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Abstract: In this paper, we present an iterative semi-automatic audio source separation process for single-channel poly-
phonic recordings, where the underlying sources are isolated by clustering a set of note events, which are
considered to be single notes or groups of consecutive notes coming from the same source. In every iteration,
an automatic process detects the pitch trajectory of the predominant note event in the mixture, and separates
its spectral content from the mixed spectrogram. The predominant note event is then transformed back to
the time-domain and subtracted from the input mixture. The process repeats using the residual as the new
input mixture, until a predefined number of iterations is reached. When the iterative stage is complete, note
events are clustered by the end-user to form individual sources. Evaluation is conducted on mixtures of real
instruments and compared with a similar approach, revealing an improvement in separation quality.

1 INTRODUCTION

Separating pitched instruments from within poly-
phonic single-channel mixtures represents a challeng-
ing task which has been intensively studied during the
last few decades, with direct applications in music
information retrieval (MIR), audio coding and com-
pression, content-based analysis, among many oth-
ers (Zivanovic, 2015). Most of the complexities in-
volved in this process are due to the very rich and
non-stationary nature of music, whose evolution over
time and frequency creates many regions where the
sources overlap (Rafii et al., 2018).

Audio source separation algorithms are based on
established signal processing techniques, such as in-
dependent subspace analysis (Taghia and Doostari,
2009), non-negative matrix factorization (Bryan and
Mysore, 2013), or computational auditory scene anal-
ysis (Jang et al., 2003). Estimated sources are ex-
tracted using additive synthesis or time-frequency
masking, where overlapping content is resolved by
sinusoidal modelling (Parsons, 1976), spectral filter-
ing (Every and Szymanski, 2006), common ampli-
tude similarity (Li et al., 2009), amplitude and phase
reconstruction (Ponce de León Vázquez and Beltrán
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Blázquez, 2012), or harmonic bandwidth companding
(Zivanovic, 2015). In recent years, deep neural net-
works have also been explored as a way to introduce
machine learning into the separation process (Grais
et al., 2017; Chandna et al., 2017).

A common practice followed by various separa-
tion approaches is to estimate and extract all under-
lying sources jointly, relying on a good characteriza-
tion of their components. One way to characterize au-
dio sources is by tracking their fundamental frequen-
cies across time. However, when pitch trajectories
for multiple sources are automatically estimated from
the input mixture, their accuracy deteriorates and the
complexity of the joint separation approach increases.

On the other hand, an iterative framework in
which sources are separated in sections should have
several advantages. First, the system only needs to
concentrate on separating a small section of audio in
every iteration, and second, the number of interact-
ing components should decrease after each section is
extracted, reducing the complexity of detecting other
sections still present in the mixture.

In this paper, we propose an audio source separa-
tion strategy in which the underlying sources are ob-
tained by clustering a set of note events, which can be
seen as harmonic sounds representing either a single
musical note or a group of consecutive notes coming
from the same source. These note events are automat-
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Figure 1: Block diagram of the proposed system showing its two main stages: the automatic detection and separation of note
events, and their clustering into individual sources.

ically detected and separated from the input mixture
using an iterative approach. Every iteration consists
of detecting the pitch trajectory of the predominant
note event, separating its spectral content, and extract-
ing its energy from the mixture using subtraction in
the time domain. A simplified block diagram of the
proposed system is shown in Figure 1.

The rest of the paper is organised as follows. Sec-
tions 2 describes the processing stages involved in a
single iteration of the system, in which a note event is
detected and separated from the input mixture. Sec-
tion 3 deals with the clustering of note events into
sources once the iterative stage is complete. Evalu-
ation is conducted in Section 4 where separation re-
sults are compared against the ISSE software pack-
age, which is based on a user-informed version of
non-negative matrix factorization (NMF) and proba-
bilistic methods. Finally, Section 5 summarizes our
conclusions from this work.

