
Attack on a Scheme for Obfuscating and Outsourcing SAT Computations
to the Cloud

Khazam Alhamdan, Tassos Dimitriou and Imtiaz Ahmad
Department of Computer Engineering, Kuwait University, Kuwait

Keywords: SAT, Outsourcing Computations, Obfuscation, Data Privacy, Attack, Cloud Computing.

Abstract: The emergence of cloud computing gave users the capability to offload computations that cannot be executed
locally to cloud servers with large computational power. One such computationally demanding problem is
solving large satisfiability (SAT) instances. Although many problems from AI, circuit verification, etc. can be
converted to SAT, outsourcing SAT instances may leak considerable information that can put a user’s security
at risk. Hence the privacy of outsourcing computations to the cloud is a major issue. In this work we look at
the techniques of Qin et al. (Qin and Jia., 2014; Qin and Du., 2018) which have been used to obfuscate SAT
formulas before they are released to the cloud. We came up with a realistic attack against their technique that
demonstrates how a malicious cloud provider can obtain significant information about the underlying SAT
instance. Our work shows that ad hoc schemes cannot offer the required security guarantees for outsourcing
SAT computations, hence more formal frameworks should be used instead.

1 INTRODUCTION

Cloud computing is a new paradigm that enables ser-
vice providers to share resources (storage, computa-
tion, bandwidth, etc.) with users. Cloud computing
comes with mainly three different flavors: SaaS (Soft-
ware as a service), PaaS (Platform as a service), and
IaaS (Infrastructure as a service) (Mell and Grance,
2011). While each model has its own usage, outsourc-
ing computations mainly falls under the SaaS cate-
gory in which the provider offers the applications that
can be run on the cloud, and the clients access these
applications through an appropriate interface without
having to worry about maintaining the actual hard-
ware system. However, despite the increased conve-
nience of cloud services, users may be reluctant to
offload critical tasks to the cloud as this may leak pri-
vate information to the cloud provider. It is neces-
sary therefore to protect user’s data and tasks against
a malicious or untrusted provider (Zissis and Lekkas.,
2012).

There are already many problems that benefit
from outsourcing various computational tasks to the
cloud such as those involving matrix multiplication
(Atallah and Frikken, 2010) and Linear Programming
(C. Wang and Wang, 2011). Other known compu-
tationally demanding problems are those related to
modular exponentiation (Ding and Choo., 2017; Zhu

and Chen., 2018), graph theoretic problems (Blan-
ton et al., 2013), rule-based machine learning (Wong
et al., 2007), and so on. For a recent survey on secu-
rity issues in computation outsourcing, please refer to
(Shan et al., 2018).

Problems such as AI planning, deduction, and
software checking are also known to be hard espe-
cially when the inputs are really large. Researchers
use different algorithmic techniques to solve such
problems, one of which it to reduce the problem from
its original form into a form (eg. propositional logic)
which can be tested for satisfiablity (SAT), i.e. find
an assignment to the variables that makes the formula
true (Hung and Gao., 2014). Once the problem is con-
verted to a SAT instance, various optimized and well
studied SAT solvers can be used to obtain the desired
solution (Rintanen, 2011; Hung and Gao., 2014).

Despite the advantage of reducing a difficult prob-
lem to such a well studied problem as SAT, still find-
ing a solution that satisfies the propositional logic
problem is not easy. This problem is also known as
she satisfiability problem (SAT). Knowing that SAT
is hard means it typically requires a large amount of
computational power, which can be easily provided
through the use of cloud services. Although outsourc-
ing computations to the cloud solves the problem of
clients with limited computational resources to some
extend, security issues arise since the input-output

356
Alhamdan, K., Dimitriou, T. and Ahmad, I.
Attack on a Scheme for Obfuscating and Outsourcing SAT Computations to the Cloud.
DOI: 10.5220/0007829503560362
In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 356-362
ISBN: 978-989-758-378-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

relationship of SAT instances may reveal consider-
able information about the user’s activities as cap-
tured by the SAT formula. For example, SAT is of-
ten used as a tool to accomplish other goals; Wakrime
(Wakrime, 2017) developed a system that considers
sharing data in a privacy preserving manner using
SAT. Brun et al. (Brun and Medvidovic., 2012) used
SAT as an abstract view of how computation privacy
can be achieved on the cloud.

