
Effort Prediction in Agile Software Development with Bayesian

Networks

Laura-Diana Radu a
Department of Accounting, Business Information Systems and Statistics, Faculty of Economics and Business

Administration, Alexandru Ioan Cuza University of Iasi, Blvd. Carol I, Iasi, Romania

Keywords: Agile Methodologies, Effort Estimation, Teamwork Quality, User Stories Characteristics.

Abstract: The success rate of software projects has been increased since agile methodologies were adopted by many

companies. Due their flexibility and continuous communication with clients, the main reason for the failure

has shifted from the formulation and understanding of the requirements to inaccurate effort estimation. In

recent years, several researchers and practitioners have proposed different estimation techniques. However,

some projects are still failing because the budget and/or schedule are not accurately estimated since there still

are numerous uncertain variables in software development process. Previous team collaborations, expertise

and experience of team members, frequency of changing requirements or priorities are just a few examples.

To improve the accuracy of effort estimation, this research proposes a model for agile software development

project prediction using Bayesian networks. Based on literature review and practitioners’ knowledge, we

identified two major categories of factors that influence effort needed: teamwork quality and user stories

characteristics. We identified the sub-factors for each category and inter-dependencies between them. In our

model, these factors are the nodes of the directed acyclic graph. The model can help agile teams to obtain a

better software effort estimation.

1 INTRODUCTION

Agile software development consists of frequent or

continuous delivery of software. The predictability

and stability of traditional methods were replaced

with flexibility and, consequently, agility, to generate

value as quickly as possible. The previous studies

indicate that the adoption of agile methodologies is

beneficial in project implementation. According to a

report published by PwC (2017), agile projects are

28% more successful than traditional. The authors of

Agile Manifesto consider that the following values

are more important: “individual and interactions over

process and tools”, “working software over

comprehensive documentation”, “customer

collaboration over contract negotiation” and

“responding to change over following a plan” (Beck

et al., 2001). These characteristics are suitable in the

current context, extremely dynamic, characterized by

rapid changes in the market, technology and business

environment (Freire et al., 2018). There are many

agile frameworks, including Scrum, eXtreme

a https://orcid.org/0000-0002-1463-8369

Programming (XP), Agile Unified Process (AUP),

Dynamic System Development Methodology

(DSDM), Feature-Driven Development (FDD),

Adaptive Software Development (ASD), Crystal and

Lean Software Development (LSD). All have the

following common characteristics: support

continuous delivery of valuable software, strong

collaboration between team members and co-

location, and adaptability of the process during the

entire lifecycle of the project (Raslan and Darwish,

2018). These frameworks proved that have the

potential to reduce software development time and

costs due to minimization of the amount of

information transferred between the client and the

development team and the elimination of the

intermediate steps between the adoption of the

decisions and their application (Weflen, 2018).

Agile principles don’t guarantee the success of the

projects. According to the studies published the rate

of projects failure (Standish Group, 2014), including

those that are using agile processes (Standish Group,

2015), is quite high. The most important causes are

238
Radu, L.
Effort Prediction in Agile Software Development with Bayesian Networks.
DOI: 10.5220/0007842802380245
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 238-245
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

incomplete requirements, lack of user involvement,

resources or executive support and changing

requirements and specifications. Realistic

requirements and estimation of the proper time

horizon for their implementation and delivery are

challenges for many teams, including those that apply

agile principles. These are important conditions for

the avoidance of budget overruns and delayed dates

of delivery (López-Martínez, 2017a).

Many uncertainties affect the planning process.

Effort estimation is one of them. According to

Trendowicz and Jeffery (2014), it is performed to

manage and reduce project risks.

There are many practices of effort estimation,

such as Planning Poker, T-Shirt, bucket systems, etc.

They require the participation of all team members.

