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Abstract: The success rate of software projects has been increased since agile methodologies were adopted by many 

companies. Due their flexibility and continuous communication with clients, the main reason for the failure 

has shifted from the formulation and understanding of the requirements to inaccurate effort estimation. In 

recent years, several researchers and practitioners have proposed different estimation techniques. However, 

some projects are still failing because the budget and/or schedule are not accurately estimated since there still 

are numerous uncertain variables in software development process. Previous team collaborations, expertise 

and experience of team members, frequency of changing requirements or priorities are just a few examples. 

To improve the accuracy of effort estimation, this research proposes a model for agile software development 

project prediction using Bayesian networks. Based on literature review and practitioners’ knowledge, we 

identified two major categories of factors that influence effort needed: teamwork quality and user stories 

characteristics. We identified the sub-factors for each category and inter-dependencies between them. In our 

model, these factors are the nodes of the directed acyclic graph. The model can help agile teams to obtain a 

better software effort estimation. 

1 INTRODUCTION 

Agile software development consists of frequent or 

continuous delivery of software. The predictability 

and stability of traditional methods were replaced 

with flexibility and, consequently, agility, to generate 

value as quickly as possible. The previous studies 

indicate that the adoption of agile methodologies is 

beneficial in project implementation. According to a 

report published by PwC (2017), agile projects are 

28% more successful than traditional. The authors of 

Agile Manifesto consider that the following values 

are more important: “individual and interactions over 

process and tools”, “working software over 

comprehensive documentation”, “customer 

collaboration over contract negotiation” and 

“responding to change over following a plan” (Beck 

et al., 2001). These characteristics are suitable in the 

current context, extremely dynamic, characterized by 

rapid changes in the market, technology and business 

environment (Freire et al., 2018). There are many 

agile frameworks, including Scrum, eXtreme 
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Programming (XP), Agile Unified Process (AUP), 

Dynamic System Development Methodology 

(DSDM), Feature-Driven Development (FDD), 

Adaptive Software Development (ASD), Crystal and 

Lean Software Development (LSD). All have the 

following common characteristics: support 

continuous delivery of valuable software, strong 

collaboration between team members and co-

location, and adaptability of the process during the 

entire lifecycle of the project (Raslan and Darwish, 

2018). These frameworks proved that have the 

potential to reduce software development time and 

costs due to minimization of the amount of 

information transferred between the client and the 

development team and the elimination of the 

intermediate steps between the adoption of the 

decisions and their application (Weflen, 2018).  

Agile principles don’t guarantee the success of the 

projects. According to the studies published the rate 

of projects failure (Standish Group, 2014), including 

those that are using agile processes (Standish Group, 

2015), is quite high. The most important causes are 
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incomplete requirements, lack of user involvement, 

resources or executive support and changing 

requirements and specifications. Realistic 

requirements and estimation of the proper time 

horizon for their implementation and delivery are 

challenges for many teams, including those that apply 

agile principles. These are important conditions for 

the avoidance of budget overruns and delayed dates 

of delivery (López-Martínez, 2017a). 

Many uncertainties affect the planning process. 

Effort estimation is one of them. According to 

Trendowicz and Jeffery (2014), it is performed to 

manage and reduce project risks. 

There are many practices of effort estimation, 

such as Planning Poker, T-Shirt, bucket systems, etc. 

They require the participation of all team members. 

Each of them has the right to express an opinion on 

the necessary effort to perform a task. An expected 

result of this practice is a greater commitment to the 

team. Story point is used to estimate the effort by 

many teams. This is an estimation of the overall effort 

needed to implement completely a piece of work, 

including the complexity and the risk associated with 

its implementation. The concept of velocity is used to 

measure the team’s progress rate during a single 

sprint (Scott and Pfahl, 2018). This is the sum of the 

story-point estimates of the issues that the team 

resolved during an iteration and it used to predict 

when a release or a software should be completed 

(Choetkiertikul et al., 2018). The velocity depends by 

team expertise and experience, product complexity, 

the quality of requirements, communication and 

collaboration between team members and clients, etc. 

Effort estimation is subjective in nature. It 

depends on developers’ expertise and previous 

experiences with similar projects and tasks. 

According to previous studies, the average error in 

effort estimation ranges between 20% and 30% 

(Schweighofer, 2016). As a result, a method to 

improve the accuracy of effort estimation and to 

reduce the number of errors is welcome. A BN model 

can help the team assure the consistency of effort 

estimation especially in the case of complex projects 

with many issues. 