Our scope here is the privacy of the problem’s
data, in particular of SAT formulas. One of the many
approaches to provide such service is by encrypt-
ing/disguising the original problem through a pro-
cedure called obfuscation. However, a study per-
formed in (Hosseinzadeh and Leppänen., 2018) states
that obfuscation increases the difficulty of reverse-
engineering the problem but it does not provide any
guarantees for security. Here, we will exploit such po-
tential weaknesses in the SAT obfuscation approach
used in (Qin and Jia., 2014) and (Qin and Du., 2018).

More precisely, we developed an attack against
the Qin et al. SAT obfuscation schemes and found
that a malicious provider may learn considerable in-
formation about the underlying SAT formula even if
this is presented in an obfuscated form. The lesson
to be learned is that if an obfuscation scheme is not
designed carefully then solutions obtained might re-
veal enough information which can be used to de-
obfuscate and nullify the scheme.

The remaining of the paper is organized as fol-
lows. In Section 2, related work about privacy of SAT
instances is presented. In Section 3, the (Qin and Jia.,
2014) approach is described and our methodology to
attack the scheme is discussed. In Section 4, we vali-
date our findings with further experimental evidence.
Finally, Section 5 concludes this work.

2 RELATED WORK

There are two aspects of the SAT privacy problem,
one focusing on hiding the circuit structure of a hard-
ware design and the other focusing on the privacy of
solving computationally hard SAT instances.

Keshavarz et al. (Keshavarz and Holcomb., 2018)
surveyed the major techniques used to achieve intel-
lectual property (IP) protection at the hardware level
as well as their potential weaknesses. These include
reverse engineering a circuit through imaging, using
a working chip, or analyzing the circuit at the logical
level. A clever way of preventing the imaging attack
is by disguising the gates in a way that they all look
the same under imaging (Rajendran and Karri., 2013).
Adding more circuitry to the desired design is an ad-

ditional countermeasure that can be used to prevent
simple reverse engineering using a working chip.

Logic locking is a technique attempting to lock
the logical functionality of the circuit unless a certain
key input is provided along with the input parameters
(Chakraborty and Bhunia., 2009) of the working pro-
totype. Roshanisefat et al. (Roshanisefat and Sasan.,
2018) further introduced SRCLock (SAT-Resistant
Cyclic logic Locking) to overcome some weaknesses
in the original practice of logic locking. However
Chen et al. (Chen, 2018) countered SRCLock by en-
hancing prior attacks against it. Yet, Xie et al. (Xie
and Srivastava., 2018) introduced a more complex
way for circuit locking called Anti-SAT, which how-
ever has also been countered by the Bit-flipping attack
in (Shen and Zhou., 2018).

The previous attacks demonstrate that is not easy
to hide the functionality of a circuit. However, the
focus of this paper is to handle the computational pri-
vacy aspect of the SAT problem which is about hid-
ing the original SAT formula structure from the cloud
solver.

Brun et al. (Brun and Medvidovic., 2012) pro-
posed to distribute the computation of a SAT formula
on multiple machines such that every machine is as-
signed to evaluate a different part of the formula. The
sub-evaluation is then passed to the neighbouring ma-
chines. Although this method might work in theory,
nothing prevents the servers from colluding in order
to recover the hidden formula. Hence this method as-
sumes a trustworthy cloud provider.

Qin et al. in (Qin and Jia., 2014) and subsequently
in (Qin and Du., 2018) proposed two similar meth-
ods that attempt to obfuscate a SAT formula by em-
bedding a secret key in them. In the next section we
describe their scheme as well as our attack against it.

3 ATTACKING THE QIN ET
AL. SCHEMES

We start with a brief discussion about the underlying
threat model and some background information on the
SAT problem. Then we describe how the target ob-
fuscation scheme works (Qin and Jia., 2014; Qin and
Du., 2018), and how our attack takes advantage of
flaws in the scheme’s design.

3.1 Preliminaries

Threat Model: There are two main participants in the
model of outsourcing computations to the cloud, the
cloud service provider and the user who wants to out-
source his/her SAT instance to the cloud. The goal of

Attack on a Scheme for Obfuscating and Outsourcing SAT Computations to the Cloud

357

any SAT obfuscation algorithm should be to prevent
the cloud solver from getting any information about
the original instance from the obfuscated one. As the
cloud solver is assumed to have the computational ca-
pability to solve the obfuscated formula, any solution
to this should not reveal anything about the original
instance.

