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Abstract: Stanford CoreNLP is the Natural Language Processing (NLP) pipeline that allow analysing text at paragraph, 

sentence and word levels. Its outcomes can be used for extracting core elements of functional characteristics 

of the Topological Functioning Model (TFM). The TFM elements form the core of the knowledge model kept 

in the knowledge base. The knowledge model ought to be the core source for further model transformations 

up to source code. This paper presents research on main steps of processing Stanford CoreNLP application 

results to extract actions, objects, results and executors of the functional characteristics. The obtained results 

illustrate that such processing can be useful, however, requires text with rigour, and even uniform, structure 

of sentences as well as attention to the possible parsing errors. 

1 INTRODUCTION 

Software development based on principles of Object 

Management Group’s Model Driven Architecture 

(Miller and Mukerji 2001) considers models as a core 

of the development process. Model Driven 

Architecture (MDA) suggests using a chain of model 

transformations, namely, from a computation 

independent model (CIM) to a platform independent 

model (PIM), then to a platform specific model 

(PSM) and to source code.  

In our vision of implementation of those 

principles (Figure 1), we suggest using a knowledge 

model based on the Topological Functioning Model 

(TFM) as the CIM to generate code via an 

intermediary model – Topological UML model (Osis 

and Donins 2017). The TFM elaborated by Janis Osis 

at Riga Technical University (Osis 1969) specifies a 

functioning system from three viewpoints – 

functional, behavioural and structural. This model 

can serve as a core model for further system and 

software domain analysis and transformations to 

design models and code (Osis and Asnina 2011b). 

Extraction of TFM elements requires textual 

description of functionality of the system. At the 

                                                                                              

a  https://orcid.org/0000-0002-1731-989X 
b  https://orcid.org/0000-0003-3774-4233 
c  https://orcid.org/0000-0002-8368-9362 

present, we have manual processing of the 

unstructured, but processed text, and automated 

processing of use case specifications in the form of 

semi-structured text (Osis and Slihte 2010; Slihte et 

al. 2011). In the latter, results are kept in XMI (XML 

Metadata Interchange) files using XML (eXtensible 

Markup Language) structures. 

The new approach (Figure 1) supposes using a 

Natural Language Processing (NLP) pipeline for text 

processing (Nazaruka and Osis 2018) and a 

knowledge base (Nazaruks and Osis 2017; Nazaruks 

and Osis 2018) for keeping and managing results of 

the processing. The aim is to gain from NLP, Natural 

Language Understanding, and an inferring 

mechanism and flexibility of the knowledge base. 

Advantages of using the knowledge base are 

discovering conflicts in knowledge, managing 

synonyms, inferring new knowledge from the 

existing one. 

In practice, preparation of text and manual 

knowledge acquisition are too resource-consuming 

(Elstermann and Heuser 2016). It is better either to 

skip the step of preparation of text and start from 

human analysis of the available information, either to 
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automate or semi-automate this process. We are on 

the automation way.  

The goal of this research is to outline steps for 

processing Standford CoreNLP outcomes in order to 

achieve automated knowledge acquisition of the core 

elements of the TFM functional characteristics.  

The paper is organized as follows. Section 2 

presents overview of related work in the field. Section 

3 describes the core elements of the TFM functional 

characteristics, how Stanford CoreNLP is used now 

and what is required to achieve our aims. Section 4 

presents steps for processing CoreNLP outcomes, 

demonstrates them using the example as well as main 

results and limitations. Section 5 concludes the paper. 

Text in formal style

NLP:

Paragraph level: Coreference 

resolution

Sentence level: dependency 

analysis, constituency analysis

Word level: POS, tagging, 

lemmas

NLP outcome

Knowledge extraction

XML file with structured data

Import to the knowledge base 
Knowledge base 

(based on TFM 

priciples)

Model-to-Model 

transformation to 

Topological UML model

Topological UML model

Model-to-Text 

transformation

Source code

Intelligent processing:

1) processing of 

synonyms

2) implicit knowledge 

from domain ontology

3) similar functional 

feature identification

 

Figure 1: Intelligent Software Development. 

