
Extracting Core Elements of TFM Functional Characteristics from

Stanford CoreNLP Application Outcomes

Erika Nazaruka a, Jānis Osis b and Viktorija Griberman c
Department of Applied Computer Science, Riga Technical University, Sētas Iela 1, Riga, Latvia

Keywords: Knowledge Acquisition, Natural Language Processing, Stanford Corenlp, Functional Feature, Topological

Functioning Model, Computation Independent Model.

Abstract: Stanford CoreNLP is the Natural Language Processing (NLP) pipeline that allow analysing text at paragraph,

sentence and word levels. Its outcomes can be used for extracting core elements of functional characteristics

of the Topological Functioning Model (TFM). The TFM elements form the core of the knowledge model kept

in the knowledge base. The knowledge model ought to be the core source for further model transformations

up to source code. This paper presents research on main steps of processing Stanford CoreNLP application

results to extract actions, objects, results and executors of the functional characteristics. The obtained results

illustrate that such processing can be useful, however, requires text with rigour, and even uniform, structure

of sentences as well as attention to the possible parsing errors.

1 INTRODUCTION

Software development based on principles of Object

Management Group’s Model Driven Architecture

(Miller and Mukerji 2001) considers models as a core

of the development process. Model Driven

Architecture (MDA) suggests using a chain of model

transformations, namely, from a computation

independent model (CIM) to a platform independent

model (PIM), then to a platform specific model

(PSM) and to source code.

In our vision of implementation of those

principles (Figure 1), we suggest using a knowledge

model based on the Topological Functioning Model

(TFM) as the CIM to generate code via an

intermediary model – Topological UML model (Osis

and Donins 2017). The TFM elaborated by Janis Osis

at Riga Technical University (Osis 1969) specifies a

functioning system from three viewpoints –

functional, behavioural and structural. This model

can serve as a core model for further system and

software domain analysis and transformations to

design models and code (Osis and Asnina 2011b).

Extraction of TFM elements requires textual

description of functionality of the system. At the

a https://orcid.org/0000-0002-1731-989X
b https://orcid.org/0000-0003-3774-4233
c https://orcid.org/0000-0002-8368-9362

present, we have manual processing of the

unstructured, but processed text, and automated

processing of use case specifications in the form of

semi-structured text (Osis and Slihte 2010; Slihte et

al. 2011). In the latter, results are kept in XMI (XML

Metadata Interchange) files using XML (eXtensible

Markup Language) structures.

The new approach (Figure 1) supposes using a

Natural Language Processing (NLP) pipeline for text

processing (Nazaruka and Osis 2018) and a

knowledge base (Nazaruks and Osis 2017; Nazaruks

and Osis 2018) for keeping and managing results of

the processing. The aim is to gain from NLP, Natural

Language Understanding, and an inferring

mechanism and flexibility of the knowledge base.

Advantages of using the knowledge base are

discovering conflicts in knowledge, managing

synonyms, inferring new knowledge from the

existing one.

In practice, preparation of text and manual

knowledge acquisition are too resource-consuming

(Elstermann and Heuser 2016). It is better either to

skip the step of preparation of text and start from

human analysis of the available information, either to

Nazaruka, E., Osis, J. and Griberman, V.
Extracting Core Elements of TFM Functional Characteristics from Stanford CoreNLP Application Outcomes.
DOI: 10.5220/0007831605910602
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 591-602
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

591

automate or semi-automate this process. We are on

the automation way.

The goal of this research is to outline steps for

processing Standford CoreNLP outcomes in order to

achieve automated knowledge acquisition of the core

elements of the TFM functional characteristics.

The paper is organized as follows. Section 2

presents overview of related work in the field. Section

3 describes the core elements of the TFM functional

characteristics, how Stanford CoreNLP is used now

and what is required to achieve our aims. Section 4

presents steps for processing CoreNLP outcomes,

demonstrates them using the example as well as main

results and limitations. Section 5 concludes the paper.

Text in formal style

NLP:

Paragraph level: Coreference

resolution

Sentence level: dependency

analysis, constituency analysis

Word level: POS, tagging,

lemmas

NLP outcome

Knowledge extraction

XML file with structured data

Import to the knowledge base
Knowledge base

(based on TFM

priciples)

Model-to-Model

transformation to

Topological UML model

Topological UML model

Model-to-Text

transformation

Source code

Intelligent processing:

1) processing of

synonyms

2) implicit knowledge

from domain ontology

3) similar functional

feature identification

Figure 1: Intelligent Software Development.

2 RELATED WORK

Creation of models using knowledge extraction from

different types of media is quite important since it

may reduce time for analysis of large amount of

information.

Creation of models and UML diagrams from

textual documents is presented in several researches.

For instance, creation of use case diagrams (Jabbarin

and Arman 2014) and UML Activity Diagrams using

identification of simple verbal sentences (Nassar and

Khamayseh 2015) from textual requirements in

Arabic. Creation of UML class diagrams from textual

requirements (Krishnan and Samuel 2010), and from

use case descriptions (Elbendak et al. 2011) in

English.

