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Abstract: The speech with the Lombard effect has been extensively studied in the context of speech recognition or 

speech enhancement. However, few studies have investigated the Lombard effect in the context of speech 

synthesis. The aim of this paper is to create a mathematical model that allows for retaining the Lombard effect. 

These models could be used as a basis of a formant speech synthesizer. The proposed models are based on 

dividing the speech signal into harmonics and modeling them as the output of a SISO system whose transfer 

function poles are multiple, and inputs vary in time. An analysis of the Lombard effect of the synthesized 

signal is performed on the noise residual. The synthesized signal residual is described by vectors of acoustic 

parameters related to the Lombard effect. For testing the performance of the created models in various noise 

conditions two classifiers are employed, namely kNN and Naive Bayes. For comparison of results, we created 

models of sinusoids based on frequency tracks. The results show that a model based on the residual sinewave 

sum demonstrates the possibility of retaining the Lombard effect. Finally, future work directions are outlined 

in conclusions.  

1 INTRODUCTION 

Even though researchers and engineers try to 

automate speech recognition and synthesis at least for 

half of a century, the progress in this field is below 

expectations. This especially concerns speech 

synthesis and speech in noise production and 

perception. Both research areas require a thorough 

analysis of individual spoken elements, carried out 

individually for languages. Analysis of speech in a 

noisy environment is an important aspect to deepen 

knowledge which is still missing. In the presence of 

noise, production of speech is modified. One of the 

most prominent effects of noise on speech production 

is called the Lombard effect, named after the French 

oto-rhino-laryngologist (Zollinger and Brumm, 

2011), who discovered “the symptom of the raised 

voice”, i.e., vocal effort expended due to noise. 

Lombard determined that in order to improve the 
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audibility, the speakers increased the level of their 

voice when they were in intense, adverse noise 

conditions, for example in noisy environments, in 

restaurants, etc. He also stated that the speakers were 

not aware of this effect. The effect was decided to be 

used to diagnose the degree of deafness, as well as to 

reveal people who simulate hearing problems.  

By definition, the Lombard effect (LE) is defined 

as the unintended tendency of the interlocutor to 

increase the level of speech in noise conditions in 

order to improve audibility and intelligibility (Kim, 

Davis, 2014). It was shown that LE manifests itself in 

many other speech variables than intensity only. LE 

causes changes in frequencies of the fundamental and 

formants, duration of vowels, signal spectrum slope 

flattening (Brum and Zollinger, 2018), etc. (Folk and 

Schiel, 2011; Godoy et al., 2014; Garnier et al., 2006). 

The Lombard effect was and is extensively 

researched (Boril and Pollák, 2005; Boril and Hansen, 
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2010; Kim J. and Davis, 2014; Garnier and Henrich, 

2013; Kleczkowski et al., 2017; Krishnamurthy and 

Hansen, 2009; Van Summers et al., 1988; Vlaj and 

Kačič, 2011), contrarily synthesis of LE is visible in 

the literature to less extent. 

The speech with the Lombard effect has been 

studied extensively in the context of speech 

recognition (Vlaj and Kačič, 2011; Marxer et al., 

2018). However, less attention has been paid to 

speech with Lombard effect synthesis. One of the 

reasons for this is that recording a large database of 

units that would be used in unit selection or 

concatenative synthesis is an extremely complex task. 

The authors of papers (Huang et al., 2010; López et 

al., 2017) propose a speech transformation approach 

to mimic this Lombard effect for improving the 

intelligibility of speech in noisy environments. These 

research has tended to focus on speaking style 

conversion from normal to Lombard speech, rather 

than creating speech models with Lombard effect. To 

our knowledge, only a few studies (Raitio et al., 2011; 

Suni et al., 2013) describe the speech synthesis with 

the Lombard effect. These studies are, however, 

based on hidden Markov models (HMMs). It is well 

known that the naturalness of synthetic speech given 

through HMM-based synthesis system is not as good 

as that of the unit-selection or formant speech 

synthesizers. 