Each of them has the right to express an opinion on

the necessary effort to perform a task. An expected

result of this practice is a greater commitment to the

team. Story point is used to estimate the effort by

many teams. This is an estimation of the overall effort

needed to implement completely a piece of work,

including the complexity and the risk associated with

its implementation. The concept of velocity is used to

measure the team’s progress rate during a single

sprint (Scott and Pfahl, 2018). This is the sum of the

story-point estimates of the issues that the team

resolved during an iteration and it used to predict

when a release or a software should be completed

(Choetkiertikul et al., 2018). The velocity depends by

team expertise and experience, product complexity,

the quality of requirements, communication and

collaboration between team members and clients, etc.

Effort estimation is subjective in nature. It

depends on developers’ expertise and previous

experiences with similar projects and tasks.

According to previous studies, the average error in

effort estimation ranges between 20% and 30%

(Schweighofer, 2016). As a result, a method to

improve the accuracy of effort estimation and to

reduce the number of errors is welcome. A BN model

can help the team assure the consistency of effort

estimation especially in the case of complex projects

with many issues.

This paper is organized as follows. Section 2

presents related work. Section 3 presents the

proposed model and Section 4 presents our

conclusions, limitations and future works.

2 RELATED WORKS

Agile frameworks assume incremental software

development in small iterations or continuous

delivery. Effort estimation needed to implement the

functionalities will be achieved progressively. The

following techniques can be used, either individually

or aggregated, expert judgement, analogy with

similar functionalities developed in previous projects

or disaggregation.

Planning Poker is one of the most commonly used

methods of project estimation. It combines elements

of all three techniques (Usman, 2014). Each of them

has a certain level of uncertainty as they are largely

based on the professional experience and opinions of

the experts in order to minimize the uncertainty and

to improve the accuracy of the estimates. According

to Zare et al. (2016), effort estimation methods are

divided into two categories: model-based and expert-

based methods. The first category contains methods

that use statistical tools, such as statistical regression

model (López-Martín, 2015), and methods that use

artificial intelligence. The latter uses the following

types of machine learning (ML) techniques: Case-

Based Reasoning (CBR), Artificial Neural Networks

(ANN), Decision Trees (DT), Bayesian Networks

(BN), Support Vector Regression (SVR), Genetic

Algorithms (GA), Genetic Programming (GP) and

Association Rules (AR) (Wen et al., 2012). Based on

ML, predictive models were developed to estimate

the effort needed in solving issues (Porru et al.) or to

assign story points (Choetkiertikul et al., 2018).

Several authors have proposed BN models for

effort estimation in software development with agile

methods. For instance, Dragicevic et al. (2017) use

the following set of elements: working hours,

requirements complexity, developer skills, type of

task (new or recurrent), form complexity, function

complexity, report complexity, and specification

quality, to develop a BN model for task effort

prediction. Karna and Gotovac (2015) consider three

major entities involved in the estimation process:

project, work items and estimators. They identify sets

of attributes for each entity based on data collected

from projects executed within Croatian software

companies. Hearty et al. (2009) combine sparse data,

prior assumption, and expert judgement into a BN

model for predicting project velocity in extreme

programming environment. Zare et al. (2016) present

a three-level BN based on COCOMO components to

estimate the effort needed in Man-Month for the

software development. The Magnitude of Relative

Error (MRE), the Mean Magnitude of Relative Error

(MMRE), and the Prediction at Level m (Pred. (m))

are the most widely used metrics to assess the average

estimation accuracy (Dantas et al., 2018; Port and

Korte, 2018). Zahraoui et al. (2015) adjusted story

point calculation of Scrum projects using three

Effort Prediction in Agile Software Development with Bayesian Networks

239

elements: priority, size and complexity. They

proposed to calculate an adjusted velocity with a new

adjusted story point measure. They didn’t decompose

the complexity in sub-factors. Trendowicz and

Jeffery (2014) divided the effort estimation factors in

context and scale factors:

 Context factors include the programming

language, application domain of the software,

development type (e.g. new development,

enhancement, or maintenance) and

development life cycle (e.g., waterfall,

incremental, or scrum).