This paper is organized as follows. Section 2 

presents related work. Section 3 presents the 

proposed model and Section 4 presents our 

conclusions, limitations and future works. 

2 RELATED WORKS 

Agile frameworks assume incremental software 

development in small iterations or continuous 

delivery. Effort estimation needed to implement the 

functionalities will be achieved progressively. The 

following techniques can be used, either individually 

or aggregated, expert judgement, analogy with 

similar functionalities developed in previous projects 

or disaggregation. 

Planning Poker is one of the most commonly used 

methods of project estimation. It combines elements 

of all three techniques (Usman, 2014). Each of them 

has a certain level of uncertainty as they are largely 

based on the professional experience and opinions of 

the experts in order to minimize the uncertainty and 

to improve the accuracy of the estimates. According 

to Zare et al. (2016), effort estimation methods are 

divided into two categories: model-based and expert-

based methods. The first category contains methods 

that use statistical tools, such as statistical regression 

model (López-Martín, 2015), and methods that use 

artificial intelligence. The latter uses the following 

types of machine learning (ML) techniques: Case-

Based Reasoning (CBR), Artificial Neural Networks 

(ANN), Decision Trees (DT), Bayesian Networks 

(BN), Support Vector Regression (SVR), Genetic 

Algorithms (GA), Genetic Programming (GP) and 

Association Rules (AR) (Wen et al., 2012). Based on 

ML, predictive models were developed to estimate 

the effort needed in solving issues (Porru et al.) or to 

assign story points (Choetkiertikul et al., 2018). 

Several authors have proposed BN models for 

effort estimation in software development with agile 

methods. For instance, Dragicevic et al. (2017) use 

the following set of elements: working hours, 

requirements complexity, developer skills, type of 

task (new or recurrent), form complexity, function 

complexity, report complexity, and specification 

quality, to develop a BN model for task effort 

prediction. Karna and Gotovac (2015) consider three 

major entities involved in the estimation process: 

project, work items and estimators. They identify sets 

of attributes for each entity based on data collected 

from projects executed within Croatian software 

companies. Hearty et al. (2009) combine sparse data, 

prior assumption, and expert judgement into a BN 

model for predicting project velocity in extreme 

programming environment. Zare et al. (2016) present 

a three-level BN based on COCOMO components to 

estimate the effort needed in Man-Month for the 

software development. The Magnitude of Relative 

Error (MRE), the Mean Magnitude of Relative Error 

(MMRE), and the Prediction at Level m (Pred. (m)) 

are the most widely used metrics to assess the average 

estimation accuracy (Dantas et al., 2018; Port and 

Korte, 2018). Zahraoui et al. (2015) adjusted story 

point calculation of Scrum projects using three 

Effort Prediction in Agile Software Development with Bayesian Networks

239



elements: priority, size and complexity. They 

proposed to calculate an adjusted velocity with a new 

adjusted story point measure. They didn’t decompose 

the complexity in sub-factors. Trendowicz and 

Jeffery (2014) divided the effort estimation factors in 

context and scale factors: 

 Context factors include the programming 

language, application domain of the software, 

development type (e.g. new development, 

enhancement, or maintenance) and 

development life cycle (e.g., waterfall, 

incremental, or scrum). 

 Scale factors include software size, 

complexity of project, management activities, 

complexity of system interfaces and 

integration, project maturity, project duration, 

team size and structure, project novelty and 

the project budget. 

Based on previous studies, same authors classified the 

most relevant effort driver into four groups presented 

in Table 1. 

Table 1: Effort drivers (Trendowicz and Jeffery, 2014; 

Schweighofer et al., 2016). 

Drivers Definition 

Personnel 

factors 

related to characteristics of human 

resources involved in the software 

development project (expertise, abilities 

and motivation of stakeholders, 

analysts, designers, programmers, 

project managers, users, maintainers, 

etc.). 

Process 

factors 

related to characteristics of software 

processes – methods, tools, and 

technologies used during software 

development. 

Product 

factors 

related to characteristics of all artifacts 

created throughout entire life cycle 

(requirements, software code and 

documentation). 

Project 

factors 

related to characteristics of project 

management (the use of agile practices) 

and organization, resource 

management, development constraints, 

and working conditions. 