Analysis of textual user requirements in natural

language and requirements engineering diagrams can

be used to create the Use Case Path model, the Hybrid

Activity Diagrams model and the Domain model

(Ilieva and Ormandjieva 2006). As Ilieva and

Ormandjieva (2006) mentioned the standard way for

automatic model creation from text is transformation

of text in natural language to the one in formal natural

language then to the intermediate model and then to

the target requirements engineering model. For text

analysis the authors applied syntax analysis by MBT

tagger, semantics analysis to discover roles of words

in the sentence (subject, predicate and object) and

connections among them and then created a semantic

network for text models. At the last step, the authors

transformed this semantic network to one of the

mentioned models using patterns.

Natural language analysis can be used for

automated composition of conceptual diagrams

(Bhala et al. 2014). The authors also noted a need for

human participation, as well as several issues of

natural language itself, i.e., sentence structures may

have different forms that are not completely

predictable, syntactical correctness of sentences, as

well as ambiguity in determining attributes as

aggregations and in generalization.

The overview of existing solutions in the field of

UML model creation from textual requirements and

business process models creation from textual

documents (Osman and Zalhan 2016) showed that

existing tools allow creating Class diagrams, Object

diagrams, Use Case diagrams, and several of them

provide composition of Sequence, Collaboration and

Activity diagrams. All the solutions have certain

limitations: some require user intervention, some

cannot perform analysis of irrelevant classes, some

require structuring text in a certain form before

processing, and some cannot correctly determine

several structural relationships between classes. The

only approach that allows complete derivation of the

business process model mentioned by the authors is

presented by Friedrich, Mendling and Puhlmann

(Friedrich et al. 2011).

Some approaches use ontologies predefined by

experts in the field and self-developed knowledge

acquisition rules in order to extract knowledge on

necessary properties or elements and their values

from text documents (Amardeilh et al. 2005; Jones et

al. 2014).

In all cases the source document for creation of

different UML diagrams is a specification of software

requirements expressed as text in formal style.

MDI4SE 2019 - Special Session on Model-Driven Innovations for Software Engineering

592

3 TOPOLOGICAL

FUNCTIONING MODEL

3.1 TFM Functional Characteristics

The TFM is a formal model for representing and

analysis of functionality of the system of any kind,

e.g., business, software, biological, mechanical, etc.

(Osis and Asnina 2011b). The TFM may represent

functionality as a directed graph (𝑋, Θ), where X is a

closed set of inner functional characteristics

(hereinafter called functional features) of the system,

and Θ is a topology set on them in the form of a set of

cause-and-effect relations. TFM models can be

compared for similarities and differences using the

continuous mapping mechanism of topological

spaces (Asnina and Osis 2010). The TFM is

characterized by its topological and functioning

properties (Osis and Asnina 2011a). The topological

properties come from algebraic topology, they are

connectedness, neighbourhood, closure and

continuous mapping. The functioning properties

come from the system theory, they are cause-and-

effect relations, cycle structure, inputs and outputs

(Osis 1969).

Definition of domain functional characteristics

(Asnina and Osis 2011) includes determination of:

 List of domain objects and their properties,

 List of external systems,

 List of subsystems/actors,

 List of functional features.

The main TFM element is a functional feature that

represents system’s functional characteristic, e.g., a

business process, a task, an action, or an activity (Osis

and Asnina 2011a). It can be specified by a unique

tuple (1). Comparing to the original one (Osis and

Asnina 2011b), we have added element D for the

better understanding of meaning of the feature.

FF = <D, A, R, O, PrCond, PostCond, Pr, Ex, S> (1)

Where:

 D is a description of the functional feature,

 A is object’s action,

 R is a set of results of the object’s action (it is

an optional element),

 O is an object set which contains domain

objects that is used or get the result of the

action; for atomic functional feature the size of

the set is equal to 1,

 PrCond is a set of preconditions or atomic

business rules,

 PostCond is a set of post-conditions or atomic

business rules,

 Pr is a set of providers of the feature, i.e.

entities (systems or sub-systems) which

provide or suggest action A with a set O of

certain objects,

 Ex is a set of executors (direct performers) of

the functional feature, i.e. a set of entities

(systems or sub-systems) that enact action A.

 S is a variable Subordination that holds

changeable value of belonging of the functional

feature either to the system or to the external

environment according to the value of Pr. This

means, for example, if there are two

subsystems of the system, namely, subsystem1

and subsystem2, then in case of separation of

the TFM for subsystem2, S = external for

functional feature with Pr = {System1,

subsystem1}. Likewise, in case of separation of

the TFM for subsystem1, the value of S will be

equal to inner.

A cause-and-effect relation between functional

features defines the cause from which the triggering

of the effect occurred. The formal definition of the

cause-and-effect relations and their combinations is

given by Osis, Donins, Asnina and Ovchinnikova

(Asnina and Ovchinnikova 2015; Donins 2012; Osis

and Donins 2017).