 Scale factors include software size,

complexity of project, management activities,

complexity of system interfaces and

integration, project maturity, project duration,

team size and structure, project novelty and

the project budget.

Based on previous studies, same authors classified the

most relevant effort driver into four groups presented

in Table 1.

Table 1: Effort drivers (Trendowicz and Jeffery, 2014;

Schweighofer et al., 2016).

Drivers Definition

Personnel

factors

related to characteristics of human

resources involved in the software

development project (expertise, abilities

and motivation of stakeholders,

analysts, designers, programmers,

project managers, users, maintainers,

etc.).

Process

factors

related to characteristics of software

processes – methods, tools, and

technologies used during software

development.

Product

factors

related to characteristics of all artifacts

created throughout entire life cycle

(requirements, software code and

documentation).

Project

factors

related to characteristics of project

management (the use of agile practices)

and organization, resource

management, development constraints,

and working conditions.

Curcio et al. (2018) identified three groups of

obstacles for agile requirements engineering:

 Related to the environment that include

difficulties with communication in distributed

teams;

 Related to the people that include difficulties on

finding specific and specialized skills, minimal

and up to date documentation, customer

availability, limited customer knowledge

regarding requirements definition and his

inability in terms of decision making, accuracy

of estimations.

 Related to resources: lack of specialized tool,

lack of documentation, inappropriate

architecture, growing technical debt and

imprecise cost and schedule estimation.

It is obvious that better teamwork creates better

software (Freire et al., 2015), but better user stories

will help team members to understand correctly the

client needs and requirements and will reduce the

time needed for additional explanations. Both aspects

will favourable influence the accuracy of effort

estimation and team’s velocity.

Based on related works, the model presented in

this article combines team-specific quality with user

stories-specific characteristics to increase the

accuracy of effort estimation.

3 BAYESIAN NETWORK MODEL

According to Tanveer et al. (2016), developers’

experience and knowledge together with the impact

and complexity of the system’s changes influence the

accuracy of estimations. They conducted a case study

research with three agile development teams in a

German multinational software company. The

accurate estimation of costs and time is important for

contract negation, human resources allocation,

prioritizing the tasks, etc. In the case of

underestimation, lack of necessary budget or failure

to complete projects in time may occur.

3.1 Key Factors of Effort Prediction

In this paper, we propose a BN-based model to assess

the effort prediction in the case of developing

software with agile methodologies. Researchers have

applied such a model in software engineering for

process improvement, productivity prediction of the

teams that use XP, risk evaluation and product quality

prediction (Freire et al., 2018; López-Martínez et al.,

2017a; Karna and Gotovac, 2015; Hearty et al., 2009;

Lai, 2017). Our model is generic, since there are

many different agile frameworks and it is impossible

to build a universal model that matches for all these

frameworks. Also, the differences between projects,

between teams’ size, organisational culture, the

variety of enterprises business goals, etc. make it

difficult, if not impossible, to use a universal model.

ICSOFT 2019 - 14th International Conference on Software Technologies

240

Based on the above-mentioned literature the factors

that influence effort needed in software project

development can be classified into two categories:

teamwork quality and user stories characteristics,

summarized in Table 2.

Table 2: Effort prediction key factors.