Curcio et al. (2018) identified three groups of 

obstacles for agile requirements engineering: 

 Related to the environment that include 

difficulties with communication in distributed 

teams; 

 Related to the people that include difficulties on 

finding specific and specialized skills, minimal 

and up to date documentation, customer 

availability, limited customer knowledge 

regarding requirements definition and his 

inability in terms of decision making, accuracy 

of estimations. 

 Related to resources: lack of specialized tool, 

lack of documentation, inappropriate 

architecture, growing technical debt and 

imprecise cost and schedule estimation. 

It is obvious that better teamwork creates better 

software (Freire et al., 2015), but better user stories 

will help team members to understand correctly the 

client needs and requirements and will reduce the 

time needed for additional explanations. Both aspects 

will favourable influence the accuracy of effort 

estimation and team’s velocity.  

Based on related works, the model presented in 

this article combines team-specific quality with user 

stories-specific characteristics to increase the 

accuracy of effort estimation.  

3 BAYESIAN NETWORK MODEL 

According to Tanveer et al. (2016), developers’ 

experience and knowledge together with the impact 

and complexity of the system’s changes influence the 

accuracy of estimations. They conducted a case study 

research with three agile development teams in a 

German multinational software company. The 

accurate estimation of costs and time is important for 

contract negation, human resources allocation, 

prioritizing the tasks, etc. In the case of 

underestimation, lack of necessary budget or failure 

to complete projects in time may occur.  

3.1 Key Factors of Effort Prediction 

In this paper, we propose a BN-based model to assess 

the effort prediction in the case of developing 

software with agile methodologies. Researchers have 

applied such a model in software engineering for 

process improvement, productivity prediction of the 

teams that use XP, risk evaluation and product quality 

prediction (Freire et al., 2018; López-Martínez et al., 

2017a; Karna and Gotovac, 2015; Hearty et al., 2009; 

Lai, 2017). Our model is generic, since there are 

many different agile frameworks and it is impossible 

to build a universal model that matches for all these 

frameworks. Also, the differences between projects, 

between teams’ size, organisational culture, the 

variety of enterprises business goals, etc. make it 

difficult, if not impossible, to use a universal model.  
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Based on the above-mentioned literature the factors 

that influence effort needed in software project 

development can be classified into two categories: 

teamwork quality and user stories characteristics, 

summarized in Table 2. 

Table 2: Effort prediction key factors. 

Categories Key factors 

Teamwork quality (Freire, 

2018; Scott and Pfahl, 

2018; Dragicevic, 2017; 

Hoegl et al., 2001; 

Weimar et al., 2013; Moe 

et al., 2009) 

Autonomy 

Collaboration 

Self-management 

Trust 

Backup 

Feedback 

Communication 

Team learning 

Expertise 

Shared leadership 

User stories 

characteristics 

(Dragicevic et al., 2017; 

Karna and Gotovac, 2015; 

Hearty et al., 2009; 

López-Martínez et al., 

2017a; López-Martínez, 

2017b; Chow and Cao, 

2008; Lai, 2017) 

Stability of requirements 

Integration 

Clarity 

Ordering 

Quality of specifications 

Complexity 

Size 

Completeness 

Consistency 

Discussable 

Understandable 

3.2 Bayesian Networks 

BN combines principles from graph theory, 

probability theory, computer science and statistics to 

represent knowledge about uncertain domains (Ben-

Gal, 2008). A BN is a directed acyclic graph (DAG) 

that represents “a joint probability distribution over a 

set of random variables” (Freire et al., 2018; 

Friedman et al., 1997). DAG is defined by two sets: 

the set of nodes which represent random variables and 

the set of directed edges which represent direct 

dependence among variables, V (Ben-Gal, 2008). The 

BN is defined by a pair B = {G, Θ}, where G is DAG 

whose nodes X1, X2, …., Xn correspond to the random 

variables and whose edges represent the direct 

dependences between variable. Θ is the set of 

probability functions and contains the parameter 

𝜃𝑥𝑖|𝜋𝑖 = 𝑃𝐵(𝑥𝑖|𝜋𝑖) for each xi in Xi conditioned by πi 

the set of parameters Xi in G (Freire et al., 2018; 

Friedman et al., 1997). The joint probability 

distribution of B over variables V (Freire et al., 2018) 

is presented in eq. 1. 

𝑃𝐵(𝑋𝑖 , … . 𝑋𝑛) =∏ 𝑃𝐵(𝑥𝑖|𝜋𝑖) =
𝑛

𝑖=1
∏ 𝜃𝑥𝑖|𝜋𝑖

𝑛

𝑖=1
 (1) 

According to Perkusich et al. (2015), the problem of 

BN building can be divided in two stages: the DAG 

construction and the Node Probability Tables (NPT) 

definition.  