2 RELATED WORK 

Creation of models using knowledge extraction from 

different types of media is quite important since it 

may reduce time for analysis of large amount of 

information.  

Creation of models and UML diagrams from 

textual documents is presented in several researches. 

For instance, creation of use case diagrams (Jabbarin 

and Arman 2014) and UML Activity Diagrams using 

identification of simple verbal sentences (Nassar and 

Khamayseh 2015) from textual requirements in 

Arabic. Creation of UML class diagrams from textual 

requirements (Krishnan and Samuel 2010), and from 

use case descriptions (Elbendak et al. 2011) in 

English.  

Analysis of textual user requirements in natural 

language and requirements engineering diagrams can 

be used to create the Use Case Path model, the Hybrid 

Activity Diagrams model and the Domain model 

(Ilieva and Ormandjieva 2006). As Ilieva and 

Ormandjieva (2006) mentioned the standard way for 

automatic model creation from text is transformation 

of text in natural language to the one in formal natural 

language then to the intermediate model and then to 

the target requirements engineering model. For text 

analysis the authors applied syntax analysis by MBT 

tagger, semantics analysis to discover roles of words 

in the sentence (subject, predicate and object) and 

connections among them and then created a semantic 

network for text models. At the last step, the authors 

transformed this semantic network to one of the 

mentioned models using patterns.  

Natural language analysis can be used for 

automated composition of conceptual diagrams 

(Bhala et al. 2014). The authors also noted a need for 

human participation, as well as several issues of 

natural language itself, i.e., sentence structures may 

have different forms that are not completely 

predictable, syntactical correctness of sentences, as 

well as ambiguity in determining attributes as 

aggregations and in generalization.  

The overview of existing solutions in the field of 

UML model creation from textual requirements and 

business process models creation from textual 

documents (Osman and Zalhan 2016) showed that 

existing tools allow creating Class diagrams, Object 

diagrams, Use Case diagrams, and several of them 

provide composition of Sequence, Collaboration and 

Activity diagrams. All the solutions have certain 

limitations: some require user intervention, some 

cannot perform analysis of irrelevant classes, some 

require structuring text in a certain form before 

processing, and some cannot correctly determine 

several structural relationships between classes. The 

only approach that allows complete derivation of the 

business process model mentioned by the authors is 

presented by Friedrich, Mendling and Puhlmann 

(Friedrich et al. 2011).  

Some approaches use ontologies predefined by 

experts in the field and self-developed knowledge 

acquisition rules in order to extract knowledge on 

necessary properties or elements and their values 

from text documents (Amardeilh et al. 2005; Jones et 

al. 2014). 

In all cases the source document for creation of 

different UML diagrams is a specification of software 

requirements expressed as text in formal style. 

MDI4SE 2019 - Special Session on Model-Driven Innovations for Software Engineering

592



 

3 TOPOLOGICAL 

FUNCTIONING MODEL 

3.1 TFM Functional Characteristics 

The TFM is a formal model for representing and 

analysis of functionality of the system of any kind, 

e.g., business, software, biological, mechanical, etc. 

(Osis and Asnina 2011b). The TFM may represent 

functionality as a directed graph (𝑋, Θ), where X is a 

closed set of inner functional characteristics 

(hereinafter called functional features) of the system, 

and Θ is a topology set on them in the form of a set of 

cause-and-effect relations. TFM models can be 

compared for similarities and differences using the 

continuous mapping mechanism of topological 

spaces (Asnina and Osis 2010). The TFM is 

characterized by its topological and functioning 

properties (Osis and Asnina 2011a). The topological 

properties come from algebraic topology, they are 

connectedness, neighbourhood, closure and 

continuous mapping. The functioning properties 

come from the system theory, they are cause-and-

effect relations, cycle structure, inputs and outputs 

(Osis 1969). 

Definition of domain functional characteristics 

(Asnina and Osis 2011) includes determination of: 

 List of domain objects and their properties, 

 List of external systems, 

 List of subsystems/actors, 

 List of functional features. 

 

The main TFM element is a functional feature that 

represents system’s functional characteristic, e.g., a 

business process, a task, an action, or an activity (Osis 

and Asnina 2011a). It can be specified by a unique 

tuple (1). Comparing to the original one (Osis and 

Asnina 2011b), we have added element D for the 

better understanding of meaning of the feature. 