The goal of this research is to create the models 

of speech which retain the Lombard effect. Such a 

model may help to synthesize these speech variables 

that may facilitate communication and perception in 

noisy adverse environments. These models could be 

used as a basis of formant synthesizer, which has 

advantages against other synthesizers. It produces 

sufficiently intelligible speech even at high speed, 

and most importantly, it can control prosody aspects 

of the synthesized speech. 

The main focus of most of the scientific papers 

which cover speech synthesis is on quality of the 

synthesized language. In this work, we look at the 

synthesis of speech from another perspective. 

Therefore, we propose a speech model which 

reconstructs the Lombard effect in the synthesized 

speech.  

The objective of this research is focused on vowel 

and semivowel speech phonemes analysis with the 

Lombard effect. Since the character of vowel and 

semivowel sounds is periodic, according to Fourier 

theory, these sounds can be expanded into the sum of 

harmonics. It is a well-known fact that information, 

especially that, which is not located in the harmonic 

peaks is not reproduced in the synthesized signal. 

Therefore, for harmonic modeling, a harmonic 

generator based on SISO (Single-Input and Single-

Output) system proposed by Korvel et al. (Korvel et 

al., 2016) is used in this paper. In order to distinguish 

whether the synthesized signal covers information 

concerning Lombard effect, an analysis of noise 

residual of regular speech and that with Lombard 

effect is performed. For a comparison of results, we 

created models of sinusoids based on frequency 

tracks (Serra, 1997).  

The paper is organized as follows: first, the basis 

of the harmonic model is recalled. In the next Section, 

the main assumptions regarding sinewave modeling 

based on frequency trackers are given. Then, noise 

residual analysis technique is described based on 

parametric description and examination of the 

extracted speech parameters. The experimental part 

consists in speech recordings, extraction of the vowel 

and consonant phonemes data from the recordings of 

utterances in the noise conditions, and the analysis of 

natural and synthesized speech uttered in the 

absence/presence of noise. Individual parameters for 

which the analyses were conducted are specified. 

Additionally, speech classification results are 

presented employing two well-known classifiers, i.e., 

kNN (k-Nearest Neighbors) and Naive Bayes. 

Finally, conclusions are derived on the basis of the 

results obtained. Also, future development for 

synthesizing Lombard effect in speech is outlined. 

2 HARMONIC MODELING 

BASED ON SISO SYSTEM 

Speech signals of vowels and semivowels are 

periodic. Mathematically, a periodic signal can be 

approximated by the sum of harmonics:  

 

𝑥(𝑡) = ∑ 𝑎𝑘sin⁡(2𝜋𝑘𝑓0𝑡 + 𝜑𝑘)
∞

𝑘=1
 (1) 

 

where 𝑥(𝑡)  is the phoneme signal, 𝑓0  is the 

fundamental frequency of the signal, 𝑎𝑘 refers to the 

amplitude of 𝑘th harmonic and 𝜑𝑘  refers to the phase 

of the 𝑘th harmonic.  

Due to the fact that very high frequencies do not 

affect the sound of the speech signal, the infinity 

symbol in Eq. (1) can be changed to a finite number 

of sinewaves (denoted by 𝐾 ). Also, it should be 

noted, that the periods are not completely identical. 

Therefore, in order to get a natural sounding, it is 

assumed that the harmonic amplitudes and the 

fundamental frequency are functions of time. 

Therefore Eq. (1) should be rewritten to contain 
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respectively:  𝑎𝑘(𝑡)  and 𝜑𝑘(𝑡) . For a harmonic 

generation, we used the model proposed by Korvel et 

al. (Korvel et al., 2016). The harmonic is given as the 

output of a SISO system whose transfer function 

poles are multiple and inputs vary in time. The 

impulse response of such a system is the 4th order 

quasipolynomial: 

 

ℎ𝑘(𝑛)

= 𝑒−𝜆𝑘𝑛Δ𝑡 ∑ 𝑎𝑘𝑚(𝑛Δt)
𝑚−1sin⁡(2𝜋𝑘𝑓𝑘

4

𝑚=1

𝑛Δt

+ 𝜑𝑘𝑚) 

(2) 

 

where 𝑛  is the discrete time, Δt  – refers to the 

sampling period, 𝑘 = 1,… , 𝐾  (𝐾  – the number of 

harmonics), 𝜆𝑘  is the damping factor, 𝑎𝑘1, 𝑎𝑘2, 𝑎𝑘3, 

𝑎𝑘4 are  amplitudes and  𝜑𝑘1, 𝜑𝑘2, 𝜑𝑘3, 𝜑𝑘4 – denote 

phases.  