3.3 Bayesian Networks Construction 

Based on literature and discussions with practitioners, 

we identified the relationship between key factors. A 

top-down approach is used to decompose the top-

level node into key factors that can be observed by 

experts or can be collected and analysed with specific 

tools. The complete DAG is shown in Figure 1. Next, 

in this section, we discuss in more details the key 

factors mentioned in previous section. 

The success of agile methodologies depends of 

the quality of team members and their ability to auto-

organize and the project requirements definition. The 

main goal is to satisfy customers with working 

functionalities. During the development phase or at 

the end of each sprint, the product should be inspected 

and adapted by customers. The changes, although 

welcome, can lead to significant delays in product 

completion. As a result, it is necessary to find an 

equilibrium between the value that a feature will 

bring and its influence on the development of the 

project.  

The completeness, consistency and 

understandability of project requirements can reduce 

time between their formulation and delivery. 

Therefore, we added the nodes complete, consistence 

and understandable as parents of the node Clarity. 

Further, clear and simple requirements will help 

the team to increase the velocity. This can be difficult 

for client, but team members will not need additional 

information for each functionality. Also, they should 

be ordered correctly in Product Backlog with respect 

to technical dependencies and agile principles that 

promote the development of functionalities based on 

their business value. Therefore, we added the nodes 

Ordering, Clarity and Stability as parents of the node 

Quality, in the case of user stories characteristics.  
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Figure 1: DAG of the BN. 

Project functionalities integration and its size 

evaluated as source lines of code reflect the difficulty 

of project implementation. We added these nodes as 

parents of the node Complexity.  

Team learning is defined as the ability to identify 

team members’ changes and the adaptation of the 

strategies according to them. Shared decisions 

process is described as the sharing of decision 

authority and leadership. Backup represents the 

understanding of the other members’ tasks and the 

availably to assist them. These three characteristics 

are important for self-management teams (Freire el., 

2018; Moe et al., 2009) since a benefit of agile 

adoption is the reduction of time between a decision 

and the outcome of that decision (Weflen et al., 

2018). This feature, along with Expertise of the team 

members, are added to the model as parent nodes of 

Autonomy. 

Feedback involves the exchange of information 

among team members and it is parent node for 

Communication along with Backup and Trust. 

According to previous research, the lack of trust 

limits the share of information between team 

members, because it creates the fear of being 

perceived as incompetent (Moe et al., 2009; 

Perkusich et al., 2015). 

The ideal agile team is small, co-located and 

communicates face-to-face daily. All members work 

together to achieve some common goals. 

Collaboration is a strong commitment towards the 

team and the team members to achieve the common 

goals. For the team to collaborate, they must 

communicate and must be able to self-manage. We 

added these nodes as parents of the node 

Collaboration.  

Team autonomy is an important key factor for 

teamwork quality. According to Moe et al. (2009), 

this is the ability of the team to regulate their 

boundary conditions in regards with the influence of 

management or other individuals on its activities. We 

added team autonomy and Collaboration as parents of 

the node Teamwork Quality. 

According to Perkusich et al. (2013) each key 

factor represents a set of tuples N={(s1,p1), …,( 

s|N|,p|N|)}, where si is a possible state and pi is the 

probability of each state i to appear. For identifying 

the elements of N, each node can be mapped to a set 

of practices and is composed of a 5-point Likert scale: 

Very Low (VL), Low (L), Medium (M), High (H) and 

Very High (VH) (Freire et al., 2018; López-Martínez 

et al., 2017a, 2017b). During the project’s lifecycles, 

the team should register the processes and practices 

used for each key factor. Furthermore, the base BN 

can be complemented with metrics. Some metrics, as 

size can be automatically collected. Other metrics, 

such as ordering, clarity, communication, expertise or 

shared decisions, are manually collected. To identify 

the elements of N, we defined that each node is 

composed of 5-point Likert scale mentioned above. 

Each state reflects to the quality of the node. Based 

on agile experts’ answers, we defined the NPT. This 

paper represents research-in-action and, as such, the 

validation of rank nodes is not complete and will be 

improved in future research. Table 3 illustrates the 

calculated values of user stories characteristics in the 

case of excellent formulated requirements and a 
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complex project (VL is very low, L is low, M is 

medium, H is high and VH is very high). The user 

stories are clear, stable and ordered. We used 

WMEAN function (eq. 2) (Dimitrova and Petkova, 

2015) with different weights for each attribute. The 

variance is 0.0005, the lower bound is 0 and the upper 

bound is 1. 