  
FF = <D, A, R, O, PrCond, PostCond, Pr, Ex, S> (1) 

 

Where: 

 D is a description of the functional feature, 

 A is object’s action,  

 R is a set of results of the object’s action (it is 

an optional element),  

 O is an object set which contains domain 

objects that is used or get the result of the 

action; for atomic functional feature the size of 

the set is equal to 1, 

 PrCond is a set of preconditions or atomic 

business rules,  

 PostCond is a set of post-conditions or atomic 

business rules,  

 Pr is a set of providers of the feature, i.e. 

entities (systems or sub-systems) which 

provide or suggest action A with a set O of 

certain objects,  

 Ex is a set of executors (direct performers) of 

the functional feature, i.e. a set of entities 

(systems or sub-systems) that enact action A. 

 S is a variable Subordination that holds 

changeable value of belonging of the functional 

feature either to the system or to the external 

environment according to the value of Pr. This 

means, for example, if there are two 

subsystems of the system, namely, subsystem1 

and subsystem2, then in case of separation of 

the TFM for subsystem2, S = external for 

functional feature with Pr = {System1, 

subsystem1}. Likewise, in case of separation of 

the TFM for subsystem1, the value of S will be 

equal to inner. 

 

A cause-and-effect relation between functional 

features defines the cause from which the triggering 

of the effect occurred. The formal definition of the 

cause-and-effect relations and their combinations is 

given by Osis, Donins, Asnina and Ovchinnikova 

(Asnina and Ovchinnikova 2015; Donins 2012; Osis 

and Donins 2017).  

3.2 Natural Language Processing in the 
IDM Toolset 

The starting point of applying NLP of the textual 

description of system functioning for acquiring 

knowledge for the TFM is implementation in the IDM 

(Integrated Domain Modelling) toolset, where 

processing of use case scenario text is performed 

using the Stanford Parser Java Library for identifying 

the executors (Ex) and the description of the 

functional feature D that is the verb phrase from the 

text of a step in a use case scenario (Osis and Slihte 

2010; Slihte et al. 2011).  

The prerequisite for parsing is that sentences of 

use case steps must be in the simple form to answer 

the question “Who does what?”, e.g., “Librarian 

checks out the book”. 

Parsing is done according to these steps: 

 Identify coordinating conjunctions to split a 

sentence into several clauses, and, thus, several 

functional features; 

 Identify the verb phrase (VP tag) that is 

considered as a union of action A, object O and 
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result R (if it is indicated) and forms the so-

called description of the functional feature; 

 Identify the noun phrase (NP tag) that is 

marked as executor Ex if it meets the same 

noun in the list of actors for the use case; 

 Preconditions and postconditions are taken 

directly from the corresponding preceding step 

in the use case (if they are specified); 

 Topological relations are equal to the sequence 

of use case steps. 

 

As a result, the following elements of the tuple (1) are 

obtained: 1) A, R, O implicitly in the description of 

functional feature, 2) Ex (single element), 3) PrCond 

and PostCond if they are specified for the use case, 

4) Topology is determined according to the sequence 

of steps specified in the flow of scenarios. The 

existing process is limited to use case specification 

that is manually proceeded and structured text. 

3.3 Extracting Elements of the TFM: 
Formulation of the Research Task 

The evolution of the topological functioning 

modelling leads us to the solution, where knowledge 

extracted from text must be kept in the knowledge-

frame base. Part of knowledge can be generated from 

the manually entered facts. According to the initial 

scheme of the knowledge frame system (Nazaruks 

and Osis 2017), the current research puts the focus on 

knowledge that is to be entered manually, i.e., values 

for slots of frame classes Object, Property, and 

FunctionalFeature (Nazaruka and Osis 2018): Object 

for domain objects, Property for properties of the 

domain objects, and FunctionalFeature for the TFM 

functional features. 