3.2 Natural Language Processing in the
IDM Toolset

The starting point of applying NLP of the textual

description of system functioning for acquiring

knowledge for the TFM is implementation in the IDM

(Integrated Domain Modelling) toolset, where

processing of use case scenario text is performed

using the Stanford Parser Java Library for identifying

the executors (Ex) and the description of the

functional feature D that is the verb phrase from the

text of a step in a use case scenario (Osis and Slihte

2010; Slihte et al. 2011).

The prerequisite for parsing is that sentences of

use case steps must be in the simple form to answer

the question “Who does what?”, e.g., “Librarian

checks out the book”.

Parsing is done according to these steps:

 Identify coordinating conjunctions to split a

sentence into several clauses, and, thus, several

functional features;

 Identify the verb phrase (VP tag) that is

considered as a union of action A, object O and

Extracting Core Elements of TFM Functional Characteristics from Stanford CoreNLP Application Outcomes

593

result R (if it is indicated) and forms the so-

called description of the functional feature;

 Identify the noun phrase (NP tag) that is

marked as executor Ex if it meets the same

noun in the list of actors for the use case;

 Preconditions and postconditions are taken

directly from the corresponding preceding step

in the use case (if they are specified);

 Topological relations are equal to the sequence

of use case steps.

As a result, the following elements of the tuple (1) are

obtained: 1) A, R, O implicitly in the description of

functional feature, 2) Ex (single element), 3) PrCond

and PostCond if they are specified for the use case,

4) Topology is determined according to the sequence

of steps specified in the flow of scenarios. The

existing process is limited to use case specification

that is manually proceeded and structured text.

3.3 Extracting Elements of the TFM:
Formulation of the Research Task

The evolution of the topological functioning

modelling leads us to the solution, where knowledge

extracted from text must be kept in the knowledge-

frame base. Part of knowledge can be generated from

the manually entered facts. According to the initial

scheme of the knowledge frame system (Nazaruks

and Osis 2017), the current research puts the focus on

knowledge that is to be entered manually, i.e., values

for slots of frame classes Object, Property, and

FunctionalFeature (Nazaruka and Osis 2018): Object

for domain objects, Property for properties of the

domain objects, and FunctionalFeature for the TFM

functional features.

In case of unstructured text in formal style

(hereinafter, formal text) we cannot use the same

principles for discovering pre- and postconditions,

while others are suitable. Therefore, tokenization,

part-of-speech (POS) tagging, chunking, and Name

Entity Recognition (NER)/Classification” as well as

semantic analysis of noun and verb phrases must be

done (Nazaruka and Osis 2018). Besides that, the

tagged text and parsed trees must be semantically

analysed to identify causal dependencies. In step of

NER/Classification noun and verb ontology banks

must be used.

Therefore, the existing processing must be

improved to proceed formal text and to achieve:

 Clear identification of action A, set of results R

and a set of domain objects, namely, objects O

with their properties.

 Identification of the Pr and Ex directly or from

the context, if it is not stated explicitly.

 Identification of PrCond, PostCond from the text

according to the context and logical operators (OR,

AND, XOR).

 Initialization of the default value of

Subordination as “not defined”.

Since, the last two points require discourse analysis

in text, it will be omitted in this research. Here, the

focus is on the sentence and word level analysis.

4 NATURAL LANGUAGE

PROCESSING FOR THE TFM

The Stanford CoreNLP toolkit (Manning et al. 2014)

contains components that deal with tokenization,

sentence splitting, POS tagging, morphological

analysis (identification of base forms), NER,

syntactical parsing, coreference resolution and other

annotations such as gender and sentiment analysis.

The NER component recognizes names (PERSON,

LOCATION, ORGANIZATION, MISC –

miscellaneous) and numerical (MONEY, NUMBER,

DATE, TIME, DURATION, SET) entities. Phrases

can be parsed using both constituent and dependency

representations based on a probabilistic parser that is

more accurate according to the parsers that relate to

some predefined structures. Discovering basic

dependencies can help in identification of actions and

corresponding objects, results, modes (that can serve

for identification of causal dependencies), executors

and providers. Besides that, the Stanford CoreNLP

implements mention detection and pronominal and

nominal coreference resolution that can help in

dealing with pronouns and noun phrases that denote

concrete phenomena.

For the given research we use Stanford CoreNLP

version 3.9.2 that for POS tagging uses tags listed in

Penn Treebank II (Bies et al. 1995). In this research

the following tags are mentioned: S – simple

declarative clause, NN – noun, single, NNS – noun,

plural, NP – noun phrase, PRP – preposition, VBZ –

verb, 3rd person singular present, VBP – verb, non-3rd

person singular present, VBD – verb, past tense,

VBG – verb, gerund or present participle, VBN –

verb, past participle, VB – base form, VP – verb

phrase, IN – preposition or subordinating

conjunction.