SAT: The Satisfiability problem (SAT) asks whether
there exists an assignment x ∈ {0,1}n that makes a
given Boolean function f of n variables equal to 1
(True). Typically, a cloud solver expects f to be in
Conjunctive Normal Form (CNF), in which case f is
a conjunction of clauses, where a clause is a disjunc-
tion of literals (e.g. a variable or its negation). In what
follows, n will denote the number of variables and m
the number of clauses of f .

Tseitin Encoding: Tseitin Encoding (Tseitin, 1983;
Eriksson and Höglund., 2014) is a way to transform
any Boolean formula or circuit into its equivalent
CNF form. It has been used to encode logical circuits
so then they can be analyzed using different SAT tech-
niques. The idea is that for any circuit C with inputs
{x1, ..., xn} and f as the output of C, let the circuit for-
mula of C be true iff (if and only if “⇔”) f is true.
Then substitute iff by its equivalent Boolean expres-
sion using · (and), + (or), and ¯(not).

C⇔ f

(C̄ + f) · (C + f̄) (1)

This procedure can be applied recursively on any
Boolean sub-formula or gate of the circuit to trans-
form it into its equivalent CNF form.

3.2 Qin et al. Algorithm

Qin et al. (Qin and Jia., 2014; Qin and Du., 2018)
described their obfuscating algorithm as mixing and
combining two SAT instances (one encoding the orig-
inal formula and the other a secret known only to the
user) in a way that the solution of the obfuscated SAT
formula can only be reversed by the user who knows
the embedded secret information, and thus the solu-
tion for the original formula can be retrieved as well.

To obfuscate a formula F, the user first picks two
prime numbers p and q as a key to generate a new
SAT formula (which is called the husk formula). This
formula is obtained by asserting the output of a mul-
tiplication circuit which is equal to the product of the
two prime numbers p and q. Afterwards, this formula
is converted to CNF form using the Tseitin encoding
procedure. The obfuscation algorithm will take as in-
put both the husk and the original formula and feed

the variables of husk into clauses of the original for-
mula in order to mix the two instances together and
wipe out any signature of the variables in the origi-
nal clauses. Thus, in the end, no one should be able
to determine what are the variables belonging to the
original formula.

In particular, if F is the original formula, H is the
husk formula and G is the obfuscated formula, then G
is equal to:

G = F̃ ∧H, (2)

where F̃ is equal F after its clauses are mixed with H
variables. A map that matches the original variables
with the obfuscated formula’s variables is also gen-
erated and kept with the client as secret information
that can be used to recover the solution of F from G,
if such solution is found by the cloud solver. We will
express the solution (satisfying assignment) for G as:

S G = mix{S F |S H}, (3)

where S G is the solution of G, S F is a solution of F,
S H is a solution for H, and mix{ } is the mix effect of
the obfuscation process. S H can be further described
as a Tseitin Encoding of a multiplication circuit with
the primes p and q as input and p ·q as output.

S H = T seitin{Mult{p,q}} = p|q|Mult|p ·q
or

S H = T seitin{Mult{q, p}} = q|p|Mult|p ·q

Thus, S G can be described as shown below:

S G = mix{S F |p|q|Mult|p ·q} (4)

As a toy example consider a “circuit” consisting
of only one AND gate with two inputs a,b, and one
output c. Following the Tseitin encoding, F is equal
to:

c ⇐⇒ a∧b or

(c̄ + a)(c̄ + b)(c + ā + b̄)

Assume further that the husk formula H is equal to
xy, which makes the assignment x = y = 1 be the only
only that satisfies H. Then F̃ can be expressed as:

F̃ = (c̄ + a)(c̄ + b)(c̄ + x)(c + ā + b̄ + x̄),

where x = 1 was chosen randomly out of the variables
of H to be injected into F and turn it into an AND
gate of three inputs a, b, and x. Now the obfuscated
formula becomes

G = F̃ ∧H.

Based on this, the client will use the assignment {x =

1,y = 1} to de-obfuscate G and recover the original

SECRYPT 2019 - 16th International Conference on Security and Cryptography

358

formula F.

