
NUMA-aware Deployments for LeanXcale Database Appliance 

Ricardo Jiménez-Peris1, Francisco Ballesteros2, Pavlos Kranas1, Diego Burgos1 

and Patricio Martínez1 
1LeanXcale, Campus de Montegancedo, Madrid, Spain 

2Universidad Rey Juan Carlos, Madrid, Spain 

Keywords: Scalable Databases, NUMA Architectures, Database Appliance, Scalable Transactional Management. 

Abstract: In this paper we discuss NUMA awareness for the LeanXcale database appliance being developed in 

cooperation with Bull-Atos in the Bull Sequana in the context of the CloudDBAppliance European project. 

The Bull Sequana is a large computer than in its maximum version can reach 896 cores and 140 TB of main 

memory. Scaling up in such a large computer with a deep NUMA hierarchy is very challenging. In this paper 

we discuss how LeanXcale database can be deployed in NUMA architectures such as the one of the Bull 

Sequana and what aspects have been taking into account to maximize efficiency and to introduce the necessary 

flexibility in the deployment infrastructure. 

1 INTRODUCTION 

In this paper we discuss NUMA awareness for the 

LeanXcale database appliance being developed in 

cooperation with Bull-Atos in the Bull Sequana in the 

context of the CloudDBAppliance European project 

(CloudDBAppliance, 2019). The Bull Sequana is a 

large computer than in its maximum version can 

reach 896 cores and 140 TB of main memory. Scaling 

up in such a large computer with a deep NUMA 

hierarchy is very challenging. In this paper we discuss 

how LeanXcale database can be deployed in NUMA 

architectures such as the one of the Bull Sequana and 

what aspects have been taking into account to 

maximize efficiency and to introduce the necessary 

flexibility in the deployment infrastructure. 

2 NUMA ARCHITECTURES 

2.1 Background 

NUMA (Non-Uniform Memory Access) 

architectures are motivated due to the bottleneck 

introduced by previous UMA (Uniform Memory 

Access) architectures. In the past, CPUs ran slower 

than the main memory, so all CPUs were connected 

to a global pool of main memory (see Figure 1).  

 

Figure 1: UMA Architecture. 

However, CPUs have become over time faster 

than memory and at some point, they found a 

limitation on the speed improvements, so multi-core 

and multi-CPU architectures started to proliferate 

even in commodity servers and desktops. At some 

point the interconnect between CPUs and memory 

could not provide the necessary bandwidth. NUMA 

architectures then became the solution. Basically, 

each NUMA unit consists of a CPU and a local pool 

of memory. Memory is still globally accessible by all 

other cores at other NUMA units, however, now the 

access speed and bandwidth are not uniform 

anymore. The local memory at the NUMA unit is the 

one that has highest bandwidth and can be accessed 

faster.  

666
Jiménez-Peris, R., Ballesteros, F., Kranas, P., Burgos, D. and Martínez, P.
NUMA-aware Deployments for LeanXcale Database Appliance.
DOI: 10.5220/0007905806660671
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 666-671
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

Figure 2: Two-level NUMA Architecture. 

Depending on how many units this hierarchy can 

become deeper. Computers with 2 or 4 processors 

might have a 2-level hierarchy (see Figure 2), but 

computers like the Bull Sequana has a 3-level 

hierarchy (see Figure 3). Actually, with the new 

Cascade Lake-AP Intel processor, the hierarchy 

becomes 4-level since each CPU (NUMA unit) is 

internally split into two halves with result in a new 

NUMA hierarchy (called sub-NUMA clustering by 

INTEL). As can be seen in 1 memory latency is 3.1 

times higher in the farthest node with respect local 

memory. 

2.2 Implications of NUMA 

In an UMA architecture, it does not matter on which 

core or CPU is running a thread. The cost to access 

memory will be the same. However, in a NUMA 

architecture this is not true anymore. Accessing a data 

item in the memory of the local NUMA unit is much 

cheaper than accessing it in a remote NUMA unit. 

 

Figure 3: Memory latency factors in Bull Sequana NUMA 

architecture. 

This fact basically means that to be efficient, 

server software has to exercise as much memory 

locality as possible. However, this is hard since server 

software is multi-threaded and threads share memory. 

This results in being allocated to any core and 

accessing memory across all NUMA units, resulting 

in high inefficiency due to higher latency in memory 

accesses and bottlenecks in memory bandwidth to 

remote NUMA units. 

3 LEANXCALE ARCHITECTURE 

3.1 What is LeanXcale Database 

LeanXcale (LeanXcale 2019) is an ultra-scalable 

operational Full SQL Full ACID distributed database 

(Ozsu and Valduriez, 2014) with analytical 

capabilities. The database system consists of three 

subsystems (see Figure 4: LeanXcale Subsystems): 

1. KiVi Storage Engine. 

2. Transactional Engine. 

3. SQL query Engine. 

 

Figure 4: LeanXcale Subsystems. 