MDI4SE 2019 - Special Session on Model-Driven Innovations for Software Engineering

594

4.1 General Steps of using NLP and
Processing Outcomes

Preparational Step “Coreference resolution”. In

steps of identification executors, objects and results

may be cases when a proposition (PRP tag) takes part

in the relation. The proposition must be substituted

with the corresponding noun (tagged NN or NNS)

using results of coreference resolution. A preposition

and the corresponding noun are linked using the edge

coref. For example, in the sentence “When the reader

completes the request for a book, he gives it to the

librarian” (Figure 4), proposition “he” relates to “the

reader” and “it” to “the request for a book”.

Step 1. Identification of action A can be done

using POS, lemmas, word dependency analysis, and

constituency parsing and covers several cases. First,

verb phrases VP must be identified in the sentence.

At this step, we are interested only in verbs as such,

not their modality. Therefore, in the found VP verbs

tagged as VBZ, VBP, VBD, VBN, VBG, or VB must

be determined. The verb word we need to extract

must be linked with a noun (tag NN, NNS, or PRP)

by using nsubj or dobj edges. The value of action A

is the infinitive form of the verb that can be found

using lemmas analysis, as for example for verb in

VBZ “creates” it will be “create” (Figure 2).

If the verb has link compound:prt to the particle

tagged RP, then it must be extracted together with it,

e.g., “check out”.

Figure 2: The result of lemmas analysis.

Step 2. Identification of elements of set Ex can be

done using four NLP tasks – POS, NER, word

dependency analysis and constituency parsing. An

element of Ex is such noun phrase NP where a noun

(tag NN, NNS, or PRP) is linked with the verb (tag

VBZ, VBP, or VBD) by using: a) edge nsubj for

active voice, or b) edge nmod:agent for passive voice.

If basic dependencies are used, then nmod:agent

(used in enhanced ++ dependencies) is replaced by

nmod to the noun, and the noun is linked with the

preposition “by” (tag IN) using edge case. This is

illustrated by the results of analysis of two sample

sentences: “The authorized librarian creates a new

reader account” (Figure 3 and Figure 5) and “The new

reader card is created by the authorized librarian”

(Figure 6). The value of Exi is equal to the whole NP

that contains the mentioned noun, in our sentence it is

NP “the authorized librarian”.

The NER task can be applied to check extracted

nouns whether they are tagged as “TITLE”. However,

here NER tagging works only for NN: NNS are

skipped.

Figure 3: The result of constituency parsing of the sentence

in the active voice (at the sentence and phrase levels).

Step 3. Identification of object Oi and result Ri

should be done in one step. Object Oi (with or without

the compound result Ri) is a direct object of the verb

(Asnina and Osis 2011).

Step 3.1. Identification of the direct object of the

verb – action A. If a sentence contains a verb (action

A) in the active voice, then the VP structure includes

sub-structure NP, where the direct object is located,

i.e. word n1 tagged as NN, NNS, or PRP and linked

by using edge dobj.

Figure 4: Results of POS identification and coreference resolution.

Extracting Core Elements of TFM Functional Characteristics from Stanford CoreNLP Application Outcomes

595

Figure 5: The result of dependency analysis of the sentence in the active voice (the word level).

Figure 6: The result of dependency analysis of the sentence in the passive voice (at the word level).

Figure 7: The results of dependency parsing for the sentence with more complex NP.

In case of the passive voice, the VP structure

contains sub-structure NP, where the subject is

located. Thus, we need to extract word n1 tagged as

NN, NNS, or PRP that is linked with the verb by using

edge nsubjpass.

Step 3.2. Determination of the object and result of

the functional feature.

If the VP of the verb – action A is not linked by

using any edge nmod but nmod:agent with another

word n2 tagged as NN, NNS, or PRP, then the

following is true:

 If noun n1 is not linked with another noun n2 in

the same structure NP by using either edge

compound or in the same structure VP by using

one of edges nmod:poss, nmod:of, nmod:to,

nmod:into, nmod:from, nmod:for (in

enhanced++ dependencies; otherwise, nmod to

word n2 tagged as NN, NNS or PRP and case

to the preposition “of”, “to”, “into”, “from”, or

“for” tagged as IN), then the value of Oi is equal

to n1. Otherwise, if such links do exist, the

value of Oi is equal to linked noun n2.

 In case if noun n1 is linked with n2 by using edge

compound, then leaves of the whole structure

NP that contains n1 are extracted and the

preposition “of” is added to the end of the

extracted string. The obtained string is the

value of element Ri.

 In case if noun n1 is linked with n2 by using

edge nmod (and its variations), then leaves of

the whole structure NP that contains n1 are

extracted and the preposition tagged IN linked

MDI4SE 2019 - Special Session on Model-Driven Innovations for Software Engineering

596

with n2 by using edge case is added to the end

of the extracted string. The obtained string is

the value of element Ri.

 Otherwise, the value of Ri is left empty.

Otherwise, if the VP of the verb – action A is linked

with another word n2 (not a direct object or nominal

passive subject) tagged as NN, NNS, or PRP using

edge nmod but nmod:agent, too, then the following is

true:

 Word n2 located in the corresponding NP in the

prepositional phase PP is a value of the element

Oi.