2 ITERATIVE STAGE

2.1 Pitch Trajectory of the Predominant
Note Event

In every iteration, the input signal is decomposed us-
ing the Short-Time Fourier Transform (STFT), with-
out using zero-padding, and the multipitch detector
in (Duan et al., 2010) is used to generate the array P
of fundamental frequency estimates, with dimensions
J ×M, where J is the number of pitch estimates in
every frame and M is the number of frames in the de-
composition. A salience measure is then assigned to
each of these estimates, based on the spectral mag-
nitude summation of their first H partial amplitudes.
Considering the m-th frame, the salience of its j-th
pitch candidate can be written as:
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Figure 2: Note events detected in a mixture of viola and
clarinet during the first iteration of the system. The viola
note has been selected as the predominant event.

S j
m =

H

∑
h=1

X(m,h f j
0 ) (1)

where S j
m is the salience of the j-th pitch candidate in

frame m, with fundamental frequency f j
0 = P( j,m),

and X(m, f ) is the magnitude spectrogram of the cur-
rent input signal. Note events are detected by finding
continuous segments of estimates, across all levels of
P, for which the change in fundamental frequency be-
tween adjacent frames is not higher than one semi-
tone. All detected note events are arranged in a table
and their predominances are computed. Considering
the k-th note event in the table, existing in level j = jk,
starting at frame m1 and ending at frame m2, its pre-
dominance is defined as follows.

S jk
k =

1
N1

m2

∑
m=m1

S jk
m +

1
N2

[
m2 −m1

2

]
(2)

where N1 and N2 are normalization constants that map
the total salience and duration of note events into the
range 0 to 1. The note event with the highest predom-
inance is selected as the predominant one. Its pitch
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Figure 3: Separation of an overlapping harmonic. (a) Mag-
nitude spectra of the original mixture, dominant component
and subtraction. (b) Magnitude spectra of principal and sec-
ondary components. A diamond marks the ideal centre fre-
quency of the current harmonic partial.

trajectory, formed by the fundamental frequency esti-
mates assigned to it, is expanded to encompass poten-
tial misallocated estimates in adjacent frames. If an
adjacent frame has an estimate within a semi-tone of
the average pitch of the note event, it is added on to
the pitch trajectory of the note event, providing that
its salience does not indicate a transition to a differ-
ent note event. The expanded pitch contour is used to
estimate the magnitude spectrogram of the separated
predominant note event.

An example is presented in Figure 2 for a mix-
ture of viola and clarinet, where the first plays the
note A4, while the second plays the notes D]5, G5,
A]5, and D]6. During the first iteration, seven note
events are detected in the mixture and the long viola
note (event 1) is selected as the predominant one. No-
tice that note events 6 and 7 do not correspond to real
musical notes, they originate from spurious estimates
misleadingly generated by the multipitch estimator at
this stage, and which are later removed by the system.

2.2 Separated Magnitude Spectrogram
of the Predominant Note Event

The pitch trajectory of the predominant note event
contains its fundamental frequency estimates and the
indexes of the frames in which they are active. It is
now possible to find a set of harmonically related par-
tials in every frame, associated with these fundamen-
tal frequencies by analysing each magnitude spectrum
and finding spectral peaks closest to the ideal har-
monic frequencies.

Parameters for each selected spectral peak (cen-
tre frequency, absolute magnitude and phase angle)
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Figure 4: Estimation of the first predominant event in a mix-
ture of viola and clarinet. (a) Spectrogram of the input mix-
ture. (b) Spectrogram of the separated predominant note
event (viola A4). In both cases, the frame size is 2048 sam-
ples and the hop size is 256 samples.

are computed and used to generate a synthetic single-
component sinusoidal partial, hereafter referred as the
dominant component of the spectral peak. If there is
no overlap with other sources, the dominant compo-
nent can be used to construct the separated magnitude
spectrum of the predominant note event in the current
frame. However, if the spectral peak also contains
contributions from other sources, it is considered as
a shared peak, and further processing is required to
achieve the separation of its components.

Following the method presented in (Parsons,
1976), the dominant component is subtracted from
the shared peak in order to find potential overlapping
components. If a significant peak appears in the sub-
traction, it is treated as energy coming from a different
source and its parameters are used to generate a sec-
ondary component. Assuming a dual-peak model for
the shared peak, in which the observation is a combi-
nation of the target harmonic partial plus some other
interfering partial, the synthetic component closer to
the ideal harmonic frequency, associated with the pre-
dominant note event, is selected and used to construct
the separated magnitude spectrum.