The edges of 𝑘th harmonic filter are calculated by 

the formula: 

 

𝑃𝑠𝑡𝑎𝑟 = ((𝑘 − 1) + 0.5)𝑓0 (3) 

 

𝑃𝑒𝑛𝑑 = (𝑘 + 0.5)𝑓0 (4) 

 

where 𝑓0  is the fundamental frequency of the 

analyzed phoneme.  

The parameters of quasipolynomial are obtained 

using Levenberg method and component-wise 

optimization with deconvolution (Slivinskas and 

Simonyte, 2009).  

A harmonic changing over time is obtained by 

using the system inputs with time-varying amplitudes 

and slightly varying periods. 

Let 𝑇  be a vector consisting of the phoneme 

periods: 

 

𝑇 = [𝑇1, 𝑇2, … , 𝑇𝑀] (5) 

 

where 𝑀 is the number of periods of the phoneme. 

The number of periods of the 𝑘th phoneme is close to 

the number 𝑘 ∙ 𝑀. Therefore the vector consisting of 

the 𝑘 th harmonic periods can be expressed by the 

following formula: 

 

𝑇𝑘 = [
𝑇1
𝑘
,… ,

𝑇1
𝑘⏟    

𝑘

,
𝑇2
𝑘
,… ,

𝑇2
𝑘⏟      

𝑘

, … ,
𝑇𝑀
𝑘
,… ,

𝑇𝑀
𝑘⏟      

𝑘

]

= [𝑇𝑘,1, ⁡𝑇𝑘,2,, … , 𝑇𝑘,𝑘𝑀] 

(6) 

 

where 𝑇𝑘,𝑖 is the 𝑖th period of the 𝑘th harmonic. 

Instead of the unit impulses we use impulses of 

different amplitudes as inputs of the system: 

 

𝑢𝑘=[𝑢𝑘,1,⁡𝑢𝑘,2,…,⁡𝑢𝑘,𝑀]. (7) 

 

where 𝑢𝑘,𝑖  is the 𝑖th input of the 𝑘th harmonic. The 

input value 𝑢𝑘,𝑖   is calculated as the maximum 

amplitudes  of  the  𝑖th period of the 𝑘th harmonic. The 

detail procedure of determining inputs is presented in 

the paper by Pyž et al. (2014). 

Such inputs and periods changing gives 

naturalness to the synthesized sound. 

3 SINEWAVE MODELING BASED 

ON FREQUENCY TRACKERS 

Our goal is to extract information from the speech 

signal phoneme for sinewave modeling. For this 

purpose, the tracking technique is used. According to 

this technique, the magnitude spectrum |𝑋𝑙(𝑘)| of the 

phoneme signal 𝑥(𝑡) is calculated and the detection 

of local peaks in the spectra is performed. The list of 

estimated frequencies and amplitudes of the detected 

sinusoidal peaks is fed into to the tracking algorithm. 

In this paper, we use a classical algorithm proposed 

by McAulay and Quatieri (1986). According to this 

algorithm, the process of matching each spectrum 

peak in frame 𝑘 to the peaks in frame 𝑘+1, is given in 

the three following steps: 

Step 1. For each frequency 𝜔𝑖
𝑘  in frame 𝑘  the 

frequency 𝜔𝑗
𝑘+1  in frame 𝑘+1 is sought, which is 

closest to such a frequency and whose absolute 

distance is less than the threshold ∆. This condition 

can be expressed by the following formula: 

 

|𝜔𝑖
𝑘 − 𝜔𝑗

𝑘+1| < |𝜔𝑖
𝑘 − 𝜔𝑝

𝑘+1| < ∆ (8) 

 

where 𝑖 = 1,… . , 𝐿𝑘 (𝐿𝑘 – the total number of peaks 

in frame 𝑘) , 𝑗 = 1,… . , 𝐿𝑘+1 , (𝐿𝑘+1  – the total 

number of peaks in frame 𝑘 + 1) , and (𝑝 =
1,… . , 𝐿𝑘+1) ∩ (𝑝 ≠ 𝑗). 