 Leaves of the whole structure NP that has direct

child n1 are extracted. The preposition tagged

IN in the sibling prepositional phrase PP is

added to the end of the extracted string. The

result string is the value of element Ri.

Let us consider the sentence “The librarian removes

the reader account from the registry.” The verb

removes is linked with the noun account (tag NN) by

using edge dobj (Figure 7). Leaves of the

corresponding NP are extracted as string “the reader

account” and supplemented with the preposition

“from” (Figure 8). The final string “the reader account

from” is written as a value of R1. The noun registry

(tag NN) is recorded as a value of O1.

Figure 8: The results of the constituency parsing for the

sentence with more complex NP.

In case of conjunctions of NPs, e.g. “creates an

account and a card”, the head noun or proposition will

be linked with the verb by using edge dobj, while

other nouns or propositions will be linked with the

head noun by using edge conj. All the linked words

must be found and processed according to the

abovementioned principles.

Let us consider the sentence in the active voice:

“The authorized librarian creates a new reader

account”. The VP (Figure 3) contains the verb creates

(tagged VBZ) that is not linked to any noun or

proposition by using nmod (Figure 5).

The VP contains structure NP, where the direct

object (edge dobj in Figure 5) is the noun account. Let

us denote it as n1. Within the same NP, n1 =

“account” is linked to noun n2 = “reader” by the

edge compound. So, O1 = n2 = “reader”. The NP that

contains n1 = “account” is “a new reader account”.

As n1 is linked with n2 by using edge compound, then,

after adding the proposition “of”, R1= “a new reader

account of”.

In case of the passive voice, “The new reader card

is created by the authorized librarian” (Figure 6), edge

nsubjpass links the verb created with noun n1 =

“card”. The verb created is linked only with NP that

contains the agent librarian (Figure 9). Thus,

following the rules, O1 = n2 = “reader”, and R1 =

“the new reader card of”.

Figure 9: The result of constituency parsing of the sentence

with the verb in the passive voice.

Step 4. Identification of description D. The

description is a visible part of the functional feature

that is needed for its unique identification by a

human. The original form is as in expression (2).

action A-ing [[the] result R] [prepos.] [a] object O (2)

For simplicity form the final form of D we have

excluded the ending “ing” and articles (3).

<action A> [<result Ri>]<object Oi> (3)

Extracting Core Elements of TFM Functional Characteristics from Stanford CoreNLP Application Outcomes

597

If one of the elements is empty, then it is replaced by

the question mark “?”.

4.2 Example and Discussion

The analysed description is the following: “When an

unregistered person arrives, the librarian creates a

new reader account and a reader card. The librarian

gives out the card to the reader. When the reader

completes the request for a book, he gives it to the

librarian. The librarian checks out the requested book

from a book fund to a reader, if the book copy is

available in a book fund. When the reader returns the

book copy, the librarian takes it back and returns the

book to the book fund. He imposes the fine, if the

term of the loan is exceeded, the book is lost, or is

damaged. When the reader pays the fine, the librarian

closes the fine. If the book copy is hardly damaged,

the librarian completes the statement of utilization,

and sends the book copy to the recycling

organization.” (Osis et al. 2007).

Going through the steps, from eight full sentences

we have obtained 19 functional features (Table 1).

Functional feature 1 lacks a direct object. The 6th

and 7th sentences have no results (Table 1, features

11, 13-16).

Functional features 12-14 and 17 have undefined

executors (Table 1), they describe some events that

happened beyond the system.

Looking at functional features 14 and 17 (Table

1), one can found that the 17th is a refinement of the

14th. Indeed, if we look closer to the initial text, the

text “If the book copy is hardly damaged…”

concretizes the statement “…if the book…is

damaged”. So, we may say, that this is one and the

same “action” happened outside the system.

Table 2 shows comparison of the 19 functional

features with 22 features got after manual text

processing.

First, executors are correctly defined for all

extracted features.

Second, identification of verbs phrases allowed

extracting “outside actions” from adverbial and

conditional clauses (features 12-14, 17 on the left

side), while in manual processing the “outside

actions” have been transformed into “inner actions”

that check results of those “outside actions” (features

14, 15 on the right side). Besides that, the obtained

feature list is supplemented with implicit “actions”

(features 10, 11, 22 on the right side).

Third, identified objects differ, too. For NLP

processed text they are reader (properties: reader

Table 1: Elements of the functional features extracted from text.