In case of unstructured text in formal style 

(hereinafter, formal text) we cannot use the same 

principles for discovering pre- and postconditions, 

while others are suitable. Therefore, tokenization, 

part-of-speech (POS) tagging, chunking, and Name 

Entity Recognition (NER)/Classification” as well as 

semantic analysis of noun and verb phrases must be 

done (Nazaruka and Osis 2018). Besides that, the 

tagged text and parsed trees must be semantically 

analysed to identify causal dependencies. In step of 

NER/Classification noun and verb ontology banks 

must be used. 

Therefore, the existing processing must be 

improved to proceed formal text and to achieve: 

 Clear identification of action A, set of results R 

and a set of domain objects, namely, objects O 

with their properties. 

 Identification of the Pr and Ex directly or from 

the context, if it is not stated explicitly. 

 Identification of PrCond, PostCond from the text 

according to the context and logical operators (OR, 

AND, XOR).  

 Initialization of the default value of 

Subordination as “not defined”. 

 

Since, the last two points require discourse analysis 

in text, it will be omitted in this research. Here, the 

focus is on the sentence and word level analysis. 

4 NATURAL LANGUAGE 

PROCESSING FOR THE TFM 

The Stanford CoreNLP toolkit (Manning et al. 2014) 

contains components that deal with tokenization, 

sentence splitting, POS tagging, morphological 

analysis (identification of base forms), NER, 

syntactical parsing, coreference resolution and other 

annotations such as gender and sentiment analysis. 

The NER component recognizes names (PERSON, 

LOCATION, ORGANIZATION, MISC – 

miscellaneous) and numerical (MONEY, NUMBER, 

DATE, TIME, DURATION, SET) entities. Phrases 

can be parsed using both constituent and dependency 

representations based on a probabilistic parser that is 

more accurate according to the parsers that relate to 

some predefined structures. Discovering basic 

dependencies can help in identification of actions and 

corresponding objects, results, modes (that can serve 

for identification of causal dependencies), executors 

and providers. Besides that, the Stanford CoreNLP 

implements mention detection and pronominal and 

nominal coreference resolution that can help in 

dealing with pronouns and noun phrases that denote 

concrete phenomena.  

For the given research we use Stanford CoreNLP 

version 3.9.2 that for POS tagging uses tags listed in 

Penn Treebank II (Bies et al. 1995). In this research 

the following tags are mentioned: S – simple 

declarative clause, NN – noun, single, NNS – noun, 

plural, NP – noun phrase, PRP – preposition, VBZ – 

verb, 3rd person singular present, VBP – verb, non-3rd 

person singular present, VBD – verb, past tense, 

VBG – verb, gerund or present participle, VBN – 

verb, past participle, VB – base form, VP – verb 

phrase, IN – preposition or subordinating 

conjunction. 
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4.1 General Steps of using NLP and 
Processing Outcomes 

Preparational Step “Coreference resolution”. In 

steps of identification executors, objects and results 

may be cases when a proposition (PRP tag) takes part 

in the relation. The proposition must be substituted 

with the corresponding noun (tagged NN or NNS) 

using results of coreference resolution. A preposition 

and the corresponding noun are linked using the edge 

coref. For example, in the sentence “When the reader 

completes the request for a book, he gives it to the 

librarian” (Figure 4), proposition “he” relates to “the 

reader” and “it” to “the request for a book”. 

Step 1. Identification of action A can be done 

using POS, lemmas, word dependency analysis, and 

constituency parsing and covers several cases. First, 

verb phrases VP must be identified in the sentence. 

At this step, we are interested only in verbs as such, 

not their modality. Therefore, in the found VP verbs 

tagged as VBZ, VBP, VBD, VBN, VBG, or VB must 

be determined. The verb word we need to extract 

must be linked with a noun (tag NN, NNS, or PRP) 

by using nsubj or dobj edges. The value of action A 

is the infinitive form of the verb that can be found 

using lemmas analysis, as for example for verb in 

VBZ “creates” it will be “create” (Figure 2). 

If the verb has link compound:prt to the particle 

tagged RP, then it must be extracted together with it, 

e.g., “check out”. 

 

Figure 2: The result of lemmas analysis. 