If the condition (8) is satisfied, then 𝜔𝑗
𝑘+1  is 

declared to be a candidate to 𝜔𝑖
𝑘 . Otherwise, if the 

absolute distance between all frequencies 𝜔𝑗
𝑘+1 and 

frequency 𝜔𝑖
𝑘 is greater or equal than the threshold ∆, 

i.e.: 

 

|𝜔𝑖
𝑘 −𝜔𝑗

𝑘+1| ≥ ∆ (9) 
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then the frequency 𝜔𝑖
𝑘 is matched to itself in a frame 

𝑘+1, but with zero amplitude, and is eliminated from 

further consideration.  

Step 2. In this step, it is checked, if 𝜔𝑗
𝑘+1 has no 

better match to unmatched frequencies of frame 𝑘. 

This condition can be defined as follows: 

 

|𝜔𝑗
𝑘+1 − 𝜔𝑖

𝑘| < |𝜔𝑗
𝑘+1 − 𝜔𝑝+1

𝑘 | (10) 

 

where 𝑝 > 𝑖. 

If condition (10) is satisfied, then 𝜔𝑖
𝑘 is matched to 

𝜔𝑗
𝑘+1 . Contrarily, the adjacent remaining lower 

frequency 𝜔𝑗−1
𝑘+1  (if such exists) is tested. If the 

absolute distance between this frequency and the 

frequency 𝜔𝑖
𝑘 is less than the threshold ∆, the match 

of these frequencies is made. Otherwise, the 

frequency 𝜔𝑖
𝑘  is matched to itself with zero 

amplitude.  

Step 3. For the remaining frequencies in frame 

𝑘 +1, for which no matches have been made 

frequencies are created in frame 𝑘  with zero 

magnitude and the match is made.  

Based on the obtained analysis, resynthesis is then 

performed. For reconstruction a sound from a track, 

we use a sinewave oscillator bank developed by Ellis 

(Ellis, 2004). 

4 EVALUATION OF LOMBARD 

EFFECT IN MODELS  

The speech signal is characterized by many features 

such as phonemic variation, temporal structure, 

prosody, voice timbre and quality (Ellis, 2008). It also 

contains different components of the speaker’s profile 

like emotions or sentiments. All these features are 

connected into a one-dimensional signal. Therefore, 

observation and detection of speech changes in the 

context of Lombard speech are complex. Due to the 

occurrence of LE, the average intensity of the signal 

increases, frequencies of the fundamental and 

formants are shifted, duration of the individual words 

and that of vowels is changed, pause between words 

may be shortened, spectral energy from the low-

frequency band may shift towards the medium and 

high-frequency bands (Folk and Schiel, 2011; Godoy 

et al., 2014; Garnier et al., 2006). 

Based on these indications given above, we 

investigate a set of parameters including time and 

frequency domain features. It is because some of the 

changes in speech may be better visible in the signal 

descriptors rather than basic signal analysis. The time 

domain parameters are based on the analysis of the 

distribution of sound sample values in relation to zero 

and Root Mean Square (RMS) energy of the signal. 

Parameters contained in this group are as follows: the 

number of samples exceeding levels RMS, 2 × RMS, 

3 × RMS; the number of the signal crossings in 

relation to levels RMS, 2 ×RMS, 3 ×RMS (Kostek 

et al., 2011). 