Figure 3 shows an example of an overlapping par-
tial in the mixture of viola and clarinet previously
mentioned, taken from a time frame centred at t =
1.3 s. It can be noticed that the dominant component
(centred at 925 Hz) is the fundamental harmonic of
the clarinet ( f0 = 922 Hz), whilst the secondary com-
ponent (centred at 882 Hz) is the second harmonic
of the viola ( f0 = 442 Hz). Given that the secondary
component is much closer to the ideal position of the
second harmonic of the viola, it is selected and used to
construct the magnitude spectrum of the separated vi-
ola. The magnitude spectrograms of the input mixture
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Figure 5: Estimated pitch trajectories of five note events, it-
eratively extracted from a mixture of viola and clarinet. The
numbering of the trajectories follows the extraction order.

and the estimated predominant note event are shown
in Figure 4. Notice the separation of the overlapping
region between t = 1.1 s and t = 1.7 s.

2.3 Reconstruction and Subtraction

Time-frequency masking was considered for the ex-
traction of the separated predominant note event from
the input mixture, but fitting an appropriate mask
proved difficult for note events having low fundamen-
tal frequencies. Hence, the extraction of the predomi-
nant note event is carried out by reconstructing its sep-
arated spectrogram, retaining the original phase infor-
mation of the mixture, and subtracting it from the in-
put mixture in the time domain. The main advantage
of this strategy is that the estimated harmonics of the
predominant note event are not significantly distorted
by other harmonic partials in the nearby, or by other
frequency components associated with other sources.

A residual is also obtain after the subtraction, and
it is used as the new input signal for the next itera-
tion. The iterative process continues until a prede-
fined maximum number of iterations is reached.

3 CLUSTERING

At the end of this iterative stage, most of the energy
contained in the original mixture should have been al-
located within a set of note events, which can be clus-
tered to form individual sources by the end-user, who
may use the pitch trajectories of the separated note
events as a hint to find an appropriate clustering of the
events. The end-user can also listen to each individual
note event in order to obtain further guidance. Group-
ing or instrument identification algorithms could be
used at this stage to remove the need for user input,
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Figure 6: Extracted note events from a mixture of viola and
clarinet. (a) Viola A4, (b) Clarinet D]6, (c) Clarinet A]5,
(d) Clarinet D]5, and (e) Clarinet G5.
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Figure 7: Original and estimated sources from a mixture of
viola and clarinet. (a) Original viola, (b) Estimated viola,
(c) Original clarinet, and (d) Estimated clarinet.

but are not the emphasis of this research. Continuing
with the example mixture of viola and clarinet, after
five iterations of the system, the final set of estimated
pitch trajectories is presented in Figure 5, and their
corresponding extracted note events are shown in Fig-
ure 6. The end-user is now able to cluster note events
2, 3, 4 and 5 in order to form the separated clarinet,
while note event 1 is used to form the separated viola.
A comparison between the original and the estimated
sources, for the example mixture of viola and clarinet,
is presented in Figure 7.

4 EVALUATION

Separation performance is evaluated in three different
experiments, where the proposed algorithm is applied
to a number of audio mixtures. The first two exper-
iments consider audio mixtures consisting solely of
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pitched sources, while the third one introduces one
percussive source. Four pitched instruments are stud-
ied (violin, clarinet, tenor saxophone and bassoon),
taken from excerpts of the Bach10 database (Duan
et al., 2010). The percussive source consists of a syn-
thesized sequence of snare drums and cymbals. These
test recordings are available online1.

The quality of the separation is assessed by mea-
suring the source to distortion ratio (SDR), source to
interference ratio (SIR), and source to artifacts ratio
(SAR), as defined in (Vincent et al., 2006), where
each estimated source x̂i is decomposed as follows.

x̂i = xtarget + einterference + enoise + eartifacts (3)

where xtarget = f (xi) is a version of the true source xi
modified by some allowed distortion f (·), and where
einterference, enoise, and eartifacts are the interferences,
noise and artifacts error terms, respectively. These
terms should represent the part of x̂i perceived as com-
ing from xi, from other unwanted sources, from sensor
noise, and from other causes.

