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Abstract: Modern advanced driver assistance systems (ADAS) increasingly depend on the information gathered by the 
vehicle’s on-board sensors about its environment. It is thus of great interest to analyse the performance of 
these sensor systems and its dependence on macroscopic traffic parameters. The work at hand aims at building 
up an analytical model to estimate the number of objects contained in a vehicle’s environmental model. It 
further considers the exchange of vehicle dynamics and sensor data by vehicle-to-vehicle (V2X) 
communication to enhance the environmental awareness of the single vehicles. Finally, the proposed model 
is used to quantify the improvement in the environmental model when complementing sensor measurements 
with V2X communication. 

1 INTRODUCTION 

The increasing road traffic automation has come 
along with the need for highly reliable environmental 
models of the automated vehicle’s surroundings. In 
order to be able to assist the driver or even take 
decisions themselves, vehicles have to perceive their 
surroundings and detect possible dangers and hazards 
as precisely as possible.  

To this end, the data recorded by the vehicle’s on-
board sensors, like video cameras, radars or LIDARs 
is aggregated by making use of association algorithms 
like the Joint Probabilistic Data Association (JPDA) 
(Rezatofighi, et al., 2015) and subsequently filtered 
and fused by algorithms such as Kalman or Particle 
filters (Chen, 2003). All of these algorithms 
sensitively depend on the accuracy of the processed 
sensor data. The more data is available about an 
object, the more precisely its current state may be 
determined. Once a new object is detected and 
validated this way, it is incorporated into the vehicle’s 
environmental model. As long as the object stays 
within the vehicle’s Field-of-View (FOV), it is kept 
in the environmental model and its state is 
periodically updated until it is no longer perceived for 
a certain time.  

However, one of the main limitations of current 
on-board object detection sensors is the shadowing of 
the FOV by obstacles and traffic objects in the 
vicinity. To mitigate this impairment, Vehicle-to-
Everything (V2X) communication has been receiving 
increasing interest lately. By sharing information of 
their local environmental models with neighbouring 
vehicles, V2X-capable vehicles are able to 
significantly increase their knowledge about their 
surroundings. The environmental model arising from 
including V2X-Data into the local environmental 
model (LEM) is commonly referred to as the global 
environmental model (GEM). It not only allows to 
substantially enhance the accuracy of the managed 
data, but it may also include objects that are out of the 
sensor’s Line-of-Sight (LOS) and thus not contained 
within the LEM. Nevertheless, the GEM may still be 
incomplete or even faulty. Hence, it is of great 
importance for automated vehicles to be able to 
estimate the accuracy of the environmental model at 
the time they are facing a decision. Below a model is 
derived analytically, that aims at determining the 
number of objects known to the vehicle based on (i) 
its own sensors and (ii) V2X communication with 
vehicles in its vicinity. It is then demonstrated on the 
example of a highway scenario. 
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2 RELATED WORK 

Considerable effort has been conducted in developing 
more efficient object detection and tracking 
algorithms for specific sensors or combinations of 
them. An extensive overview is given by (Sivaraman, 
2013). Empirical studies were performed for some of 
these algorithms, to investigate the detection 
probability given specific scenarios (Held, Levinson, 
& Thrun, 2012). Geese et. al. (2018) recently 
presented an approach to predict the performance of 
an optical sensor in dependence of the environmental 
conditions. Another approach is the detection and 
tracking of moving objects (DATMO) based on 
occupancy grids as presented, e.g. by Baig, Vu, & 
Aycard (2009). However, to the best of the authors’ 
knowledge, no thorough theoretical analysis about the 
number of detectable objects or the fraction of objects 
contained in the LEM or the GEM has been 
conducted so far.  

The contribution of the present work is an 
analytical model that allows estimating the absolute 
and the relative amount of objects contained in both 
LEM and GEM, in dependence of macroscopic 
parameters, such as the linear vehicle density, and the 
properties of road, vehicles and sensors. 

3 VEHICLE PERCEPTION 

In order to perceive their environment, automated 
vehicles have to make use of all kinds of sensors. 
While subsection 3.1 deals with the vehicle’s own on-
board sensors, subsection 3.2 introduces the concepts 
of cooperative awareness and collective perception, 
which allow utilizing the data of external sensors 
shared through V2X communication.  