3.2 LeanXcale Subsystems 

The operational database is a quite complex system in 

terms of different kinds of components. The 

operational database consists of a set of subsystems 

namely: the Query Engine (QE), the Transactional 

Manager (TM), the Storage Engine (SE) and the 

Manager (MG).  Some subsystems are homogeneous 

and other heterogeneous. Homogeneous subsystems 

have all instances of the same kind of role. 

Heterogenous subsystems have different roles. Each 

role can have a single instance or multiple instances. 

The transactional manager has the following roles: 

Commit Sequencer (CS), Snapshot Server (SS), 

Conflict Managers (CMs) and Loggers (LGs). The 

NUMA-aware Deployments for LeanXcale Database Appliance

667



former two are mono-instance, whilst the latter two 

are multi-instance. The Storage Engine has two roles 

data server (DM) and meta-data server (MS), both 

multiple instances. The query engine is homogeneous 

and multi-instance. There is a manager (MNG) that is 

single instance and single-threaded. Many of these 

components can be replicated to provide high 

availability, but their nature does not change. Since 

replication it is an orthogonal topic, we do not 

mention anymore. 

4 FACTORS TO BE 

CONSIDERED 

Leveraging the full potential of multi-core and 

NUMA shared memory architectures implies the 

understanding of three key concepts namely: 

processor affinity, data placement and the notion and 

relation of physical and virtual cores. 

4.1 Processor Affinity 

It is the capability to map a given processing unit to 

the execution of a given task. Usually, the selection 

of a given CPU is governed by a scheduler that takes 

into consideration the systems state and several other 

policies in order to load balance tasks to the number 

of available processors. When only one core is 

available, processes or threads are instructed to start 

and halt their execution in order to grant permission 

to other threads, ensuring that the resource is shared 

among the interested parts. When several CPUs are 

available, the scheduler splits the thread’s work 

among the available instances and may decide to halt 

and reallocate task execution among processors to 

achieve load balancing or to comply with other 

policies. Under this scenario, NUMA architectures 

become problematic since processors and their 

respective memory blocks become disassociated.  

Processor affinity relies in a modified scheduler to 

systematically associate a given task with a given 

processor, despite of the available resources.  During 

the lifetime of a given process or thread, the scheduler 

monitors the relevant metrics to ensure that memory 

allocation remains local to the process or thread that 

is using a given processor. This technique by itself 

may significantly harm performance by preventing 

the task scheduler to spread load among the available 

instances. This implies that this technique should be 

accompanied by a smart observing and allocation 

scheduler in order to exploit use case specificities that 

would leverage this technique. On its own, this 

technique may be negative for most use cases as the 

scheduler implicitly may provide hints about affinity 

without preventing a given processing core to execute 

jobs outside of its strict affinity allowance. 

4.2 Data Placement 

Data placement is the capability to place data close to 

the processing cores that are responsible to execute a 

given task. Regardless if data placement is achieved 

implicitly, where memory blocks are assigned to 

specific processing units or, explicitly, where the 

application is hardware aware and requests ranges of 

memory to be handled by specific processing units; 

the more often data can be placed close to the 

processing unit that is preforming the computation, 

more performance is expected through the overall 

reduction in access time. Data placement is thus keen 

to translate traditional scheduling policies in order to 

favour fast storage mediums that present smaller 

access costs over remote memory accesses. 

4.3 Virtual Cores/HW Threads Vs 
Physical Cores Vs Sockets 

A computer might have one or more sockets also 

known as NUMA units. Each socket is basically a 

CPU that can have one or more cores and has 

allocated a memory module. Sockets are structured in 

a NUMA hierarchy that can be from 2 levels to an 

arbitrary number of levels. In the new Bullion the 

NUMA hierarchy is pretty deep. Understanding the 

relationship between physical cores and sockets and 

the NUMA distance across physical cores is crucial 

to minimize the cost of communication across 

components. Components that interact frequently will 

communicate more efficiently if they are running on 

closer cores in the NUMA hierarchy. 

Many CPUs have the concept of physical and 

virtual cores. Many INTEL CPUs exhibit 

hyperthreading that lies in providing two hardware 

threads per physical core. They have a superscalar 

architecture in which a subset of the instructions can 

operate on separate data in parallel. Additionally, 

when one thread blocks the other can still run 

guaranteeing that the physical core is actually 

performing work. 

The operating system actually reports the 

hardware threads as virtual cores. AMD virtual cores 

are more complete than INTEL hyperthreads since 

each has a full set of registers, so threads running on 

different cores actually do not require to save the 

thread registers as it happens with hyperthreading. 