The frequency domain parameters are calculated 

from the Discrete Fourier transform spectrum. The 

following spectral shape parameters are extracted 

based on MPEG 7 standard: Audio Spectral Centroid, 

Audio Spectral Spread, Audio Spectral Skewness, 

Audio Spectral Kurtosis, Spectral Entropy, Spectral 

RollOff, Spectral Brightness, Audio Spectrum 

Envelope, Spectral Flatness Measure. The spectrum 

shape parameters let us observe the change of 

spectrum shape in the context of noise. Due to the fact 

that Mel-Frequency Cepstral Coefficients (MFCCs) 

play major role in most applications considering 

speech in noise analysis (Al-Ali et al., 2017; Leu and 

Lin, 2017), they are also included in our parameter 

set. We calculated 20 MFCC coefficients. The scale 

of the first 13 filters is linear; for the rest of filters, the 

scale becomes logarithmic. The width of the linear 

filter is 66.67 Hz. The first four formants (F1-F4) are 

also included in our parameter set. The detailed 

description of selected parameters is given in several 

authors’ publications (Korvel et al., 2019; Kostek et 

al., 2011; Rosner et al., 2014; Rosner and Kostek, 

2018). 

Our goal is to determine if the synthesized signal 

retains information concerning the Lombard effect. 

For this purpose, an analysis of noise residual is 

performed. The analysis of the speech signal noise 

residual based on parametric description and 

examination of the extracted parameters is used. The 

procedure consists of three steps: 

Step 1: The analysis of data samples recorded in 

various noise environments. 

Step 2: Most discriminating parameter selection. 

Step 3: Parametrization of noise residual signal.  

Step 4: Classification of speech samples. 

In Step 1, the analysis of data samples recorded in 

various noise environments is performed. For this 

purpose, the parameters described above are 

calculated. Before the parameter calculation process, 

the speech signal is divided into short-time segments. 

The length of the segment is an integer power of 2, 

and the overlap between adjacent segments is equal 

to 50%. A vector of acoustic parameters is extracted 

for each segment. Then, the mean value is computed 

based on these parameters obtained from all short-

term segments.  
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In the second step, the acoustic parameters which 

show differences between signals recorded with 

different types of noise and without them are 

determined. The analysis was performed for each 

phoneme separately. 

Then, the parameterization of noise residual of all 

considered phonemes is performed. The parameters 

determined in the previous step are extracted.  

The last point of the analyses (Step 4) is the 

classification of speech samples. For this purpose, the 

extracted parameters are normalized. It was decided to 

normalize the values to the range between 0 and 1. The 

classification is performed based on the parameters 

extracted from noise residual. In the experiment, two 

classical machine learning algorithms to compare 

classification rates are used. The first of them is k-

Nearest Neighbors (kNN) based on the calculation of 

distances between parameters. The value 𝑘 was set to 

7. Also, a Naive Bayes classification method based on 

Bayes theory (Kotsiantis, 2007) is employed for 

comparison purposes. 

5 SPEECH RECORDINGS AND 

DATA EXTRACTION 

The recordings of sound samples were carried out in a 

room with an acoustically treated interior which 

suppresses reverberation. The recordings were made in 

two conditions: in the room without additional noise as 

well as with interference. The interference was given 

as pink noise generated using the noise generator, and 

the natural language samples of babble speech played 

back. As a result, four types of speech recordings were 

obtained. They are shown in Table 1. 

Table 1: Types of Speech Recordings. 

 

The experiment consists of extraction of the 
vowel and consonant phonemes from the recordings 
of utterances of three females and three males. The 
recording scenario included sentences and single 
words read in Polish. Information about audio data is 
given in Table 2. 

The recordings have been segmented at the 
phoneme level. The annotation was manually 
conducted using PRAAT program. 

Table 2: Parameters of Audio Data. 

Format wav 

Sampling frequency 48 kHz 

Quantification 16 bits 

Number of channels 1 

6 EXPERIMENT RESULTS 

The results of the modeling of the speech signal with 

the Lombard effect are given in this Section. The expe-

riments were performed in the MATLAB environment 

using tools created by authors. An example of the 

analyzed phoneme signals is shown in Figure 1. 

 

Figure 1: The Waveform of the Analyzed Speech Signal 

(Phoneme /a/). 

An experiment begins with expanding speech 

signals into harmonics using rectangular filters (Eq. 