Step 2. Identification of elements of set Ex can be 

done using four NLP tasks – POS, NER, word 

dependency analysis and constituency parsing. An 

element of Ex is such noun phrase NP where a noun 

(tag NN, NNS, or PRP) is linked with the verb (tag 

VBZ, VBP, or VBD) by using: a) edge nsubj for 

active voice, or b) edge nmod:agent for passive voice. 

If basic dependencies are used, then nmod:agent 

(used in enhanced ++ dependencies) is replaced by 

nmod to the noun, and the noun is linked with the 

preposition “by” (tag IN) using edge case. This is 

illustrated by the results of analysis of two sample 

sentences: “The authorized librarian creates a new 

reader account” (Figure 3 and Figure 5) and “The new 

reader card is created by the authorized librarian” 

(Figure 6). The value of Exi is equal to the whole NP 

that contains the mentioned noun, in our sentence it is 

NP “the authorized librarian”.  

The NER task can be applied to check extracted 

nouns whether they are tagged as “TITLE”. However, 

here NER tagging works only for NN: NNS are 

skipped. 

 

Figure 3: The result of constituency parsing of the sentence 

in the active voice (at the sentence and phrase levels). 

 

Step 3. Identification of object Oi and result Ri 

should be done in one step. Object Oi (with or without 

the compound result Ri) is a direct object of the verb 

(Asnina and Osis 2011). 

Step 3.1. Identification of the direct object of the 

verb – action A. If a sentence contains a verb (action 

A) in the active voice, then the VP structure includes 

sub-structure NP, where the direct object is located, 

i.e. word n1 tagged as NN, NNS, or PRP and linked 

by using edge dobj.  

 

Figure 4: Results of POS identification and coreference resolution. 
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Figure 5: The result of dependency analysis of the sentence in the active voice (the word level). 

 

Figure 6: The result of dependency analysis of the sentence in the passive voice (at the word level). 

 

Figure 7: The results of dependency parsing for the sentence with more complex NP.

In case of the passive voice, the VP structure 

contains sub-structure NP, where the subject is 

located. Thus, we need to extract word n1 tagged as 

NN, NNS, or PRP that is linked with the verb by using 

edge nsubjpass. 

Step 3.2. Determination of the object and result of 

the functional feature. 

If the VP of the verb – action A is not linked by 

using any edge nmod but nmod:agent with another 

word n2 tagged as NN, NNS, or PRP, then the 

following is true: 

 If noun n1 is not linked with another noun n2 in 

the same structure NP by using either edge 

compound or in the same structure VP by using 

one of edges nmod:poss, nmod:of, nmod:to, 

nmod:into, nmod:from, nmod:for (in 

enhanced++ dependencies; otherwise, nmod to 

word n2 tagged as NN, NNS or PRP and case 

to the preposition “of”, “to”, “into”, “from”, or 

“for” tagged as IN), then the value of Oi is equal 

to n1. Otherwise, if such links do exist, the 

value of Oi is equal to linked noun n2. 

 In case if noun n1 is linked with n2 by using edge 

compound, then leaves of the whole structure 

NP that contains n1 are extracted and the 

preposition “of” is added to the end of the 

extracted string. The obtained string is the 

value of element Ri. 

 In case if noun n1 is linked with n2 by using 

edge nmod (and its variations), then leaves of 

the whole structure NP that contains n1 are 

extracted and the preposition tagged IN linked 
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with n2 by using edge case is added to the end 

of the extracted string. The obtained string is 

the value of element Ri. 

 Otherwise, the value of Ri is left empty. 

 

Otherwise, if the VP of the verb – action A is linked 

with another word n2 (not a direct object or nominal 

passive subject) tagged as NN, NNS, or PRP using 

edge nmod but nmod:agent, too, then the following is 

true: 

 Word n2 located in the corresponding NP in the 

prepositional phase PP is a value of the element 

Oi. 

 Leaves of the whole structure NP that has direct 

child n1 are extracted. The preposition tagged 

IN in the sibling prepositional phrase PP is 

added to the end of the extracted string. The 

result string is the value of element Ri. 

 

Let us consider the sentence “The librarian removes 

the reader account from the registry.” The verb 

removes is linked with the noun account (tag NN) by 

using edge dobj (Figure 7). Leaves of the 

corresponding NP are extracted as string “the reader 

account” and supplemented with the preposition 

“from” (Figure 8). The final string “the reader account 

from” is written as a value of R1. The noun registry 

(tag NN) is recorded as a value of O1. 