𝑊𝑀𝐸𝐴𝑁 =
∑ 𝑤𝑖𝑋𝑖𝑖=1…𝑛

𝑛
 (2) 

In formula (2), 𝑤𝑖 ≥ 0 are weight, and n is number of 

parent node. The syntax of this function in AgenaRisk 

is: wmean(w1, parent1, w2, parent2,…wn, parentn). 

Table 3: The calculated values for user stories 

characteristics. 

 State 

VL L M H VH 

User stories 

characteristics 

0 0 0.31 0.69 0 

Quality 0 0 0 0.03 0.97 

Complexity 0 0 0 0.04 0.96 

Table 4 illustrates the calculated values of teamwork 

quality for an ideal team. It has adequate experience 

with agile practices, team’s members collaborate 

properly, and the team is autonomous. We use the 

same function, variance and bounds. 

Table 4: The calculated values for teamwork quality. 

 State 

VL L M H VH 

Teamwork 

quality  

0 0 0 0.11 0.89 

Autonomy 0 0 0 0.02 0.98 

Collaboration 0 0 0 0.14 0.86 

In our example, the effort calculated based on 

previous values of the nodes, will be: Medium – 0.03, 

Low 0.65 and Very low – 0.32. If the quality of team 

is very high, user stories are well defined and the 

project is complex, the effort needed to implement the 

requirements is low. Team’s members will be able to 

develop complex functionalities since they 

communicate and collaborate, have the abilities and 

the right to adopt and apply decisions, they 

understand properly the requirements since these are 

clear, ordered and stable.     

To validate the completeness of the model, 

Eloranta et al., (2016) identified 14 anti-patterns in 

adopting Scrum based on a study expected in 11 

companies:  (1) big requirements documentation, (2) 

customer product owner, (3) product owner without 

authority, (4) long or non-existent feedback loops, (5) 

unordered product backlog, (6) work estimates given 

to teams, (7) hours in progress monitoring, (8) 

semifunctional teams, (9) customer caused 

disruption, (10) no sprint retrospective, (11) invisible 

progress, (12) varying sprint length, (13) too long 

sprints and (14) testing in next sprint. We only 

considered the anti-patterns that are valid for our BN. 

We present only the analysis for one anti-pattern 

in this section. For big requirements document, the 

consequence is the ambiguity. The requirements are 

stable, but they are not ordered, and are unclear. This 

is related to Quality, which is not an input node. We 

define evidences for the nodes Complete, Consistent, 

Discussable and Understandable to analyse this 

pattern. The result is presented in Figure 2. 

 

Figure 2: BN for anti-pattern “big requirements document”. 

The requirements are incomplete and inconsistent. 

Furthermore, the client is not available to discuss 

them and, as consequence, the team doesn’t 

understand the functionalities that has to be 

developed. The calculated BN shown in Figure 2 is 

shown that antipattern (1) is detected by the BN. 

Some anti-pattern related to sprint length (13), testing 

(14) and agile ceremonies (10) are considered invalid. 

They are not modelled by this BN. 

4 CONCLUSIONS 

This paper proposes a model of BN to assist the agile 

teams to estimate the effort needed in the case of 

software projects. To build the model, we performed 

a literature review and discussed with experts to 

identify the main factors that influence the effort 

needed. We identified two categories of factors: 

teamwork quality and user stories characteristics. In 

the case of teamwork quality, the key factors are 

autonomy, collaboration, self-management, trust, 

backup, feedback, communication, team learning, 

expertise and shared leadership. User stories 
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characteristics that influence the effort are: stability 

of requirements, integration, clarity, stability of 

specifications, ordering, complexity, completeness, 

consistency, discussable and understandable size. 

The main limitation of the model is the validation. 

For future research, we intend to validate the model 

in two stages: NPT validation and model validation. 

We will define more scenarios and will compare, in 

collaboration with experts, the expected output with 

actual results to conclude if they are acceptable. We 

will complete the model and the final version will be 

evaluated it through case studies in the software 

companies that use agile methodologies. The main 

contribution of the study is the integration of 

teamwork quality and user stories characteristics into 

the same model for estimating efforts needed for 

developing functionalities in software projects. 
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