(3)-(4)) that are implemented by the inverse Fourier 

transform. Then each harmonic is modeled as the 

input of the SISO system. For this purpose, the 

parameters of the impulse response (see Eq. (2)), as 

well as system inputs and periods, are determined. 

Parameters of the 1st – 3rd component impulse 

responses are shown in Table 3. 

Table 3: Parameters of the 1st – 3rd Component Impulse 

Responses of the Phoneme /a/. 

Component number 1 2 3 

𝑓 241 482 723 

𝜆 -600 -600 -600 

𝑎1 0 0 0 

𝑎2 2.02307 1.14826 3.15181 

𝑎3 0.01133 0.01267 0.04995 

𝑎4 0.00016 0.00012 0.00035 

𝜑1 0 0 0 

𝜑2 2.91723 -2.06651 -1.16040 

𝜑3 -0.70553 0.87301 1.59821 

𝜑4 3.07801 -1.56559 -0.51482 

The study room with acoustic barriers 

• recordings without noise

• recordings with pink noise of approximately 73 dB

• recordings with pink noise of approximately 84 dB

• recordings with babble speech of approximately 80 dB
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The periods of the SISO system are presented in 

Figure 2. 

 

Figure 2: The Periods of the SISO System (Phoneme /a/). 

In each period of the selected harmonic, we find the 

maximum of the amplitude. The amplitude maxima for 

the first three components are shown in Figure 3. 

The 1st speech signal harmonic and the 1st 

harmonic of the SISO system are shown in Figure 4. 

In order to evaluate the accuracy of modeling, the 

spectrum of the real data and modeled harmonics sum 

have been compared. The mean absolute error (MAE) 

is utilized in the model evaluation (Chai and Draxler, 

2014): 

𝑀𝐴𝐸 =
1

𝑄
∑|𝑆𝑞 − 𝑆̂𝑞|

𝑄

𝑞=1

∙ 100% (11) 

where 𝑆𝑞  is the 𝑞th value of the spectrum of the real 

phoneme, and 𝑆̂𝑞is the 𝑞th value of the spectrum of the 

modeled phoneme (𝑄 refers to the spectrum length). 

 

Figure 3: The Amplitude Maxima for the First Three 

Harmonics (Phoneme /a/). 

 

Figure 4: The 1st Speech Signal Harmonic and its Model ('+' 

– the Real Data, the Solid Line – the Output of the SISO 

System). 

For the phoneme /a/, shown as an example in 

Figure 4, 𝑀𝐴𝐸 is 3.62%. 

We carried out the experiment using utterances of 

three females and three males for vowels and 

semivowel phonemes modeling. The MAE values of 

the estimated signal spectrum depending on noise level 

are given in Table 4. 

Table 4: The MAE for the Estimated Vowel and Semivowel Phoneme Signal Spectrum. 

 Phoneme number Without noise 
Pink noise 

73 dB 

Pink noise 

84 dB 

Babble speech 

80 dB 

/a/ 61 5.19% 5.67% 6.62% 6.22% 

/i/ 65 3.13% 3.69% 4.36% 4.94% 

/e/ 90 4.44% 5.35% 5.70% 5.37% 

/o/ 96 3.38% 4.19% 4.62% 4.40% 

/u/ 68 2.32% 2.77% 3.36% 3.16% 

/l/ 27 2.50% 4.13% 3.55% 2.88% 

/m/ 22 2.12% 3.03% 3.56% 3.10% 

/n/ 75 2.42% 2.90% 3.26% 2.75% 

/j/ 29 3.09% 4.51% 4.61% 4.26% 

/r/ 37 3.95% 4.30% 4.54% 4.06% 

/w/ 11 3.20% 2.53% 3.64% 3.39% 

All 

phonemes 
581 3.25% 3.92% 4.35% 4.05% 
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The data given in Table 4 also show how many 

recordings were used in the experiment for each 

phoneme.  

In the second part of the experiment, a parametric 

analysis of the synthesized signal residual is 

performed. In order to evaluate the obtained results, the 

signal residual given from sinewave sum is used. An 

example of residual signals is shown in Figure 4. 