3.1 On-board Sensors 

The growing complexity of advanced driver 
assistance systems (ADAS) is leading to an 
increasing number of sensor-systems being installed 
in nowadays’ vehicles. Fig. 1 shows some of them. 
They can roughly be divided into four classes, 
depending on their range: (i) ultra-short (up to 5 m): 
e.g. ultrasound for parking assistance, (ii) short (~30 
m): e.g. radar for blind spot detection, rear collision 
warning or cross traffic alert, (iii) mid-range (~100 
m): e.g. radar, LIDAR or video for surround view, 
object detection, video-supported parking assistance, 
traffic sign recognition, lane departure warning, 
emergency braking or collision avoidance, and (iv) 

long range (~200 m): radar e.g. for adaptive cruise 
control or sheer-in assistance on a highway. 

To ensure the functional safety of highly 
automated vehicles, sensor redundancy for object 
detection will be necessary, making sure the vehicle 
is still able to deal with adverse environmental 
conditions or even a sensor system falling out.  

 

Figure 1: Vehicle sensors of ultra-short (grey), short 
(green), medium (blue) and long range (red). 

The LEM is essentially based on data registered by 
the mid- and long-range sensors. To detect objects 
that are further away, V2X communication is of great 
use. 

3.2 V2X Communication 

The limited perception capabilities of on-board 
sensors can be enhanced with V2X communication, 
by means of cooperative awareness and collective 
perception. Cooperative awareness consists of 
vehicles transmitting data about their own state via 
V2X communication, such as their current position, 
speed and heading. This service is implemented by 
the Cooperative Awareness Message (CAM) in 
Europe and by the Basic Safety Message (BSM) in 
the US. Collective perception (Günther, 2016) allows 
cars to inform nearby vehicles of objects detected by 
their own on-board sensors. The exchange of 
Collective Perception Messages (CPM) enables 
vehicles to perceive objects beyond their own 
sensor’s range by looking through other vehicles’ 
“eyes”. The collective perception service is currently 
considered for standardization by the European 
Telecommunications Standards Institute (ETSI) in 
order to ensure its interoperability among all 
equipped vehicles. 

4 ANALYTICAL MODEL 

The quality of a highly automated vehicle’s 
environmental model sensitively depends on the 
fraction of objects it contains. It is thus necessary to 
predict this quantity as accurately as possible. With  
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this goal, an analytical model based on the 
specifications of the vehicle dimensions, their on-
board sensors, the vehicle density and the scenario 
characteristics is set up. The model should further 
consider occlusion by other vehicles, which becomes 
especially relevant at higher vehicle densities as 
shown in the figure below, and V2X communication 
among the vehicles. 

 

Figure 2: Top view of a vehicle on a highway equipped with 
a free-field sensor to detect traffic objects in its vicinity. The 
NLOS section of the FOV (blue area) is indicated in cyan. 

Finally, it would be desirable for the model to be as 
independent of a concrete vehicle distribution as 
possible, depending only on macroscopic parameters 
such as the average vehicle velocity, density, 
dimension and V2X penetration rate. 

4.1 Objects in Field of View 

The number of objects contained in a sensor’s FOV 
(marked in blue in Fig. 2) is given by 
 

݊୭ୠ୨
	 ൌ ݊୭ୠ୨



ே

ୀଵ

 (1)

 

where ܰ and ݊୭ୠ୨
  are the number of lanes within the 

sensor’s FOV and the number of vehicles on lane ݊ 
within the FOV respectively. The latter is defined by 
the vehicle distribution ሺݔሻ between the boundaries 
 ା (see example in Fig. 4) of the FOV onܮ ି andܮ
line		݊: 
 

݊୭ୠ୨
 ൌ න ݔሻ݀ݔሺ


శ


ష

 (2)

 