The operating system always reports about virtual 

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

668



cores (hardware threads for INTEL, actual virtual 

cores for AMD). When setting processor affinity, it is 

the id of the virtual cores what is actually provided.  

It is very important to understand the relationship 

between virtual cores and physical cores, since some 

servers should run a single instance per physical core, 

such as the storage engine. Running any other server 

on a virtual core over the same physical core would 

result in serious performance drop. However, there is 

no straightforward way of getting this association. 

The way we have found to extract this information is 

through the thread_sibling_list in the CPU topology 

meta-information of the operating system: 

/sys/devices/system/cpu/cpu0/topology/thread_siblin

gs_list. 

When the first number is the same as CPU id, then 

the CPU is a physical core. When the CPU id appears 

at other position other than first, it means that it is a 

virtual core. 

5 CHARACTERIZING SERVERS 

5.1 Taxonomy Dimensions 

The previously introduced approaches present 

alternatives to either move data close to the 

processing units or the opposite, where the processing 

is moved closer to the nodes where data is placed. In 

a distributed deployment, where a multitude of 

components coexist and interact among each other, it 

becomes imperative to reason about the underlying 

specific use case.  A system model allows to bound 

both the expectations and requirements of each 

component that builds the distributed system has 

according to several distinct factors, namely: 

a. Threading model: single threaded server vs. 

multi-threaded server; 

b. Architecture (Single instance vs Multiple instance 

components); 

c. Resource boundness (IO/CPU/Memory bound) 

The above set of properties allows to determine 

important deployment features that might limit the 

action of the smart placement, such as the need for 

component co-location or the required memory 

thresholds. 

5.2 Taxonomy of Servers for NUMA 
Awareness 

The manager is single instance. Table 1 summarizes 

the main properties of each subsystem/role. 

Table 1: LeanXcale Servers and their Taxonomy. 

Subsystem Role Instances Multi- 

threading 

Resource 

Boundness 

QE+LTM QE+ 

LTM 

Multiple Yes CPU 

Memory 

TM CS Single No CPU 

TM SS Single No CPU 

TM CM Multiple No CPU 

TM LG Multiple No IO 

DS MS Single No CPU 

DS DM Multiple No IO/CPU/ 

Memory 

MNG  Single No CPU 

6 DEPLOYMENT MODELS 

6.1 Collocation 

The first question is whether is good to collocate 

servers and if yes, which ones and how. Collocating 

servers can be good if they communicate a lot, since 

the communication can be done via local memory. 

Another reason why it can be good to collocate is 

when servers are complementary in terms of resource 

usage. For instance, there are servers that are CPU 

bound while others are IO bound. In this case, they 

match well due to their collocation can result in a 

balanced usage of resources. 

Looking closely to the Bull Sequana, IO devices 

are distributed evenly across NUMA units. This 

means that it becomes important to be able to 

distribute the IO activity across all NUMA units. 

6.2 Model of Individual Deployment 

The other question is how to deploy each individual 

server, across how many cores or NUMA units. Let 

us look at the individual features of each server. 

6.2.1 Query Engine+LTM 

The query engine is a Java application that runs on the 

JVM. It is a multi-threaded server, in which each 

client session is served by an independent thread. This 

means that if a query engine instance has 100 clients 

(the JDBC drivers running collocated with the client 

application), it will have 100 threads managing each 

client session.  

The query engine is stateless, it just keeps session 

state. In terms of memory, it depends on the kinds of 

queries it runs. Many queries are not memory 

intensive, just CPU intensive. Analytical queries with 

multi-way joins are both memory and CPU intensive. 

The LTM handles the interaction with all the 

transaction manager components and it is used as a 

NUMA-aware Deployments for LeanXcale Database Appliance

669



library by the data storage client side that is used as a 

library by the query engine. The LTM and client side 

of the storage engine are CPU bound. LTM and client 

side of the storage engine code runs as part of 

invoking query engine Java threads. The client side of 

the storage engine has also its own threading to deal 

with the communication with the storage engine 

servers. 

The JVM is known to not scale up well in terms 

of memory size due to the garbage collection 

becomes more intrusive when the number of objects 

grows what happens when the memory used is larger. 

Running the JVM across NUMA units results in 

remote NUMA memory accesses and since it does not 

scale up also results in being less efficient.  

For all aforementioned reasons, a given query 

engine instance is deployed within one NUMA unit. 

When more instances are needed, they are run on 

different NUMA units. A query engine since it is 

multi-threaded it can be deployed across multiple 

cores.  

6.2.2 Commit Sequencer, Snapshot Server 
and Manager 

All these servers are single threaded. They are CPU 

bound. Although in large deployments it is worth to 

run them separately, in small and medium 

deployments they are run as a single entity with three 

different threads. 