 

Figure 8: The results of the constituency parsing for the 

sentence with more complex NP. 

In case of conjunctions of NPs, e.g. “creates an 

account and a card”, the head noun or proposition will 

be linked with the verb by using edge dobj, while 

other nouns or propositions will be linked with the 

head noun by using edge conj. All the linked words 

must be found and processed according to the 

abovementioned principles. 

Let us consider the sentence in the active voice: 

“The authorized librarian creates a new reader 

account”. The VP (Figure 3) contains the verb creates 

(tagged VBZ) that is not linked to any noun or 

proposition by using nmod (Figure 5).  

The VP contains structure NP, where the direct 

object (edge dobj in Figure 5) is the noun account. Let 

us denote it as n1. Within the same NP, n1 = 

“account” is linked to noun n2 = “reader” by the 

edge compound. So, O1 = n2 = “reader”. The NP that 

contains n1 = “account” is “a new reader account”. 

As n1 is linked with n2 by using edge compound, then, 

after adding the proposition “of”, R1= “a new reader 

account of”. 

In case of the passive voice, “The new reader card 

is created by the authorized librarian” (Figure 6), edge 

nsubjpass links the verb created with noun n1 = 

“card”. The verb created is linked only with NP that 

contains the agent librarian (Figure 9). Thus, 

following the rules, O1 = n2 = “reader”, and R1 = 

“the new reader card of”. 

 

Figure 9: The result of constituency parsing of the sentence 

with the verb in the passive voice. 

Step 4. Identification of description D. The 

description is a visible part of the functional feature 

that is needed for its unique identification by a 

human. The original form is as in expression (2). 

 
action A-ing [[the] result R] [prepos.] [a] object O (2) 

 

For simplicity form the final form of D we have 

excluded the ending “ing” and articles (3).  

 

<action A> [<result Ri>]<object Oi> (3) 
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If one of the elements is empty, then it is replaced by 

the question mark “?”. 

4.2 Example and Discussion 

The analysed description is the following: “When an 

unregistered person arrives, the librarian creates a 

new reader account and a reader card. The librarian 

gives out the card to the reader. When the reader 

completes the request for a book, he gives it to the 

librarian. The librarian checks out the requested book 

from a book fund to a reader, if the book copy is 

available in a book fund. When the reader returns the 

book copy, the librarian takes it back and returns the 

book to the book fund. He imposes the fine, if the 

term of the loan is exceeded, the book is lost, or is 

damaged. When the reader pays the fine, the librarian 

closes the fine. If the book copy is hardly damaged, 

the librarian completes the statement of utilization, 

and sends the book copy to the recycling 

organization.” (Osis et al. 2007). 

Going through the steps, from eight full sentences 

we have obtained 19 functional features (Table 1).  

Functional feature 1 lacks a direct object. The 6th 

and 7th sentences have no results (Table 1, features 

11, 13-16).  

Functional features 12-14 and 17 have undefined 

executors (Table 1), they describe some events that 

happened beyond the system. 

Looking at functional features 14 and 17 (Table 

1), one can found that the 17th is a refinement of the 

14th. Indeed, if we look closer to the initial text, the 

text “If the book copy is hardly damaged…” 

concretizes the statement “…if the book…is 

damaged”. So, we may say, that this is one and the 

same “action” happened outside the system. 

 

Table 2 shows comparison of the 19 functional 

features with 22 features got after manual text 

processing.  

First, executors are correctly defined for all 

extracted features.  

Second, identification of verbs phrases allowed 

extracting “outside actions” from adverbial and 

conditional clauses (features 12-14, 17 on the left 

side), while in manual processing the “outside 

actions” have been transformed into “inner actions” 

that check results of those “outside actions” (features 

14, 15 on the right side). Besides that, the obtained 

feature list is supplemented with implicit “actions” 

(features 10, 11, 22 on the right side).  

Third, identified objects differ, too. For NLP 

processed text they are reader (properties: reader  

Table 1: Elements of the functional features extracted from text. 