While the position of the analyzed vehicle, further 
referred to as ego-vehicle, does have a significant 
influence on the vehicle distribution on its own lane, 
its effect on the distribution of vehicles on other lanes 
is almost negligible (Filzek & Breuer, 2001). The 
vehicle distribution can thus be assumed as isotropic 
on each of these lanes and corresponds to their vehicle 
densities ߪ: 
 

ሻݔሺ ൌ  (3)ߪ
 

On the ego-lane however, the distribution is 
characterized by the exact localization of the ego-
vehicle. The distribution function on the ego-lane is 
thus composed of the distribution functions ୣ୭ ሺݔሻ 
of every vehicle ݅ on the ego-lane within the sensors 
FOV 

ሻݔ୭ሺୣ ൌୣ୭ ሺݔሻ


 (4)

 
with the mean of  ୣ୭ ሺݔሻ having to fulfill 
 

〈ݔ〉 ൌ නݔ ୭ୣ ሺݔሻ ݔ݀ 	
!
ൌ		݅	ୣߪ୭ିଵ  (5)

  

While the distribution of the ego-vehicle equals a 
simple Dirac delta function at the origin 
 

୭ୣ ሺݔሻ ൌ (6) ߜ
 

the distributions of the neighbouring vehicles have 
variance, skewedness and kurtosis that depend on the 
mean vehicle density ୣߪ୭ and velocity ୣݒ୭	 on the 
ego-lane and follow the relation 
 
୭ୣ
േଵ ൫ݔ, ,ߪ ݒ ൯ ൌ ݈୴ୣ୦  ݀୧୬୲൫േݔ, ,୭ୣߪ ୭൯ (7)ୣ	ݒ

 
where ݈୴ୣ୦ and ݀୧୬୲ are the mean vehicle length and 
the inter-vehicle distance respectively. Numerous 
studies have been conducted about the latter in the 
past (Filzek & Breuer, 2001). By convolution, it is 
then possible to recursively obtain the remaining 
vehicle distribution functions: 
 

ሻݔ୭േଵሺୣ ൌ ሺୣ୭ ∗ ୭േଵୣ ሻሺݔሻ (8)
 

Fig. 3 shows a vehicle distribution around the ego-
vehicle. As expected, ୣ୭	 (x) quickly tends towards 
݅ ୭ forୣߪ  2 vehicles away from the ego-vehicle. 
 

 

Figure 3: Vehicle distribution on ego-lane. The ego-vehicle 
itself is represented by a Dirac-function at the origin. 
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Putting together Eq. 1, 2 and 3 one obtains 
 

݊୭ୠ୨
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శ


ష

ே

ୀଵ

 
(9)
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where ܮ is the length of the lane segment of lane ݊ 
within the FOV of the sensor and ܴ is the sensor’s 
range. Fig 4 exemplarily shows ܮଶ corresponding to 
the distance between ܮଶ

ି and ܮଶ
ା. In general, for a 

given sensor, ܮ can be determined from the sensor’s 
specifications. However, it can also easily be 
determined by making use of sensor parameters, such 
as its offset relative to the ego-vehicle’s front 
axis	ߜ ൌ ൫ߜ௫หߜ௬൯, its already introduced range ܴ and 
the angles ିߴ and ߴା delimiting its frustum.  

4.2 Objects in Line of Sight 

Usually a relevant fraction of the vehicles in the 
sensor’s FOV will be hidden behind closer objects. 
These Non-Line-of-Sight (NLOS) segments are 
depicted in red in the figure below (somewhat shorter 
in range for a better visualization). 

 

Figure 4: Schematic representation of a sensor’s Line-of-
Sight and Non-Line-of-Sight segments. 

In analogy to Eq. 9, the number of objects within LOS 
(green and blue segments in the figure above) is: 
 

݊ୗ
	 ൌ න ݔሻ݀ݔሺ	

	

ୗ

ே

ୀଵ

ൌ ݊ୗ
ୣ୭   ୗܮߪ



ே

ஷୣ୭

(10)

 
ୗܮ
  being the overall length of all lane sub-segments 

on lane n that are in LOS.  
Even though the vehicle may perceive further 

objects on the ego-lane (e.g. due to misaligned 
vehicles, different vehicle sizes or through the front 
vehicle windows) the detection accuracy generally 

will not be good enough to extract the necessary 
information (e.g. to fill all the mandatory CPM object 
fields). Thus, further detections on the ego-lane are 
negligible. With this the expectancy value of 
detectable objects ݊ୗ