6.2.3 Logger 

Loggers are IO intensive and single threaded. Their 

IO activity is based on forced writes. Thus, they have 

to run on devices without any other IO since 

otherwise their performance is heavily affected.  

Therefore, loggers should run on individual cores 

spread across different NUMA units and always on 

devices that they use in isolation, with no other IO 

activity. 

6.2.4 Data Storage 

The data storage has two kinds of servers the meta-

data server and the data server. The former is mostly 

CPU bound. The latter can be CPU or IO-bound. It is 

always memory bound. 

The data server is single-threaded and CPU and 

IO intensive. Thus, it should be deployed on 

individual cores and without sharing the IO device 

with other components. 

 

 

6.3 Collocation Considerations 

There are two main considerations to be taken into 

account that affect collocation. Servers that interact a 

lot between them is good they are on the same NUMA 

unit so they can communicate through local memory. 

Servers that consume different kind of resources also 

benefit from collocation since the collocation results 

in a more evenly balanced resource consumption. 

What servers interact with a lot of data? The 

heaviest interaction happens between query engines 

and data storage servers. Especially with analytical 

queries. With analytical queries the query engine runs 

in parallel mode what means that all query engines 

process a fraction of the query. In analytical queries a 

lot of information can flow from the data storage 

engine into the query engine. Since query plans are 

projected so the first stages are purely local between 

data storage engine and query engine, it is very 

beneficial to collocate query engine with data storage 

servers.  

If there are enough IO devices on each NUMA 

unit for data storage servers and a logger, having a 

collocated logger with the LTM (that is a library of 

the query engine) is also very beneficial since all 

logging activity becomes purely local. 

Conflict managers are CPU-bound. Each instance 

is global so there is no special benefit on being 

collocated with any particular kind of server. Since 

they are CPU-bound they can benefit from a 

collocation with IO bound servers such as loggers or 

storage engine servers. The number of conflict 

managers typically required is much smaller than 

query engines, data storage servers, and loggers. So, 

it is fine to run them in an arbitrary NUMA unit with 

spare CPU capacity. 

6.4 Deployment Strategy 

For the Bull Sequana, we have adopted a uniform 

deployment strategy for the multi-instance servers. 

Basically, we deploy for each NUMA unit: 

 A query engine instance running on several cores. 

 Several storage server instances, each running on 

a separate core and each of them with an IO device 

used in isolation. 

 A logger running on a separate core and with an 

exclusive IO device. 

 A conflict manager that runs on the JVM of the 

query engine and share cores with it. 

The benefits of this strategy are: 

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

670



 The intensive communication between data 

storage instances and query engine instances is 

purely local in the first stages of the query plan. 

 The intensive communication between LTM and 

logger is purely local. 

 By allocating different set of cores with processor 

affinity the different services attain high caching 

efficiency. 

 By running on a single NUMA unit all memory 

accesses are NUMA local. 

 By distributing the IO intensive services 

uniformly across all NUMA units the IO load is 

evenly balanced across NUMA units and devices 

being able to use all the available IO bandwidth. 

The single-instance servers run on its own NUMA 

unit. In this NUMA unit it is run: 

 The meta-data server of the storage engine. 

 The commit sequencer. 

 The snapshot server. 

 The LeanXcale manager. 

 The loggers used by all the above servers. 

By running these meta servers on a different NUMA 

unit isolation from the worker servers is attained. This 

performance isolation is crucial since all these 

services if they get stalled, they stop the whole 

database. 

7 CONCLUSIONS 

Supercomputers such as the Bull Sequana are 

challenging because existing server software, 

especially databases are not designed to run 

efficiently on a large NUMA architecture such as the 

one of the Bull Sequana. LeanXcale database thanks 

to its modular design enables to adapt its 

configuration to use with optimal efficiently the Bull 

Sequana NUMA architecture. LeanXcale attains high 

locality of interactions within NUMA units, with no 

interactions across NUMA units except for the meta 

servers. This results in using the large NUMA 

architecture as a distributed system and maximizing 

the performance. Additionally, the IO usage is 

guaranteed to be uniform across NUMA units 

resulting in a very efficient usage of the super 

computer. 

ACKNOWLEDGEMENTS 

This work has been partially funded by the European 

Commission under the H2020 project: 

CloudDBAppliance – European Cloud In-Memory 

Database Appliance with Predictable Performance 

for Critical Applications. Project number: 732051. 

REFERENCES 

Özsu, T., P. Valduriez. 

Distributed and Parallel Database Systems. Computing 

Handbook, 3rd ed. 2014. 

LeanXcale. http://leanxcale.com. 2019 

CloudDBAppliance. https://clouddb.eu/ 2019 

NUMA-aware Deployments for LeanXcale Database Appliance

671