G(x=1,y=1) = F̃ ∧H(x=1,y=1)

= (c̄ + a)(c̄ + b)(c̄ + 1)(c + ā + b̄ + 1̄)

= (c̄ + a)(c̄ + b)(c + ā + b̄)
= F

Hence any satisfying assignment returned by the
cloud solver for G will translate into a satisfying as-
signment for F, once the values for the husk formula
have been plugged in G.

3.3 Attack Analysis

In this section several weaknesses will be exploited
and a detailed attack will be described. The intu-
ition of the attack is that solutions found by the cloud
provider may reveal enough information about the
variables that are part of the original formula. Hence
the mixing effect will be nullified and a malicious
cloud solver can recover the original formula (or parts
of it) despite the secret information embedded by the
user. Below we list two operations that will be helpful
to mount the attack.

Swap Bits: Define a swap operation that takes an as-
signment string S of the variables and swaps the val-
ues of two bits i and j.

S =< s1, .., si, .., s j, .., sn >

S wap(S , i, j)→ S ′ =< s1, .., s j, .., si, .., sn > (5)

Flip Bits: Define a flip operation that takes an assign-
ment string S of n variables and negates a specified
bit of S .

S =< s1, ..., si, ..., sn >

Flip(S , i)→ S ′ =< s1, ..., s̄i, ..., sn > (6)

and for short: Flip(S , i) = S i.
In general if multiple bits would be flipped for a

set of indices X ⊂ {1,2, . . . ,n}, we write S X to denote
the assignment generated by flipping every bit i ∈ X.

Solution Dependency and Structure. By the
structural properties of the obfuscated formula S G,
any solution S 0 found by the cloud solver has a com-
plementary solution S̄ 0 which is defined as:

S 0 = mix{s0|p|q|Mult|p ·q}
S̄ 0 = mix{s0|q|p|Mult|p ·q}

This dependency is a vulnerable point an adver-
sary can exploit to reverse engineer the whole obfus-
cation process. In particular, if one can determine
which bits of the solution S 0 belong to sF and which
belong to S H , then the whole obfuscation is compro-
mised.

De-Obfuscation Attack on Multiple Solutions. In
this section we explain how the adversary can de-
obfuscate G by extracting information from multiple
solutions found. The underlying assumption is that
the original formula has more than one satisfying as-
signments. Since the obfuscation algorithm of Qin et
al. should work independently of the number of satis-
fying assignments of F, we will demonstrate how this
can be used to recover information about F.

Algorithms 1 and 2 below may further be used by
the cloud provider to find more assignments by flip-
ping or swapping bits of the initial solution S 0. How-
ever, the cloud solver may rely on its own means (and
its computational capacity) to find more assignments,
if they exist.

Algorithm 1 (Flip Search): For each of the n bits
belonging to S 0 flip that bit and test if the resulting
assignment is satisfying. Collect all satisfying assign-
ments generated this way.

Using Algorithm 1, a list of solutions L will be
returned where each one is a new satisfying assign-
ment for the obfuscated formula G. Moreover, each
solution is one flip away from the initial solution S 0.

Lemma 1. If a satisfying assignment is generated
from another solution S by flipping a bit i, then i must
belong to sF .

Proof. A bit i either belongs to sF or sH . However,
since sH has only two satisfying assignments which
are related to each other by switching the roles of
primes p and q, the flipped bit cannot be part of p or
q. Since the flipped bit gave rise to a new satisfying
assignment, then i must belong to sF . So, basically
flipped bits always point to variables of the original
formula. �

Algorithm 2 (Swap Search): For every pair of bits
belonging to S 0, swap those bits and test if the re-
sulting assignment is satisfying. Collect all satisfying
assignments generated this way.

Using Algorithm 2, a list of solutions L will be re-
turned such that each solution is two bits away from
the initial one. However, as in Lemma 1, with high
probability the bits cannot be part of the prime num-
bers. Hence, solutions generated by swapping bits,
again reveal variables belonging to sF .

We are now ready to proceed with the actual at-
tack. The problem tackled here can be defined for-
mally as

Given: a CNF-SAT G = mix{s0|p|q|Mult|p ·q}
and three solutions S 1, S 2, and S 3.
Objective: Find which bits belong to S F or S H .