Categories Key factors

Teamwork quality (Freire,

2018; Scott and Pfahl,

2018; Dragicevic, 2017;

Hoegl et al., 2001;

Weimar et al., 2013; Moe

et al., 2009)

Autonomy

Collaboration

Self-management

Trust

Backup

Feedback

Communication

Team learning

Expertise

Shared leadership

User stories

characteristics

(Dragicevic et al., 2017;

Karna and Gotovac, 2015;

Hearty et al., 2009;

López-Martínez et al.,

2017a; López-Martínez,

2017b; Chow and Cao,

2008; Lai, 2017)

Stability of requirements

Integration

Clarity

Ordering

Quality of specifications

Complexity

Size

Completeness

Consistency

Discussable

Understandable

3.2 Bayesian Networks

BN combines principles from graph theory,

probability theory, computer science and statistics to

represent knowledge about uncertain domains (Ben-

Gal, 2008). A BN is a directed acyclic graph (DAG)

that represents “a joint probability distribution over a

set of random variables” (Freire et al., 2018;

Friedman et al., 1997). DAG is defined by two sets:

the set of nodes which represent random variables and

the set of directed edges which represent direct

dependence among variables, V (Ben-Gal, 2008). The

BN is defined by a pair B = {G, Θ}, where G is DAG

whose nodes X1, X2, …., Xn correspond to the random

variables and whose edges represent the direct

dependences between variable. Θ is the set of

probability functions and contains the parameter

𝜃𝑥𝑖|𝜋𝑖 = 𝑃𝐵(𝑥𝑖|𝜋𝑖) for each xi in Xi conditioned by πi

the set of parameters Xi in G (Freire et al., 2018;

Friedman et al., 1997). The joint probability

distribution of B over variables V (Freire et al., 2018)

is presented in eq. 1.

𝑃𝐵(𝑋𝑖 , … . 𝑋𝑛) =∏ 𝑃𝐵(𝑥𝑖|𝜋𝑖) =
𝑛

𝑖=1
∏ 𝜃𝑥𝑖|𝜋𝑖

𝑛

𝑖=1
 (1)

According to Perkusich et al. (2015), the problem of

BN building can be divided in two stages: the DAG

construction and the Node Probability Tables (NPT)

definition.

3.3 Bayesian Networks Construction

Based on literature and discussions with practitioners,

we identified the relationship between key factors. A

top-down approach is used to decompose the top-

level node into key factors that can be observed by

experts or can be collected and analysed with specific

tools. The complete DAG is shown in Figure 1. Next,

in this section, we discuss in more details the key

factors mentioned in previous section.

The success of agile methodologies depends of

the quality of team members and their ability to auto-

organize and the project requirements definition. The

main goal is to satisfy customers with working

functionalities. During the development phase or at

the end of each sprint, the product should be inspected

and adapted by customers. The changes, although

welcome, can lead to significant delays in product

completion. As a result, it is necessary to find an

equilibrium between the value that a feature will

bring and its influence on the development of the

project.

The completeness, consistency and

understandability of project requirements can reduce

time between their formulation and delivery.

Therefore, we added the nodes complete, consistence

and understandable as parents of the node Clarity.

Further, clear and simple requirements will help

the team to increase the velocity. This can be difficult

for client, but team members will not need additional

information for each functionality. Also, they should

be ordered correctly in Product Backlog with respect

to technical dependencies and agile principles that

promote the development of functionalities based on

their business value. Therefore, we added the nodes

Ordering, Clarity and Stability as parents of the node

Quality, in the case of user stories characteristics.

Effort Prediction in Agile Software Development with Bayesian Networks

241

Figure 1: DAG of the BN.

Project functionalities integration and its size

evaluated as source lines of code reflect the difficulty

of project implementation. We added these nodes as

parents of the node Complexity.

Team learning is defined as the ability to identify

team members’ changes and the adaptation of the

strategies according to them. Shared decisions

process is described as the sharing of decision

authority and leadership. Backup represents the

understanding of the other members’ tasks and the

availably to assist them. These three characteristics

are important for self-management teams (Freire el.,

2018; Moe et al., 2009) since a benefit of agile

adoption is the reduction of time between a decision

and the outcome of that decision (Weflen et al.,

2018). This feature, along with Expertise of the team

members, are added to the model as parent nodes of

Autonomy.

Feedback involves the exchange of information

among team members and it is parent node for

Communication along with Backup and Trust.