ୣ୭  equivalents ݊୭ୠ୨
ୣ୭ capped on 

one in both directions: 
 

݊ୗ
ୣ୭ ൌ ൝

݊୭ୠ୨
ୣ୭ ݊୭ୠ୨

ୣ୭ ൏ 1

1 ݊୭ୠ୨
ୣ୭  1

 (11)

 

For instance, the second term of Eq. 10 may be 
developed as follows 
 

 ୗܮߪ


ே

ஷୣ୭

ൌ  ܮߩߪ

ே

ஷୣ୭

 (12)

 

where ߩ represents the fraction of visibility to lane 
݊. The LOS fraction can take values from zero (if no 
LOS is available) to one (when there are no occluding 
vehicles). It is composed of the LOS-fractions of all 
the lines between the ego-lane ݅ ൌ 0 and the target 
lane ݅ ൌ ݊ and can be computed as: 
 

ஷୣ୭ߩ ൌෑߩ
ሺሻ

ିଵ

ୀଵ

 (13)

 

Shadowing caused by vehicles on the ego-lane 
reduces visibility towards the target lane. It may only 
change the upper boundary of ܮୗ

 . A geometric 
analysis allows to calculate the expectancy value of 
the last visible point on lane n 
 

,ୗܮ
ሺሻା ൌ  ሻݔ୭ሺୣ ൬ߜ௫  ݔ

௦ିఋ
ఠ/ଶିఋ

൰ ݔ݀
〈௫ 〉ୀ

భ
మ

୶ୀశ
  

 
(14)

 

where ߱ and ݏ are the widths of the vehicle and the 
lanes respectively. Eq. 10 can easily be resolved using 
Eq. 4 and 5. Considering only vehicles on the ego-
lane, the LOS section of lane ݊  may thus be expressed 
as: 
 

,ୗܮ
ሺሻ ൌ minሺܮ,ୗ

ା , ,ୗܮ
ሺሻା ሻ 	െ	ܮି (15)

 

At higher distances from the ego-lane, the number of 
vehicles occluding the vision will increase. However, 
objects on lanes in between may interfere in the LOS 
only if they are placed between the sensor and its 
theoretical visibility area on lane n (shown in green in 
Fig. 4). Let’s define ܮ

ሺሻ	as the portion of lane i where 
vehicles could shadow lane n. As an example, ܮଶ

ଵ  is 
shown in Fig 4, comprising the segment from ܮଶ

ଵି 
to	ܮଶ

ଵା. A simple geometrical analysis yields: 
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ܮ
ሺሻ ൌ ቆ

ݏ݅ െ ௬ߜ
ݏ݊ െ ௬ߜ

ቇܮ (16)

The fraction of visibility on this line can now be 
determined by 
 

ߩ
ሺሻ ൌ ൭1 െ

݊ୱ୦ୟୢ
/ ሺܮሻ݈̅	

ܮ
ሺሻ ൱ (17)

 

where ݊ୱ୦ୟୢ
/  stands for the number of vehicles on line 

݅ interfering the LOS to lane n and ݈̅		is their average 
effective cross-section. Knowing that the x-position 
relative to the ego-vehicle is not correlated (see 
Section 4.1), ݈̅ can be computed as 
 

݈̅ ൌ න
መ݈
ሺݔሻ

ܮ
ሺሻ


శ


షି

(18) ݔ݀

 

with መ݈ሺݔሻ representing the projection of a vehicle at 
position x on the center of lane i. For the sake of 
simplicity, the sensor offset is omitted in Eq. 19 and 
20, however it can easily be reincorporated 
 

መ݈
 ൌ ቐ

ܽሺݔሻ ିܮ െ ݈  ݔ ൏ 							ିܮ
ܽሺݔሻ	 െ ܾሺݔሻ ିܮ  ݔ ൏ ାܮ െ ݈

ܮ
ሺሻ െ ܾሺݔሻ ାܮ െ ݈  ݔ ൏ ାܮ

 (19)

 

with the terms ܽሺݔሻ ൌ
ሺ௫ାሻ௦

௦ି௪/ଶ
 and ܾሺݔሻ ൌ

௫௦

௦ା௪/ଶ
. 