Attack on a Scheme for Obfuscating and Outsourcing SAT Computations to the Cloud

359

Because of the dependencies between the solu-
tions, one can deduce information by XORing differ-
ent satisfying assignments. Define a relation Ri, j as
being the result of taking pointwise XOR of S i and
S j as follows:

R1,2 = S 1⊕S 2 = mix{sF1⊕ sF2|p1⊕ p2|q1⊕q2| . . . }

R1,3 = S 1⊕S 3 = mix{sF1⊕ sF3|p1⊕ p3|q1⊕q3| . . . }

R2,3 = S 2⊕S 3 = mix{sF2⊕ sF3|p2⊕ p3|q2⊕q3| . . . }

Lemma 2. If some S i & S j have pi = p j & qi = q j,
then all the bits which are assigned true belong to the
solution S F .

Proof. If S i & S j have pi = p j & qi = q j, then S i
& S j will differ only on si & s j. Thus, S i ⊕ S j =

mix{si ⊕ s j|00 . . .0} and the only source of 1’s comes
from si⊕ s j which is part of sF . �

Corollary 3. There exits at least one Ri, j such that
the number of 1’s (trues) is statistically high. That is
it has more 1’s than the other two.

Proof. Straightforward. �

For all Ri, j’s, all the 1-bits belong to sF with high
confidence. The information gained depends on the
structure of the original solution space of the orig-
inal formula F. If the solutions are clustered, then
their differences in term of bits is very low. However,
if the solutions are scattered over the solution space,
then the bits difference between solutions will be large
which will increase the information gained.

4 EXPERIMENTAL ANALYSIS

The obfuscation scheme described by (Qin and Jia.,
2014) was implemented following their construction
that an obfuscation formula G of F and H is equiva-
lent to:

G = F̃ ∧H.

Variable remapping was not implemented as our anal-
ysis does not make use of variable ordering or map-
ping. A number of random 3-SAT formulas were gen-
erated where every variable was picked with a uni-
form probability. A husk formula was then generated
using Wallace multiplier (Purdom and Sabry,) pro-
viding two primes p and q (notice here that the size
of the primes does not really matter as the attack is
agnostic to the prime numbers used). The formulas
generated were based on the following categorization:

Roughly nine to ten random formulas were gen-
erated from each category shown in Table 1, for a
total of 55 formulas. The ratio C/V is a very well
known threshold such that when it is near 4.27, the

Table 1: Types of formulas generated.

Category # Vars V # Clauses C Ratio C/V
1 250 1000 4.0
2 500 1850 3.7
3 750 2550 3.4
4 2000 6800 3.4
5 3000 10200 3.4
6 4000 13600 3.4

complexity of several complete algorithms for check-
ing satisfiability reaches a steep peak (Kirkpatrick and
Selman, 1994). So, from an empirical point of view,
the “hard” instances of SAT are to be found near
that threshold. Thus, decreasing the threshold’s value
gives rise to more satisfying assignments.

The main experiments conducted relate to flipping
(Algorithm 1) and XORing solutions found (Lemma
2). The swap search (Algorithm 2) was not used as
it did not generate many new solutions. In the flip
search experiment, the number of additional satisfy-
ing assignments was computed by flipping variables
of an initial assignment S 0 generated by a SAT solver
(Niklas and Niklas, 2017). In the XORing experi-
ment, three solutions were combined to recover bits
of S F . The results are meant to show how easy it is
to find additional assignments (in order for Lemma 2
to be applied). However, as noted before, the cloud
solver may use further techniques to come up with
more assignments, provided they exist.

Figure 1: Flip Search Data.

Figure 1 demonstrates the number of solutions
found using the Flip Search algorithm. Category 1
formulas have the least number of additional solutions
found because the C/V ratio is closer to the satisfiabil-
ity threshold 4.27, while category 6 formulas have the
most. Hence the more solutions are found, the more

SECRYPT 2019 - 16th International Conference on Security and Cryptography

360

Figure 2: Total number of bits recovered by Flip Search and
XORing process. The solid line denotes the number of bits
(variables) in the original formula for each obfuscated one.

bits are discovered to be part of the original formula.
Figure 2 demonstrates the number of bits recov-

ered by different methods for each of the generated
formulas. ‘Max R’ denotes the relation in which the
number of 1’s is the most and has an underlying solu-
tion with the same order of primes (pi = p j & qi = q j).
‘Recovered Bits’, as the name suggests, denotes the
combined contribution of bits found from both the
XOR process and flip search.