According to previous research, the lack of trust

limits the share of information between team

members, because it creates the fear of being

perceived as incompetent (Moe et al., 2009;

Perkusich et al., 2015).

The ideal agile team is small, co-located and

communicates face-to-face daily. All members work

together to achieve some common goals.

Collaboration is a strong commitment towards the

team and the team members to achieve the common

goals. For the team to collaborate, they must

communicate and must be able to self-manage. We

added these nodes as parents of the node

Collaboration.

Team autonomy is an important key factor for

teamwork quality. According to Moe et al. (2009),

this is the ability of the team to regulate their

boundary conditions in regards with the influence of

management or other individuals on its activities. We

added team autonomy and Collaboration as parents of

the node Teamwork Quality.

According to Perkusich et al. (2013) each key

factor represents a set of tuples N={(s1,p1), …,(

s|N|,p|N|)}, where si is a possible state and pi is the

probability of each state i to appear. For identifying

the elements of N, each node can be mapped to a set

of practices and is composed of a 5-point Likert scale:

Very Low (VL), Low (L), Medium (M), High (H) and

Very High (VH) (Freire et al., 2018; López-Martínez

et al., 2017a, 2017b). During the project’s lifecycles,

the team should register the processes and practices

used for each key factor. Furthermore, the base BN

can be complemented with metrics. Some metrics, as

size can be automatically collected. Other metrics,

such as ordering, clarity, communication, expertise or

shared decisions, are manually collected. To identify

the elements of N, we defined that each node is

composed of 5-point Likert scale mentioned above.

Each state reflects to the quality of the node. Based

on agile experts’ answers, we defined the NPT. This

paper represents research-in-action and, as such, the

validation of rank nodes is not complete and will be

improved in future research. Table 3 illustrates the

calculated values of user stories characteristics in the

case of excellent formulated requirements and a

ICSOFT 2019 - 14th International Conference on Software Technologies

242

complex project (VL is very low, L is low, M is

medium, H is high and VH is very high). The user

stories are clear, stable and ordered. We used

WMEAN function (eq. 2) (Dimitrova and Petkova,

2015) with different weights for each attribute. The

variance is 0.0005, the lower bound is 0 and the upper

bound is 1.

𝑊𝑀𝐸𝐴𝑁 =
∑ 𝑤𝑖𝑋𝑖𝑖=1…𝑛

𝑛
 (2)

In formula (2), 𝑤𝑖 ≥ 0 are weight, and n is number of

parent node. The syntax of this function in AgenaRisk

is: wmean(w1, parent1, w2, parent2,…wn, parentn).

Table 3: The calculated values for user stories

characteristics.

 State

VL L M H VH

User stories

characteristics

0 0 0.31 0.69 0

Quality 0 0 0 0.03 0.97

Complexity 0 0 0 0.04 0.96

Table 4 illustrates the calculated values of teamwork

quality for an ideal team. It has adequate experience

with agile practices, team’s members collaborate

properly, and the team is autonomous. We use the

same function, variance and bounds.

Table 4: The calculated values for teamwork quality.

 State

VL L M H VH

Teamwork

quality

0 0 0 0.11 0.89

Autonomy 0 0 0 0.02 0.98

Collaboration 0 0 0 0.14 0.86

In our example, the effort calculated based on

previous values of the nodes, will be: Medium – 0.03,

Low 0.65 and Very low – 0.32. If the quality of team

is very high, user stories are well defined and the

project is complex, the effort needed to implement the

requirements is low. Team’s members will be able to

develop complex functionalities since they

communicate and collaborate, have the abilities and

the right to adopt and apply decisions, they

understand properly the requirements since these are

clear, ordered and stable.