Id Description D Action A Result R Object O Executors Ex 

1 Arrive <?> <?> 

arrive ? ? 

an unregistered 

person 

2 Create a new reader account of 

reader create 

a new reader 

account of reader the librarian 

3 Create a reader card of reader create a reader card reader the librarian 

4 Give out the card to reader give out the card to reader the librarian 

5 Complete the request for book complete the request for book the reader 

6 Give the request for book give the request for book the reader 

7 Check out the requested book from a 

book fund check out 

the requested 

book from book fund the librarian 

8 Return the book copy of book return the book copy of book the reader 

9 Take back the book copy of book take back the book copy of book the librarian 

10 Return the book to book fund return the book to book fund the librarian 

11 Impose <?> fine impose ? fine the librarian 

12 Exceed the term of loan exceed the term of loan ? 

13 Lose <?> book lose ? book ? 

14 Damage <?> book damage ? book ? 

15 Pay <?> fine pay ? fine the reader 

16 Close <?> fine close ? fine the librarian 

17 Damage the book copy of book damage the book copy of book ? 

18 Complete the statement of utilization 

complete the statement of utilization the librarian 

19 Send the book copy to recycling 

organization send the book copy to 

recycling 

organization the librarian 
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Table 2: Functional features extracted using NLP outcomes and manual processing. 

Functional features extraction (using NLP) Functional features extraction (manual processing) 

Id Description  

D = <A> <R> <O> Executor Ex 

Id Description 

<A>-ing [the <R>] [<PRP>] [a] <O>  

Executor Ex 

1 Arrive <?> <?> an 

unregistered 

person 

1 Arriving [of] a person person 

2 Create a new reader account of 

reader the librarian 

2 Creating a reader account Librarian 

3 Create a reader card of reader the librarian 3 Creating a reader card Librarian 

4 Give out the card to reader the librarian 4 Giving out the card to a reader Librarian 

   5 Confirming the status of a reader Reader 

5 Complete the request for book the reader 6 Completing a request_for_book Reader 

6 Give the request for book the reader 7 Sending a request_for_book Reader 

  

 

8 Taking out the book copy from a book 

fund 

Librarian 

7 Check out the requested book 

from a book fund the librarian 

9 Checking out a book copy Librarian 

   10 Giving out a book copy Librarian 

  

 

11 Getting a book copy [by a registered 

reader] 

Reader 

8 Return the book copy of book 

the reader 

12 Returning a book copy [by a registered 

person] 

Reader 

9 Take back the book copy of 

book the librarian 

13 Taking back a book copy Librarian 

10 Return the book to book fund the librarian 17 Returning the book copy to a book fund Librarian 

11 Impose <?> fine the librarian 16 Imposing a fine Librarian 

12 Exceed the term of loan ?    

  

 

14 Checking the term of loan of a book 

copy 

Librarian 

13 Lose <?> book ?    

14 Damage <?> book ?    

   15 Evaluating the condition of a book copy Librarian 

15 Pay <?> fine the reader 18 Paying a fine Reader 

16 Close <?> fine the librarian 19 Closing a fine Librarian 

17 Damage the book copy of book ?    

18 Complete the statement of 

utilization the librarian 

20 Completing a statement_of_utilization Librarian 

19 Send the book copy to recycling 

organization the librarian 

21 Sending the book copy to a recycling 

organization 

Librarian 

  

 

22 Recycling a book copy Recycling 

organization 

account, reader card / card), book (properties: 

request, book copy), book fund (properties: book), 

fine, loan (properties: term), utilization (properties: 

statement), recycling organization (properties: book 

copy), while in the manual approach they are person, 

reader account, reader card, reader (properties: 

card, status), request_for_book, book fund 

(properties: book copy), book copy (properties: 

term_of_loan, condition), fine, statement_of_-

utilization, recycling organization (properties: book 

copy). During manual processing, the expert has used 

his knowledge to abstract and unify several concepts. 