Thus, using the analysis in Lemmas 1 and 2, many
bits can be recognized to be part of the hidden for-
mula S F . Notice it is also possible to run the same
experiments (flip-search and XOR) on the discovered
solutions themselves to derive even more satisfying
assignments.

Finally, Figure 3 demonstrates the percentage of
bits found using flip search and the combined bits
recovered by XORing solutions from both the SAT
solver and the flip search. Although different cate-
gories of SAT formulas were used, the number of bits
discovered seems to fluctuate around 50% although in
some cases it is a lot more than this. Of course bit re-
covery depends on the similarity of solutions found,
so we expect formulas with clauses-to-variables ratio
closer to 4.27 to have less bits recovered. However,
the vulnerability of the framework has been demon-
strated as it must provide secure obfuscation for all
SAT formulas not only those with a few satisfying as-
signments.

Figure 3: The percentage of bits recovered from the origi-
nal formula using the XOR experiment on three satisfying
assignments generated using a SAT solver.

5 CONCLUSIONS

Outsourcing computations to the cloud is a new
paradigm necessitated by the inherent complexity of
many real life problems. One such problem is Satis-
fiability due to its wide applicability in many diverse
applications.

In this paper we reviewed the obfuscation tech-
nique of Qin et al. (Qin and Jia., 2014; Qin and Du.,
2018) for outsourcing SAT computations to the cloud
and presented simple exploits that can be used by a
malicious cloud provider to recover information and
de-obfuscate the original formula or parts of it.

The lesson to be learned is that ad hoc techniques
that try to randomize a given formula based on se-
cret information embedded in the formula might not
work well in practice. Instead, more formal frame-
works should be used as for example the recent de-
velopments in Fully Homomorphic Encryption (Gen-
try, 2009) which allows one to securely outsource
computations, or the techniques in Indistinguishabil-
ity Obfuscation (Garg and Waters, 2016) where the
workings of a circuit (or formula) can be provably
disguised so that no reverse-engineering is possible.
While these approaches have high overhead, an inter-
esting research direction would be to see if any prac-
tical schemes to outsource SAT computations can be
derived from these secure frameworks.

Attack on a Scheme for Obfuscating and Outsourcing SAT Computations to the Cloud

361

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous
reviewers for their comments and suggestions that
helped improve the paper.

REFERENCES
Atallah, M. J. and Frikken, K. B. (2010). Securely outsourc-

ing linear algebra computations. In In Proceedings of
the 5th ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’10, pages
48–59, New York, NY, USA, 2010. ACM.

Blanton, M., Steele, A., and Alisagari, M. (2013). Data-
oblivious graph algorithms for secure computation
and outsourcing. In Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and
communications security, pages 207–218. ACM.

Brun, Y. and Medvidovic., N. (2012). Keeping data private
while computing in the cloud. In In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference
on, pp. 285-294. IEEE.

C. Wang, K. R. and Wang, J. (2011). Secure and practical
outsourcing of linear programming in cloud comput-
ing. In In INFOCOM 2011, pages 820–828. IEEE.

Chakraborty, R. S. and Bhunia., S. (2009). Harpoon: an
obfuscation-based soc design methodology for hard-
ware protection. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 28,
no. 10 (2009): 1493-1502.

Chen, Y.-C. (2018). Enhancements to sat attack: Speedup
and breaking cyclic logic encryption. In ACM Trans-
actions on Design Automation of Electronic Systems
(TODAES) 23, no. 4 (2018): 52.

Ding, Yong, Z. X. J. Y. and Choo., K.-K. R. (2017). Secure
outsourcing of modular exponentiations under single
untrusted programme model. In Journal of Computer
and System Sciences 90 (2017): 1-13.

Eriksson, J. and Höglund., J. (2014). A comparison of re-
ductions from fact to cnf-sat.

Garg, Sanjam, C. G. S. H. M. R. A. S. and Waters, B.
(2016). Candidate indistinguishability obfuscation
and functional encryption for all circuits. In In SIAM
Journal on Computing 45, no. 3 (2016): 882-929.