To validate the completeness of the model,

Eloranta et al., (2016) identified 14 anti-patterns in

adopting Scrum based on a study expected in 11

companies: (1) big requirements documentation, (2)

customer product owner, (3) product owner without

authority, (4) long or non-existent feedback loops, (5)

unordered product backlog, (6) work estimates given

to teams, (7) hours in progress monitoring, (8)

semifunctional teams, (9) customer caused

disruption, (10) no sprint retrospective, (11) invisible

progress, (12) varying sprint length, (13) too long

sprints and (14) testing in next sprint. We only

considered the anti-patterns that are valid for our BN.

We present only the analysis for one anti-pattern

in this section. For big requirements document, the

consequence is the ambiguity. The requirements are

stable, but they are not ordered, and are unclear. This

is related to Quality, which is not an input node. We

define evidences for the nodes Complete, Consistent,

Discussable and Understandable to analyse this

pattern. The result is presented in Figure 2.

Figure 2: BN for anti-pattern “big requirements document”.

The requirements are incomplete and inconsistent.

Furthermore, the client is not available to discuss

them and, as consequence, the team doesn’t

understand the functionalities that has to be

developed. The calculated BN shown in Figure 2 is

shown that antipattern (1) is detected by the BN.

Some anti-pattern related to sprint length (13), testing

(14) and agile ceremonies (10) are considered invalid.

They are not modelled by this BN.

4 CONCLUSIONS

This paper proposes a model of BN to assist the agile

teams to estimate the effort needed in the case of

software projects. To build the model, we performed

a literature review and discussed with experts to

identify the main factors that influence the effort

needed. We identified two categories of factors:

teamwork quality and user stories characteristics. In

the case of teamwork quality, the key factors are

autonomy, collaboration, self-management, trust,

backup, feedback, communication, team learning,

expertise and shared leadership. User stories

Effort Prediction in Agile Software Development with Bayesian Networks

243

characteristics that influence the effort are: stability

of requirements, integration, clarity, stability of

specifications, ordering, complexity, completeness,

consistency, discussable and understandable size.

The main limitation of the model is the validation.

For future research, we intend to validate the model

in two stages: NPT validation and model validation.

We will define more scenarios and will compare, in

collaboration with experts, the expected output with

actual results to conclude if they are acceptable. We

will complete the model and the final version will be

evaluated it through case studies in the software

companies that use agile methodologies. The main

contribution of the study is the integration of

teamwork quality and user stories characteristics into

the same model for estimating efforts needed for

developing functionalities in software projects.

ACKNOWLEDGEMENTS

This project is funded by the Ministry of Research

and Innovation within Program 1 – Development of

the national RD system, Subprogram 1.2 –

Institutional Performance – RDI excellence funding

projects, Contract no.34PFE/19.10.2018.

REFERENCES

Agena Ltd. (2018), Bayesian Network Software for Risk

Analysis and Decision Making, www.agenarisk.com.

Al-Rouson, T., Sulaimin, S., and Salam, R. A. (2009).

Supporting architectural design decision through risk

identification architecture pattern (RIAP) model.

WSEAS transactions on information science and

applications, 6(4): 611-620.

Beck, K. and several authors (2001). Agile Manifesto.

Website. http://www.agilemanifesto.org.

Ben‐ Gal, I. (2008). Bayesian networks. In Encyclopedia of

Statistics in Quality and Reliability, pages 1-6. John

Wiley & Sons, Ltd., New York.

Choetkiertikul, M., Dam, H. K., Tran, T., Pham, T. T.,

Ghose, A., and Menzies, T.(2018). A deep learning

model for estimating story points. IEEE Transactions

on Software Engineering, pages 1-21, IEEE Comput.

Soc.

Chow, T., and Cao, D. B. 2008. A survey study of critical

success factors in agile software projects. Journal of

systems and software, 81(6): 961-971.

Curcio, K., Navarro, T., Malucelli, A., & Reinehr, S.

(2018). Requirements engineering: A systematic

mapping study in agile software development. Journal

of Systems and Software, 139, 32-50.