Id Description D Action A Result R Object O Executors Ex

1 Arrive <?> <?>

arrive ? ?

an unregistered

person

2 Create a new reader account of

reader create

a new reader

account of reader the librarian

3 Create a reader card of reader create a reader card reader the librarian

4 Give out the card to reader give out the card to reader the librarian

5 Complete the request for book complete the request for book the reader

6 Give the request for book give the request for book the reader

7 Check out the requested book from a

book fund check out

the requested

book from book fund the librarian

8 Return the book copy of book return the book copy of book the reader

9 Take back the book copy of book take back the book copy of book the librarian

10 Return the book to book fund return the book to book fund the librarian

11 Impose <?> fine impose ? fine the librarian

12 Exceed the term of loan exceed the term of loan ?

13 Lose <?> book lose ? book ?

14 Damage <?> book damage ? book ?

15 Pay <?> fine pay ? fine the reader

16 Close <?> fine close ? fine the librarian

17 Damage the book copy of book damage the book copy of book ?

18 Complete the statement of utilization

complete the statement of utilization the librarian

19 Send the book copy to recycling

organization send the book copy to

recycling

organization the librarian

MDI4SE 2019 - Special Session on Model-Driven Innovations for Software Engineering

598

Table 2: Functional features extracted using NLP outcomes and manual processing.

Functional features extraction (using NLP) Functional features extraction (manual processing)

Id Description

D = <A> <R> <O> Executor Ex

Id Description

<A>-ing [the <R>] [<PRP>] [a] <O>

Executor Ex

1 Arrive <?> <?> an

unregistered

person

1 Arriving [of] a person person

2 Create a new reader account of

reader the librarian

2 Creating a reader account Librarian

3 Create a reader card of reader the librarian 3 Creating a reader card Librarian

4 Give out the card to reader the librarian 4 Giving out the card to a reader Librarian

 5 Confirming the status of a reader Reader

5 Complete the request for book the reader 6 Completing a request_for_book Reader

6 Give the request for book the reader 7 Sending a request_for_book Reader

8 Taking out the book copy from a book

fund

Librarian

7 Check out the requested book

from a book fund the librarian

9 Checking out a book copy Librarian

 10 Giving out a book copy Librarian

11 Getting a book copy [by a registered

reader]

Reader

8 Return the book copy of book

the reader

12 Returning a book copy [by a registered

person]

Reader

9 Take back the book copy of

book the librarian

13 Taking back a book copy Librarian

10 Return the book to book fund the librarian 17 Returning the book copy to a book fund Librarian

11 Impose <?> fine the librarian 16 Imposing a fine Librarian

12 Exceed the term of loan ?

14 Checking the term of loan of a book

copy

Librarian

13 Lose <?> book ?

14 Damage <?> book ?

 15 Evaluating the condition of a book copy Librarian

15 Pay <?> fine the reader 18 Paying a fine Reader

16 Close <?> fine the librarian 19 Closing a fine Librarian

17 Damage the book copy of book ?

18 Complete the statement of

utilization the librarian

20 Completing a statement_of_utilization Librarian

19 Send the book copy to recycling

organization the librarian

21 Sending the book copy to a recycling

organization

Librarian

22 Recycling a book copy Recycling

organization

account, reader card / card), book (properties:

request, book copy), book fund (properties: book),

fine, loan (properties: term), utilization (properties:

statement), recycling organization (properties: book

copy), while in the manual approach they are person,

reader account, reader card, reader (properties:

card, status), request_for_book, book fund

(properties: book copy), book copy (properties:

term_of_loan, condition), fine, statement_of_-

utilization, recycling organization (properties: book

copy). During manual processing, the expert has used

his knowledge to abstract and unify several concepts.

4.3 Parsing Issues

The result of parsing and POS tagging may be

affected by errors in lexical analysis. There are

several parser models used by CoreNLP. Sometimes

they can provide outputs with incorrect lexical

analysis. So, analysing the clause “The librarian

checks out the requested book from a book fund to a

reader…” an issue was found that depends on the

parser used. Until v.3.6.0, the default parser was

englishPCFG.ser.gz (Stanford 2018).

Extracting Core Elements of TFM Functional Characteristics from Stanford CoreNLP Application Outcomes

599

Figure 10: The result of parsing the sentence by using

englishPCFG.ser.gz by CoreNLP GUI.

Using this parser alone in CoreNLP GUI, the POS

stage was performed correctly (Figure 10) – the word

“checks” was recognized as VBZ (verb, 3rd person

singular present), while using the newer one English

model in CoreNLP from the command line as well as

in online web application coreNLP.run it was

mistakenly recognizes as a plural noun – NNS (Figure

11). The reason is that the form of the verb is identical

to the form of the plural noun, and the result depends

on the language model used by the parser.

This means, that some actions can be not defined

and not included into the TFM further, at the same

time some additional domain objects O will be

defined.

It is recommended to exclude situations when an

adjective or a cardinal number describes the noun. For

example, it is better to write rather “Substruct the first

digit from the second digit” than “Substruct the first

digit from the second” or “… from the second one”.

Otherwise, the processing will show incorrect results.

Figure 11: The result of parsing the sentence by using a

newer English POS model by CoreNLP Command Line.

Stanford CoreNLP allows open information

extraction (open IE) from text, i.e., the extraction of

relation tuples, typically binary relations (Angeli et al.

2015), such as (nominal-subject; verb-relation;

nominal-object).