Gentry, C. (2009). Fully homomorphic encryption using
ideal lattices. In In Stoc, vol. 9, no. 2009, pp. 169-
178.

Hosseinzadeh, Shohreh, S. R. S. L. J.-M. M. J. H. S. H. and
Leppänen., V. (2018). Diversification and obfuscation
techniques for software security: a systematic litera-
ture review. In Information and Software Technology.

Hung, William NN, X. S. J. T.-X. L. J. Z. R. W. and Gao.,
P. (2014). Motion planning with satisfiability mod-
ulo theories. In In Robotics and Automation (ICRA),
2014 IEEE International Conference on, pp. 113-118.
IEEE.

Keshavarz, Shahrzad, C. Y. S. G. X. X. and Holcomb., D.
(2018). Survey on applications of formal methods in
reverse engineering and intellectual property protec-
tion. In Journal of Hardware and Systems Security 2,
no. 3 (2018): 214-224.

Kirkpatrick, S. and Selman, B. (1994). Critical behavior in
the satisfiability of random boolean expressions. Sci-
ence, 264(5163):1297–1301.

Mell, P. and Grance, T. (2011). The nist definition of cloud
computing.

Niklas, E. and Niklas, S. (2004-2017). Sat4j.
Purdom, P. and Sabry, A. Cnf generator for fac-

toring problems. In https://www.cs.indiana.edu/cgi-
pub/sabry/cnf.html.

Qin, Ying, S. S. and Jia., Y. (2014). Structure-aware
cnf obfuscation for privacy-preserving sat solving.
In In Formal Methods and Models for Codesign
(MEMOCODE), 2014 Twelfth ACM/IEEE Interna-
tional Conference on, pp. 84-93. IEEE.

Qin, Ying, X. Y. S. and Du., Z. Y. (2018). Privacy-
preserving sat solving based on projection-
equivalence cnf obfuscation. In In International
Symposium on Cyberspace Safety and Security, pp.
224-239. Springer.

Rajendran, Jeyavijayan, M. S. O. S. and Karri., R. (2013).
Security analysis of integrated circuit camouflaging.
In In Proceedings of the 2013 ACM SIGSAC confer-
ence on Computer & communications security, pp.
709-720. ACM.

Rintanen, J. (2011). Planning with specialized sat solvers.
In Twenty-Fifth AAAI Conference on Artificial Intelli-
gence.

Roshanisefat, Shervin, H. M. K. and Sasan., A. (2018). Sr-
clock: Sat-resistant cyclic logic locking for protecting
the hardware. In In Proceedings of the 2018 on Great
Lakes Symposium on VLSI, pp. 153-158. ACM.

Shan, Z., Ren, K., Blanton, M., and Wang, C. (2018). Prac-
tical secure computation outsourcing: a survey. ACM
Computing Surveys (CSUR), 51(2):31.

Shen, Yuanqi, A. R. and Zhou., H. (2018). Sat-based bit-
flipping attack on logic encryptions. In In Design, Au-
tomation & Test in Europe Conference & Exhibition
(DATE), 2018, pp. 629-632. IEEE.

Tseitin, G. S. (1983). On the complexity of derivation in
propositional calculus. In In Automation of reasoning,
pp. 466-483. Springer, Berlin, Heidelberg.

Wakrime, A. A. (2017). Satisfiability-based privacy-aware
cloud computing. In The Computer Journal 60, no. 12
(2017): 1760-1769.

Wong, W. K., Cheung, D. W., Hung, E., Kao, B., and
Mamoulis, N. (2007). Security in outsourcing of asso-
ciation rule mining. In Proceedings of the 33rd inter-
national conference on Very large data bases, pages
111–122. VLDB Endowment.

Xie, Y. and Srivastava., A. (2018). Anti-sat: Mitigating
sat attack on logic locking. In IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems (2018).

Zhu, Yiming, A. F. S. Y. Y. Y. S. L. and Chen., Z. (2018).
New algorithm for secure outsourcing of modular ex-
ponentiation with optimal checkability based on sin-
gle untrusted server. In In 2018 IEEE International
Conference on Communications (ICC), pp. 1-6. IEEE.

Zissis, D. and Lekkas., D. (2012). Addressing cloud com-
puting security issues. In Future Generation computer
systems 28, no. 3 (2012): 583-592.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

362