Dantas, E., Perkusich, M., Dilorenzo, E., Perkusich, A., de

Almeida, H., and Santos, S. (2018). Effort Estimation

in Agile Software Development: an Updated Review.

In Proceedings of the 30th International Conference on

Software Engineering and Knowledge Engineering

(SEKE), pages 1-10, ACM Press.

Dimitrova, L., and Petkova, K. (2015). Analysis and

assessment of injury risk in female gymnastics:

Bayesian Network approach. TEM Journal, 4(1): 83-

95.

Dragicevic, S., Celar, S., and Turic, M. (2017). Bayesian

network model for task effort estimation in agile

software development. Journal of Systems and

Software, 127: 109-119.

Eloranta, V. P., Koskimies, K., and Mikkonen, T. (2016).

Exploring ScrumBut—An empirical study of Scrum

anti-patterns. Information and Software Technology,

74: 194-203.

Freire, A. S., da Silva, R. M., Perkusich, M., Almeida, H.,

and Perkusich, A. (2015). A Bayesian Network Model

to Assess Agile Teams' Teamwork Quality. In

Proceedings of the 29th Brazilian Symposium on

Software Engineering, pages 191-196. IEEE.

Freire, A. S., Perkusich, M., Saraiva, R., Almeida, H., and

Perkusich, A. (2018). A Bayesian networks-based

approach to assess and improve the teamwork quality

of agile teams. Information and Software Technology,

100: 119-132.

Friedman, N., Geiger, D., and Goldszmidt, M. (1997).

Bayesian network classifiers. Machine Learning, 29:

131-163.

Hearty, P., Fenton, N., Marquez, D., and Neil, M. (2009).

Predicting Project Velocity in XP Using a Learning

Dynamic Bayesian Network Model. IEEE Transactions

on Software Engineering, 35(1): 124-137.

Hoegl, M., and Gemuenden, H. G. (2001). Teamwork

quality and the success of innovative projects: A

theoretical concept and empirical evidence.

Organization science, 12(4): 435-449.

Karna, H., and Gotovac, S. (2015). Estimating software

development effort using Bayesian networks. In

Proceedings of the 23rd International Conference on

Software, Telecommunications and Computer

Networks (SoftCOM), pages 229-233, IEEE Comput.

Soc.

Lai, S. (2017). A User Story Quality Measurement Model

for Reducing Agile Software Development Risk.

International Journal of Software Engineering &

Applications, 8(2): 75-86.

López-Martín, C. 2015. Analyzing and handling local bias

for calibrating parametric cost estimation models.

Applied Soft Computing, 27: 434-449.

López-Martínez, J., Ramírez-Noriega, A., Juárez-Ramírez,

R., Licea, G., and Jiménez, S. (2017a). User stories

complexity estimation using Bayesian networks for

inexperienced developers. Cluster Computing, 21(1): 1-

14.

López-Martínez, J., Juárez-Ramírez, R., Ramírez-Noriega,

A., Licea, G., and Navarro-Almanza, R. (2017b).

Estimating user stories’ complexity and importance in

Scrum with Bayesian networks. In Proceedings of the

World Conference on Information Systems and

ICSOFT 2019 - 14th International Conference on Software Technologies

244

 Technologies, pages 205-214, Springer.

Moe, N. B., Dingsøyr, T., and Røyrvik, E. A. (2009).

Putting agile teamwork to the test–an preliminary

instrument for empirically assessing and improving

agile software development. In Proceedings of

nternational Conference on Agile Processes and

Extreme Programming in Software Engineering, pages

114-123, Springer.

Perkusich, M., Soares, G., Almeida, H., and Perkusich, A.

(2015). A procedure to detect problems of processes in

software development projects using Bayesian

networks. Expert Systems with Applications, 42(1):

437-450.

