 

   

   

 

1 2
0 0

3 4
0 0

5
0

50 50 0 , 100 100 0

110 110 0 , 25 150 0

25 150 0

T T

T T

T

Y Y

Y Y

Y

   

    



 
(42) 

Finally, 2 static obstacles modelled as 

(101010) cubes are positioned at points 

 65 40 255
T

   and  65 45 270
T

  .  

Each agent is controlled with the linear MPC 

presented in the previous section, using virtual 

leader-follower formation control with obstacle and 

collision avoidance constraints. The dynamic model 

of each agent is considered below. 

4.2 Quadrotor Helicopter Model 

There are lots of literatures describing quadrotor 

helicopters non-linear models (Mahony et al, 2012), 

(Bouabdallah et al, 2014). In order to obtain a linear 

plant compatible with (1), the following assumptions 

are considered: 

- Quadrotor helicopters are employed in hovering 

conditions: this assumption is often realized for 

model linearization. 

- A high dynamic inner-loop attitude control exists 

and its bandwidth is high enough to be 

considered as ideal: this assumption is done only 

for readability and simplicity.  

- The yaw angle  is maintained to 0. This 

assumption is done because the quadrotor motion 

doesn’t depend on .  

Thus equations of motion governing dynamics of 

a quadrotor helicopter with respect to an earth-fixed 

coordinate system are reduced to the linear 

translation terms (43), where: 

- x, y, z stand for the Cartesian coordinates of the 

helicopter, 

-  and  are respectively the desired roll and pitch 

angles, 

- m = 0,486 kg is the quadrotor helicopter mass, 

- T stands for the thrust applied to the helicopter, 

- Kfx = Kfy = 5,567e-4 Nm/m/s and Kfz = 6,354e-4 

Nm/m/s represent aerodynamic frictions due to 

motion along x, y, and z axis.  

- g = 9,81 m.s-2 is the gravity coefficient. 
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y

Kgzd x
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xdt
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y y
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z
KT

g z
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 
 
  
  
  
      
  
      

    
 

  
 

 

(43) 

(43) can be easily expressed in state-space matrix 

form:   

dX
AX BU

dt

Y CX

 



 (44) 

With: 

 

   , ,

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0

0 0 0
1 0 0 0 0 0

0 0 , 0 1 0 0 0 0

0 0 1 0 0 0
0 0

1
0 0

T

TT

fx

fy

fz

X x y z x y z

Y x y z U T T T mg

K

A m

K

m

K

m

g
B Cm

g

m

m



     

 
 
 
 
 
 

 
 
 

 
 
 

 
 

 
 
 
 
   
   

    
   

  
 
 
 
 

 

(45) 

Thruster, pitch and roll angles stand for the 

control signal vector. Position vector Y is assumed to 

be measured. 

Finally the discrete model (46) is computed 

using Euler approximation with sampling time Te = 

0,1s.  

 1k e k e k

k k

X T A I X T BU

Y CX

   


 (46) 

Due to actuators limitations and capabilities of 

quadrotor helicopters, control constraints have to be 

considered as follows:  
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/ 4
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0, 4

min k max
min max

min k max k

min k max

max min

min min

min min max max

min max

U U U

T T T

T T mg T T mg

T T mg

       
     
            
     
     

    

    

   

 

 
(47) 

Note that Uk is computed by (5) and the thrust 

control signal really applied to the system is written:  

k kT T mg   (48) 

4.3 MPC Configuration 

Each UAV is controlled with a linear MPC having 

the following characteristics: 

- MPC horizon size: N = 100. 

- Interior-Point quadratic optimization method 

with 30 iterations at most and initialization using 

the warm start method.  

- Sampling period: Te = 0,1 s. 

- MPC cost weights are set according to (3).  

4.4 Formation Control Results 

First we proceed to a simulation realized without 

collision avoidance constraints. As we can see in 

Figure 4 formation control based on virtual leader-

follower principle is efficient but collisions between 

agents occur during the swarm initialization and the 

reconfiguration phases. Furthermore, agents don’t 

avoid static obstacles. As we can see in Figure 5, all 

control constraints are satisfied. 

Secondly we proceed to the same scenario using 

the collision and obstacle avoidance linear 

constraints presented in this work. Result is depicted 

in Figure 6. As we can see, formation control 

becomes safe. Control signals are depicted in Figure 

7. Collision avoidance constraints become active 

when the distance agents/agents and/or 

agents/obstacles tends to be lower than 10m which 

makes no collision occurs: it clearly proves the 

efficiency of our approach. 

 

Figure 4: Formation control without collision avoidance 

constraints. 

 

Figure 5: Control signals of UAVs without collision 

avoidance constraints. 
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Figure 6: Formation control with collision avoidance 

constraints. 

 

Figure 7: Control signals of UAVs with collision 

avoidance constraints. 

6 CONCLUSIONS 

We developed in this paper an efficient safe 

formation control technic based on the virtual-leader 

follower principle in association with linear MPC 

whose flexibility allows adding collision avoidance 

linear constraints that have been formulated towards 

an original and flexible approach.  The efficiency of 

this approach has been illustrated with the formation 

control and reconfiguration of a swarm of UAVs. 

Future works deal with heterogeneous multi-agents 

swarming activities. 
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