The aforementioned objective measures assign
equal weights to all error terms, which means that all
types of distortions contribute equally to the overall
quality of the extracted source (Cano et al., 2016). A
set of MATLAB R© functions, created by Févotte et. al.
and referred as BSS Eval Toolbox2, is available online
and can be used to calculate these objective measures
(Févotte et al., 2005).

Separation results are averaged out in every ex-
periment and compared with another semi-supervised
approach, known as the Interactive Source Separation
Editor (ISSE) (Bryan and Mysore, 2013), where the
end-user provides annotations in order to constrain,
regularize, or otherwise inform the algorithm. These
annotations are introduced at the beginning of the pro-
cess by highlighting relevant sections on the input
spectrogram, while the separation of the sources is
obtained by an implementation of the NMF approach.
Within the existing user-assisted audio source separa-
tion methods, ISSE constitutes a representative exam-
ple that has the additional advantage of being open-
source and freely available3.

Oracle estimates are also calculated in every mix-
ture, according to Vincent et. al. (Vincent et al.,
2007), and their averages are presented in every ex-
periment as a reference. In theory, they represent
the highest achievable results that a time-frequency
masking-based separation method can obtain. A set
of MATLAB R© functions is also available online4 and

1http://www-users.york.ac.uk/ adc533/download
2http://bass-db.gforge.inria.fr/bss eval/
3http://isse.sourceforge.net/
4http://bass-db.gforge.inria.fr/bss oracle/

can be used to calculate these estimates, in particular,
the function bss nearopt monomask, which generates
near-optimal time-frequency masks using the STFT
with a sine window (Vincent and Plumbley, 2007).

The proposed iterative estimation/separation sys-
tem (IES) is applied with a frame size of 2048 sam-
ples, 87.5% overlap, a Hanning window, and H = 5
partials for the salience measurement. In every frame,
the maximum number of extracted harmonic partials
is set to 30 in order to capture most of the energy as-
sociated with the selected note event. The maximum
number of note events to be extracted from within ev-
ery mixture is set to 45. The ISSE, on the other hand,
is applied to every mixture using the recommended
settings (frame size of 4096 samples and 50 basis vec-
tors per source), while the annotations are introduced
to extract one source at a time.

4.1 Two Harmonic Sources

In this experiment, a set of 18 audio mixtures with
polyphony 2 are considered. Overall, the number of
notes being played is 279, with fundamental frequen-
cies spanning from F2 (86 Hz) to F]5 (750 Hz). Sep-
aration results are presented in Table 1, where the
IES system shows an average improvement of 25%
in SDR over the ISSE algorithm.

Table 1: Separation Performance in Audio Mixtures with
Polyphony 2 (Harmonic Instruments).

Method Separation Performance (dB)
SDR SIR SAR

IES 12.87 19.93 14.66

ISSE 9.35 12.76 15.05

Oracle 18.16 26.96 19.01

Although the ISSE seems to generate slightly less
artifacts, the separated sources also exhibit higher lev-
els of interference, suggesting that the annotations
are not providing enough information to completely
characterize each individual source. This problem is
partially solved in IES by assuming that the under-
lying sources are harmonic, which provides a simple
but effective way to identify their frequency compo-
nents based on the knowledge of their fundamental
frequencies. The proposed dual-peak model provides
a sharper separation of shared harmonics, which also
reduces interference among the separated sources.

4.2 Three Harmonic Sources

A different set of 12 audio mixtures with polyphony 3
are now considered, where the number of notes being
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Table 2: Separation Performance in Audio Mixtures with
Polyphony 3 (Harmonic Instruments).

Method Separation Performance (dB)
SDR SIR SAR

IES 8.81 15.69 10.63

ISSE 7.31 9.34 13.17

Oracle 14.04 23.20 14.79

played is 386, and their fundamental frequencies are
in the range F3 (175 Hz) to F]5 (750 Hz). Results for
this experiment are presented in Table 2.