At first sight, the format of extraction seems very

suitable for our purpose. However, it has several

disadvantages (Figure 12). First, it does not extract

the tuple if one of the elements is absent, as in case of

“…an unregistered person arrives…”. Second, it

extracts tuples, where nominal-object can be an

adjective, as in case of “The book copy is blue”. Thus,

using open IE some tuples may be missed, and some

unnecessary tuples may be extracted. Therefore, we

need analysis in more detail.

Figure 12: Results of application of the Open IE that limit its usage for TFM element extraction.

MDI4SE 2019 - Special Session on Model-Driven Innovations for Software Engineering

600

5 CONCLUSIONS

Summarizing all the results, we can conclude the

following:

 In order to exclude errors in NLP outcomes

caused by CoreNLP parser, the source text

must avoid verb forms syntactically equals to

noun forms.

 Results of manual processing can be more

complete, because of expert’s ability to add

implicit knowledge, but differ from the written

text due to expert’s ability to modify actions

and events ad hoc as well as to find synonyms

in the text.

 Structural relations between extracted domain

objects differ in two approaches. In case of

NLP it depends on completeness of data in the

sentence. In case of manual processing it

depends on expert’s knowledge about the

domain, thus, on implicit knowledge.

 Incomplete knowledge can be extracted,

because sentences lack information on

who/what is the subject when verbs are in the

active voice; however, if after processing this

knowledge is absent, then text can be

supplemented with necessary information.

 Incomplete information may lead to

identification of more abstract or more specific

functional features for one and the same

functional characteristic.

 A sentence can contain information on both

executor and recipient. The recipient may be

another actor. Now, this actor is specified as an

object of action A. However, there are cases

when it is worth to specify them separately.

Therefore, processing of textual descriptions even in

formal style have issues related to the technical side

(i.e., parsing models and outcome representation

formats) and to particularities of the natural language

(textual description may not have all needed

knowledge, structures of sentences differ, implicit

synonyms are used). The latter can be partially solved

either by using machine learning or manual pre-

processing of knowledge, e.g., specification of use

case scenarios or user stories and exhaustive software

requirements.

Future research expects refinement of the

proposed steps to decrease ambiguity in the

processing results: to find patterns of sentences that

minimize arbitrary interpretations of structural

relations between domain objects, to elaborate more

specific separation of domain objects involved in

actions, as well as identify cause-and-effect relations

between functional characteristics of the system.

REFERENCES

Amardeilh, F., Laublet, P. and Minel, J.-L., 2005.

Document annotation and ontology population from

linguistic extractions. In Proceedings of the 3rd

international conference on Knowledge capture - K-

CAP ’05. New York, New York, USA: ACM Press, pp.

161–168.

Angeli, G., Johnson Premkumar, M. and Manning, C.D.,

2015. Leveraging Linguistic Structure For Open

Domain Information Extraction. In Proceedings of the

Association of Computational Linguistics (ACL).

Beijing, China: Association for Computational

Linguistics, pp. 344–354.

Asnina, E. and Osis, J., 2010. Computation Independent

Models: Bridging Problem and Solution Domains. In

Proceedings of the 2nd International Workshop on

Model-Driven Architecture and Modeling Theory-

Driven Development. Lisbon: SciTePress - Science and

and Technology Publications, pp. 23–32.

Asnina, E. and Osis, J., 2011. Topological Functioning

Model as a CIM-Business Model. In Model-Driven

Domain Analysis and Software Development. Hershey,

PA: IGI Global, pp. 40–64.

Asnina, E. and Ovchinnikova, V., 2015. Specification of

decision-making and control flow branching in

Topological Functioning Models of systems. In ENASE

2015 - Proceedings of the 10th International

Conference on Evaluation of Novel Approaches to

Software Engineering.

Bhala, V., Vidya Sagar, R. and Abirami, S., 2014.

Conceptual modeling of natural language functional

requirements. The Journal of Systems and Software, 88,

pp.25–41.

Bies, A. et al., 1995. Bracketing Guidelines for Treebank II

Style, Available at: https://repository.upenn.edu/

cis_reports/index.4.html.

Donins, U., 2012. Semantics of Logical Relations in

Topological Functioning Model. In Proceedings of the

7th International Conference on Evaluation of Novel

Approaches to Software Engineering, Wrocław,

Poland, 29-30 June, 2012. SciTePress, pp. 217–223.

Elbendak, M., Vickers, P. and Rossiter, N., 2011. Parsed

use case descriptions as a basis for object-oriented class

model generation. Journal of Systems and Software,

84(7), pp.1209–1223.

Elstermann, M. and Heuser, T., 2016. Automatic Tool

Support Possibilities for the Text-Based S-BPM

Process Modelling Methodology. In Proceedings of the

8th International Conference on Subject-oriented

Business Process Management - S-BPM ’16. New

York, New York, USA: ACM Press, pp. 1–8.

Friedrich, F., Mendling, J. and Puhlmann, F., 2011. Process

Model Generation from Natural Language Text. In

Proceedings of the 23rd International Conference on

Extracting Core Elements of TFM Functional Characteristics from Stanford CoreNLP Application Outcomes

601

Advanced Information Systems Engineering (CAiSE

2011). pp. 482–496.