4.3 Parsing Issues 

The result of parsing and POS tagging may be 

affected by errors in lexical analysis. There are 

several parser models used by CoreNLP. Sometimes 

they can provide outputs with incorrect lexical 

analysis. So, analysing the clause “The librarian 

checks out the requested book from a book fund to a 

reader…” an issue was found that depends on the 

parser used. Until v.3.6.0, the default parser was 

englishPCFG.ser.gz (Stanford 2018).  

Extracting Core Elements of TFM Functional Characteristics from Stanford CoreNLP Application Outcomes

599



 

 

Figure 10: The result of parsing the sentence by using 

englishPCFG.ser.gz by CoreNLP GUI. 

Using this parser alone in CoreNLP GUI, the POS 

stage was performed correctly (Figure 10) – the word 

“checks” was recognized as VBZ (verb, 3rd person 

singular present), while using the newer one English 

model in CoreNLP from the command line as well as 

in online web application coreNLP.run it was 

mistakenly recognizes as a plural noun – NNS (Figure 

11). The reason is that the form of the verb is identical 

to the form of the plural noun, and the result depends 

on the language model used by the parser. 

This means, that some actions can be not defined 

and not included into the TFM further, at the same 

time some additional domain objects O will be 

defined.  

It is recommended to exclude situations when an 

adjective or a cardinal number describes the noun. For 

example, it is better to write rather “Substruct the first 

digit from the second digit” than “Substruct the first 

digit from the second” or “… from the second one”. 

Otherwise, the processing will show incorrect results. 

 

Figure 11: The result of parsing the sentence by using a 

newer English POS model by CoreNLP Command Line. 

Stanford CoreNLP allows open information 

extraction (open IE) from text, i.e., the extraction of 

relation tuples, typically binary relations (Angeli et al. 

2015), such as (nominal-subject; verb-relation; 

nominal-object).  

At first sight, the format of extraction seems very 

suitable for our purpose. However, it has several 

disadvantages (Figure 12). First, it does not extract 

the tuple if one of the elements is absent, as in case of 

“…an unregistered person arrives…”. Second, it 

extracts tuples, where nominal-object can be an 

adjective, as in case of “The book copy is blue”. Thus, 

using open IE some tuples may be missed, and some 

unnecessary tuples may be extracted. Therefore, we 

need analysis in more detail.  

 

Figure 12: Results of application of the Open IE that limit its usage for TFM element extraction. 
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5 CONCLUSIONS 

Summarizing all the results, we can conclude the 

following: 

 In order to exclude errors in NLP outcomes 

caused by CoreNLP parser, the source text 

must avoid verb forms syntactically equals to 

noun forms. 

 Results of manual processing can be more 

complete, because of expert’s ability to add 

implicit knowledge, but differ from the written 

text due to expert’s ability to modify actions 

and events ad hoc as well as to find synonyms 

in the text. 

 Structural relations between extracted domain 

objects differ in two approaches. In case of 

NLP it depends on completeness of data in the 

sentence. In case of manual processing it 

depends on expert’s knowledge about the 

domain, thus, on implicit knowledge. 

 Incomplete knowledge can be extracted, 

because sentences lack information on 

who/what is the subject when verbs are in the 

active voice; however, if after processing this 

knowledge is absent, then text can be 

supplemented with necessary information. 

 Incomplete information may lead to 

identification of more abstract or more specific 

functional features for one and the same 

functional characteristic. 

 A sentence can contain information on both 

executor and recipient. The recipient may be 

another actor. Now, this actor is specified as an 

object of action A. However, there are cases 

when it is worth to specify them separately. 

 

Therefore, processing of textual descriptions even in 

formal style have issues related to the technical side 

(i.e., parsing models and outcome representation 

formats) and to particularities of the natural language 

(textual description may not have all needed 

knowledge, structures of sentences differ, implicit 

synonyms are used). The latter can be partially solved 

either by using machine learning or manual pre-

processing of knowledge, e.g., specification of use 

case scenarios or user stories and exhaustive software 

requirements.  

Future research expects refinement of the 

proposed steps to decrease ambiguity in the 

processing results: to find patterns of sentences that 

minimize arbitrary interpretations of structural 

relations between domain objects, to elaborate more 

specific separation of domain objects involved in 

actions, as well as identify cause-and-effect relations 

between functional characteristics of the system. 
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