The incorporation of a third source represents a re-
duction of the separation quality, as can be observed
for both algorithms. A higher number of simultane-
ous sources means additional difficulties in provid-
ing good annotations for the sources, reducing the
overall performance of ISSE, but it also means addi-
tional problems during the separation of overlapping
harmonics, which affects IES quality. However, the
higher number of note events in the mixture and the
proximity of their frequency components are causing
a higher reduction in the separation performance of
IES, in comparison with the previous experiment.

Octave-related notes, which are present in some
of the mixtures analysed in this experiment, introduce
an additional challenge for both algorithms and affect
the separation performance. The IES system is able
to detect the pitch trajectories of many octave-related
notes, however, an accurate separation of the original
note events is not possible, since the amplitudes of
their harmonic partials cannot be correctly estimated
from the mixed spectrogram. Similarly, the ISSE sys-
tem also has problems interpreting overlaps between
annotations of different sources and tends to allocate
most of the shared energy into only one of the sources.

4.3 Two Harmonic and One Percussive
Sources

The third experiment considers the same set of mix-
tures used in Section 4.2, but the third pitched instru-
ment (tenor saxophone) is replaced with a percussive
source. A total of 239 harmonic notes are still present,
with fundamental frequencies in the range A3 (220
Hz) to F]5 (750 Hz), and several hundred new percus-
sive events are introduced. Results for this experiment
are presented in Table 3.

The IES method presented here is designed to de-
tect harmonic content, consequently the percussive
output is contained in a residual signal together with
other non-harmonic content. In the case of ISSE, the
percussion is instead extracted first by exploiting ad-
ditional user-provided annotations of solo percussive

Table 3: Separation Performance in Audio Mixtures with
Polyphony 3 (Harmonic and Percussive Instruments).

Method Separation Performance (dB)
SDR SIR SAR

IES 11.98 18.36 13.49

ISSE 11.32 16.14 14.26

Oracle 14.86 24.60 15.65

regions of the spectrogram.
In this experiment, both algorithms show similar

separation quality, with the IES approach still show-
ing slightly less interference in the separated sources,
while the ISSE approach introduces slightly less arti-
facts. In this specific example, the percussive source
does not affect the detection of note events within the
IES system but, more generally, low energy percus-
sive effects might impact on the detection of musical
notes with a fundamental frequency below 200 Hz.

An important advantage of IES over ISSE is that
it allows end-user interaction during the final stage of
the process (clustering of note events), which seems
to be more effective than using it at the beginning
of the separation, as in the case of the ISSE pro-
cess. From the user perspective, listening to separated
events and grouping them into individual sources is
far easier than recognising harmonic structures and
estimating frequencies from within the spectrogram
of a complex audio mixture.

5 CONCLUSIONS

In this paper, a novel semi-supervised approach for
single-channel audio source separation was intro-
duced, based on the iterative estimation and extrac-
tion of note events, and their subsequent clustering
into separated sources by end-user interaction during
the final stage of the process. Direct subtraction in
the time domain is used here during the separation
of each note event, which provides a softer way of
extracting its estimated spectral energy from within
the mixture and reduces the levels of interference be-
tween the separated sources.

After evaluation on a set of test mixtures with
polyphonies 2 and 3, the proposed system outper-
formed the ISSE NMF-based approach, in which end-
user interaction is used at the beginning of the sepa-
ration process. Positive separation results were also
obtained by the IES system for audio mixtures with
polyphony three including percussive effects, despite
the complexities of performing pitch tracking in the
presence of percussive sounds. Finally, grouping sep-
arated note events into sources was found to be more
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effective than recognising structures from within the
spectrogram of a complex audio mixture.

Further work will be conducted with the aim of al-
lowing the separation of notes in octave relation, and
improving the separation of low-pitched notes. Dif-
ferent approaches to automate the clustering of note
events into sources will also be explored, as a way
to deliver a fully-automated source separation system
that could be compared with other unsupervised algo-
rithms based on machine learning.
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