Ilieva, M.G. and Ormandjieva, O., 2006. Models Derived

from Automatically Analyzed Textual User

Requirements. In Fourth International Conference on

Software Engineering Research, Management and

Applications (SERA’06). IEEE, pp. 13–21.

Jabbarin, S. and Arman, N., 2014. Constructing use case

models from Arabic user requirements in a semi-

automated approach. In 2014 World Congress on

Computer Applications and Information Systems,

WCCAIS 2014. Hammamet: IEEE, pp. 1–4.

Jones, D.E. et al., 2014. Automatic Extraction of

Nanoparticle Properties Using Natural Language

Processing: NanoSifter an Application to Acquire

PAMAM Dendrimer Properties V. Ceña, ed. PLoS

ONE, 9(1), p.e83932.

Krishnan, H. and Samuel, P., 2010. Relative Extraction

Methodology for class diagram generation using

dependency graph. In 2010 INTERNATIONAL

CONFERENCE ON COMMUNICATION CONTROL

AND COMPUTING TECHNOLOGIES. IEEE, pp.

815–820.

Manning, C.D. et al., 2014. The Stanford CoreNLP Natural

Language Processing Toolkit. In Proceedings of the

52nd Annual Meeting of the Association for

Computational Linguistics: System Demonstrations.

pp. 55–60.

Miller, J. and Mukerji, J., 2001. Model Driven Architecture

(MDA), Available at: http://www.omg.org/cgi-

bin/doc?ormsc/2001-07-01.

Nassar, I.N. and Khamayseh, F.T., 2015. Constructing

Activity Diagrams from Arabic User Requirements

using Natural Language Processing Tool. In 2015 6th

International Conference on Information and

Communication Systems (ICICS). Amman: IEEE, pp.

50–54.

Nazaruka, E. and Osis, J., 2018. Determination of Natural

Language Processing Tasks and Tools for Topological

Functioning Modelling. In Proceedings of the 13th

International Conference on Evaluation of Novel

Approaches to Software Engineering. Funchal,

Madeira, Portugal: SCITEPRESS – Science and

Technology Publications, Lda., pp. 501–512.

Nazaruks, V. and Osis, J., 2017. Joint Usage of Frames and

the Topological Functioning Model for Domain

Knowledge Presentation and Analysis. In Proceedings

of the 12th International Conference on Evaluation of

Novel Approaches to Software Engineering - Volume 1:

MDI4SE. Porto, Portugal: SCITEPRESS - Science and

Technology Publications, pp. 379–390.

Nazaruks, V. and Osis, J., 2018. Verification of Causality

in the Frame System based on the Topological

Functioning Modelling. In Proceedings of the 13th

International Conference on Evaluation of Novel

Approaches to Software Engineering, Portugal,

Funchal, Madeira, 23-24 March, 2018. Portugal:

SCITEPRESS – Science and Technology Publications,

Lda., pp. 513–521.

Osis, J., 1969. Topological Model of System Functioning

(in Russian). Automatics and Computer Science, J. of

Academia of Siences, (6), pp.44–50.

Osis, J. and Asnina, E., 2011a. Is Modeling a Treatment for

the Weakness of Software Engineering? In Model-

Driven Domain Analysis and Software Development.

Hershey, PA: IGI Global, pp. 1–14.

Osis, J. and Asnina, E., 2011b. Topological Modeling for

Model-Driven Domain Analysis and Software

Development : Functions and Architectures. In Model-

Driven Domain Analysis and Software Development:

Architectures and Functions. Hershey, PA: IGI Global,

pp. 15–39.

Osis, J., Asnina, E. and Grave, A., 2007. Computation

Independent Modeling within the MDA. In IEEE

International Conference on Software-Science,

Technology and Engineering (SwSTE’07). Herzlia:

IEEE, pp. 22–34.

Osis, J. and Donins, U., 2017. Topological UML modeling :

an improved approach for domain modeling and

software development, Elsevier.

Osis, J. and Slihte, A., 2010. Transforming Textual Use

Cases to a Computation Independent Model. In J. Osis

and O. Nikiforova, eds. Model-Driven Architecture and

Modeling-Driven Software Development: ENASE

2010, 2ndMDAandMTDD Whs. SciTePress, pp. 33–42.

Osman, C.-C. and Zalhan, P.-G., 2016. From Natural

Language Text to Visual Models: A survey of Issues

and Approaches. Informatica Economica, 20(4), pp.44–

61.

Slihte, A., Osis, J. and Donins, U., 2011. Knowledge

Integration for Domain Modeling. In J. Osis and O.

Nikiforova, eds. Model-Driven Architecture and

Modeling-Driven Software Development: ENASE

2011, 3rd Whs. MDAandMDSD. SciTePress, pp. 46–

56.

Stanford, 2018. CoreNLP version 3.9.2. Understanding

Memory and Time Usage. Available at:

https://stanfordnlp.github.io/CoreNLP/memory-

time.html.

MDI4SE 2019 - Special Session on Model-Driven Innovations for Software Engineering

602