 

a) 

 

b) 

Figure 5: The Signal Residual of a) the Harmonic Sum 

Generated as the Input of the SISO Model, b) Sinewaves. 

An analysis was performed for each phoneme 

separately. Evaluation of the method suitability is 

based on the calculation of the acoustic parameters 

for the residual signal. We extracted residual 

parameters for all the phonemes. Classification based 

on parameters described in Section 4 was performed. 

The parameter set of each phoneme is divided into 

two parts: training dataset and testing dataset. For the 

class determination, kNN and Naive Bayes classifiers 

are used. The overall accuracy of the residual 

classification is given in Table 5, where the following 

denotations are used: 

 A – recordings without noise and with pink noise 

of 73 dB; 

 B – recordings without noise and with pink noise 

of 84 dB; 

 C – recordings without noise and with babble 

speech of 80 dB. 

In order to evaluate the classifier performance, the 

average accuracy was calculated. A comparison of 

the performance of two selected classification 

methods averaged for all phonemes is given in 

Table 6. 

The lowest residual classification accuracies have 

been achieved in the case of the harmonic sum (Table 

6). In order to determine whether the differences 

between the means of the residual classification for 

sinewave and harmonic sum are statistically 

significant, the t-test for two independent means was 

used (Lee, 2014).  

 

Table 5: The Results of the Residual Classification. 

 Real speech phoneme Residual of a sinewave sum Residual of a harmonic sum 

kNN  Naive Bayes kNN  Naive Bayes kNN  Naive Bayes 

/a/ A 76.3% 65.8% 65.8% 65.8% 76.3% 57.9% 

 B 92.1% 84.2% 81.6% 84.2% 81.6% 79.0% 

 C 94.7% 94.7% 92.1% 94.7% 79.0% 76.3% 

/i/ A 70.0% 70.0% 62.5% 72.5% 65.0% 45.0% 

 B 75.0% 77.5% 72.5% 80.0% 70.0% 75.0% 

 C 72.5% 70.0% 72.5% 72.5% 57.5% 57.5% 

/e/ A 94.6% 94.6% 85.7% 89.3% 80.4% 82.1% 

 B 94.6% 94.6% 89.3% 91.1% 82.1% 85.7% 

 C 100.0% 96.4% 98.2% 96.4% 91.1% 76.8% 

/o/ A 60.3% 53.5% 56.9% 58.6% 43.1% 50.0% 

 B 84.5% 84.5% 81.0% 82.8% 72.4% 79.3% 

 C 67.2% 65.5% 67.2% 65.5% 41.4% 62.1% 

/u/ A 66.7% 66.7% 57.1% 61.9% 61.9% 59.5% 

 B 69.1% 76.2% 69.1% 69.1% 64.3% 69.1% 
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Table 5: The Results of the Residual Classification. (Cont.). 

 C 54.8% 54.8% 52.4% 45.2% 45.2% 50.0% 

/l/ A 77.8% 72.2% 72.2% 66.7% 50.0% 61.1% 

 B 83.3% 77.8% 72.2% 77.8% 77.8% 66.7% 

 C 77.8% 77.8% 72.2% 61.1% 44.4% 50.0% 

/m/ 

A 78.6% 71.4% 71.4% 78.6% 71.4% 64.3% 

B 64.3% 64.3% 78.6% 71.4% 57.1% 50.0% 

C 71.4% 50.0% 50.0% 50.0% 50.0% 50.0% 

/n/ A 69.6% 60.9% 63.0% 63.0% 54.4% 56.5% 

 B 67.4% 56.5% 52.2% 52.2% 56.5% 56.5% 

 C 67.4% 65.2% 69.6% 54.4% 54.4% 45.7% 

/j/ A 88.9% 83.3% 61.1% 83.3% 72.2% 72.2% 

 B 94.4% 88.9% 83.3% 83.3% 77.8% 72.2% 

 C 88.9% 72.2% 83.3% 72.2% 83.3% 55.6% 

/r/ A 75.0% 66.7% 50.0% 62.5% 66.7% 58.3% 

 B 87.5% 83.3% 79.2% 70.8% 62.5% 66.7% 

 C 75.0% 70.8% 66.7% 75.0% 50.0% 16.7% 

/w/ A 100.0% 65.0% 62.5% 37.5% 62.5% 37.5% 

 B 87.5% 100.0% 75.0% 87.5% 37.5% 75.0% 

 C 75.0% 50.0% 62.5% 62.5% 62.5% 50.0% 

 

Table 6: The results of the residual classification averaged 

for all phonemes. 