Perkusich, P., de Almeida, H., and Perkusich, A. (2013). A

Framework to Build Bayesian Networks to Assess

Scrum-based Software. In Proceedings of the Twenty-

Eighth Annual ACM Symposium on Applied

Computing, pages 1037-1042, ACM Press.

Porru, S., Murgia, A., Demeyer, S., Marchesi, M., and

Tonelli, R. (2016). Estimating story points from issue

reports. In Proceedings of the 12th International

Conference on Predictive Models and Data Analytics in

Software Engineering, article no. 2, ACM Press.

Port, D., and Korte, M. (2018). Comparative studies of the

model evaluation criterions mmre and pred in software

cost estimation research. In Proceedings of the Second

ACM-IEEE international symposium on Empirical

software engineering and measurement, pages 51-60,

ACM Press.

PwC (2017), Agile Project Delivery Confidence. Mitigate

project risks and deliver value to your business.

Website https://www.pwc.com/gx/en/services/audit-

assurance/risk-assurance/agile-project-delivery-confi

dence.html

Raslan, A. T., and Darwish, N. R. (2018). An Enhanced

Framework for Effort Estimation of Agile Projects.

International Journal of Intelligent Engineering and

Systems, 11(3): 205-214.

Schweighofer, T., Kline, A., Pavlic, L., and Hericko, M.

(2016). How is Effort Estimated in Agile Software

Development Projects? In Proceedings of the SQAMIA

2016: 5th Workshop of Software Quality, Analysis.

pages 73-80, CEUR-WS.

Scott, E., and Pfahl, D. (2018). Using Developers’ Features

to Estimate Story Points. In Proceedings of the 2018

International Conference on Software and System

Process, pages 106-110. Gothenburg, Sweden: ACM

Press.

Standish Group (2014). Chaos Report 2014. Website

https://www.projectsmart.co.uk/white-papers/chaos-

report.pdf.

Standish Group (2015). Chaos Report 2015. Website

https://www.standishgroup.com/sample_research_files

/CHAOSReport2015-Final.pdf.

Tanveer, B., Guzman, L., and Engel, U. (2016).

Understanding and improving effort estimation in agile

software development – an industrial case study. In

Proceedings of the International Conference on

Software and System Processes, pages 41-49, ACM

Press.

Trendowicz, A., Jeffery, R. 2014. Software Project Effort

Estimation. Foundations and Best Practice Guidelines

for Success. Springer, Cham.

Usman, M., Mendes, E., Weidt, F., and Britto, R. 2014.

Effort Estimation in Agile Software Development: A

Systematic Literature Review. In Proceedings of the

10th International Conference on Predictive Models in

Software Engineering, pages 82-91, ACM Press.

Weflen, E., Korniejczuk, K., Lau, S., Kryk, S., MacKenzie,

C. A., and Rivero, I. V. (2018). Application of Bayesian

Belief Network for Agile Kanban Backlog Estimation.

In Proceedings of the 2018 IISE Annual Conference,

Paper 118.

Weimar, E., Nugroho, A., Visser, J., and Plaat, A. (2013).

Towards high performance software teamwork. In

Proceedings of the 17th International Conference on

Evaluation and Assessment in Software Engineering,

pages 212-215, ACM Press.

Wen, J., Li, S., Lin, Z., Hu, Y., and Huang, C. (2012).

Systematic literature review of machine learning based

software development effort estimation models.

Information and Software Technology, 54(1): 41-59.

Zahraoui, H., & Idrissi, M. A. J. (2015). Adjusting story

points calculation in scrum effort & time estimation. In

Proceedings of the 10th International Conference on

Intelligent Systems: Theories and Applications (SITA).

pages 1-8. IEEE.

Zare, F., Zare, H., and Fallahnezhad, M. (2016). Software

effort estimation based on the optimal Bayesian belief

network. Applied Soft Computing, 49: 968–980.

Effort Prediction in Agile Software Development with Bayesian Networks

245