 Real speech 

phoneme  

Residual of 

the sinewave 

sum 

Residual of 

the harmonic 

sum 

kNN 

A 78.0% 64.4% 64.0% 

B 81.8% 75.8% 67.2% 

C 76.8% 71.5% 59.9% 

Mean 78.9% 70.6% 63.7% 

Naive Bayes 

A 70.0% 67.2% 58.6% 

B 80.7% 77.3% 70.5% 

C 69.8% 68.1% 53.7% 

Mean 73.5% 70.9% 60.9% 

The test significance level equals 0.05. These 

results are as follows: for kNN classifier, the t-value 

is 2.11605, the p-value is 0.019118, for Naive Bayes 

classifier the t-value is 2.80706, the p-value is 

0.003309. Therefore, we can conclude that the 

differences are significant. 

 

7 CONCLUSIONS 

Phoneme models based on SISO system are proposed 

in this paper to create a synthesized speech that 

retains the Lombard effect. For that purpose, sounds 

of vowels (/a/, /i/, /o/, /u/, /e/) and semivowels (/l/, 

/m/, /n/, /j/, /r/, /w/) were utilized in this research. In 

general, 581 phoneme recordings employed in the 

experiment construction.  

In the first part of the experiment, models of 

normal speech and that with Lombard effect were 

created. The average modeling accuracies (MAE of 

the modeled and real signal spectrum) resulted from 

this part are as follows: 3.25% for recordings without 

noise, 3.92% for recordings with pink noise of 73 dB, 

4.35% for recordings with pink noise of 84 dB, and 

4.05% for recordings with babble speech of 80 dB. 

In the second part of the experiment detection of 

the Lombard effect in the synthesized signal noise 

residual was performed. We observed that the lowest 

residual classification accuracies (63.7% for kNN 

classifier, and 60.9% for Naive Bayes classifier) were 

obtained in the case of harmonic sum-based 

synthesis. In the case of the sinewave sum, the mean 

classification accuracy for the kNN classifier was 

70.6%, while for the Naive Bayes classifier - 70.9%. 

The employment of the one-way analysis of means 
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test (t-Test) revealed that the differences between 

accuracies of the two considered synthesis methods 
are significant. 

The results obtained in this study lead to the 

conclusion that the proposed model may retain 

Lombard effect characteristics. 

In the future, we would like to pursue the analysis 

of the synthesized phonemes in the context of 

checking whether the models created are language-

dependent.  

Moreover, future research will expand the 

database so that it can be possible to compare the 

results obtained with the state-of-the-art algorithms, 

such as neural networks (and specifically 

convolutional neural networks). The authors have 

experience in such an analysis (Korvel et al., 2018), 

but even though it will not be possible to directly 

compare the results, because, in the case of deep 

learning, 2D signal representations will be used 

(cepstrogram, spectrogram, etc.). 

Additionally, in the case of speech synthesis, an 

essential element is the subjective test that allows for 

assessing the quality of the synthesized sounds 

obtained. This aspect is especially interesting in the 

context of language specifics. Preliminary, informal 

tests show that quality of the synthesized phonemes 

may be directly compared to the original sound. 

Therefore, the subjective quality evaluation will be 

based on formal listening test sessions in which 

normal-hearing subjects will participate. The original 

phoneme, as well as the corresponding synthesized 

versions, will be used. Subjects will be asked to 

answer the following question: “Does the phoneme 

sound natural?” and to assign a corresponding score. 

Then, the participants will have to distinguish 

between the original phoneme and the synthesized 

one in the AA-AB comparison test, where A is the 

original sound and B the synthesized phoneme. Thus, 

this will be thoroughly researched in the future. 
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