Reincorporating this into Eq. 18 and solving the 
integral yields: 
 

݈పഥ ൌ න
መ݈
ሺݔሻ

ܮ
ሺሻ


శ


షି

ݔ݀ ൌ ݈ 
݅ܮ ቀ

ݓ
ݏ ቁ

2݊ଶ െ 0.5 ቀ
ݓ
ݏ ቁ

ଶ (20)

 

Subsequently the number of shadowing vehicles on 
the earlier lines ݊ ୱ୦ୟୢ

/  has to be determined for Eq. 17. 
It can be computed by the recursive equation: 
 

݊ୱ୦ୟୢ
/ ൌ ܮߪ

ሺሻߩ

ൌ ܮߪ
ሺሻෑߩ

ሺሻ
ିଵ

ୀଵ

																			

ൌ ܮߪ
ሺሻෑ൭1 െ

݊ୱ୦ୟୢ
/ ሺܮሻ݈పഥ	

ܮ
ሺሻ ൱

ିଵ

ୀଵ

 

(21)

 

Due to the relation ݊ୗ
 ൌ ݊ୱ୦ୟୢ

/  the expectancy 
value of detectable vehicles on lane ݊ can finally be 
written as: 
 

݊ୗ
 ൌ ෑ൭1ܮߪ െ

݊ୱ୦ୟୢ
/ ሺܮሻ݈పഥ	

ܮ
ሺሻ ൱

ିଵ

ୀଵ

 (22)

 

It should be noted that this is not equal to the number 
of vehicles shadowing line ݉  ݊, since only 

ܮ
ሺሻ/ܮ

ሺሻ of these vehicles will interfere the LOS to 
line ݉. 

4.3 Objects Detected by V2X 
Communication 

Vehicles not detectable by on-board sensors can still 
be detected via V2X communications, by means of 
cooperative awareness and collective perception (see 
Section 3.2). These services make it possible to 
extend the own vehicle’s Local Environmental Model 
(LEM) to an enhanced Global Environmental Model 
(GEM), which includes vehicles detected by means 
of V2X communication in addition to those detected 
by the vehicle’s on-board sensors. The total number 
of vehicles in the GEM can be expressed as: 
 

݊୭୲ ൌ ݊ୗ  ݊ଶଡ଼
	  (23)

 

Knowing that a car is detectable via on-board sensors 
by ݊ୗ

	  vehicles, one can compute the probability 
that at least one of these vehicles is V2X-equipped, 
and thus able to inform the ego-vehicle about the 
detected car 
 

ଶଡ଼ ൌ 1 െ ሺ1 െ ߮ሻైో
	 ାଵ (24)

 

where the +1 comes from the transmitting vehicle 
sharing its own state through a CAM, a CPM or any 
other V2X-message and ߮  being the V2X penetration 
rate. With this, it is now possible to determine the 
expectancy value of vehicles detected merely by V2X 
communication: 
 

݊ଶଡ଼ ൌ ሺ݊ୠ୨ െ ݊ୗሻሺ1 െ ሺ1 െ ߮ሻైో
	 ାଵሻ (25)

5 RESULTS AND DISCUSSION 

In this section, the theoretical model is demonstrated 
and discussed on the example of a highly autonomous 
vehicle on a straight highway segment. It is divided 
into two sections, dealing with the LEM (Section 5.1) 
and the GEM (Section 5.2) respectively. Different 
performance metrics are analysed in dependence of 
the vehicle density, the number of lanes, the V2X 
penetration rate and the utilized sensor system. Due 
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to its depreciable effect on the normalized vehicle 
distribution (Fig. 3) and its strong correlation to the 
vehicle density (Filzek & Breuer, 2001), the vehicle 
velocity is not further investigated. 

5.1 Local Environmental Model 

Even though the presented analytical model already 
builds on a number of simplifications, for 
demonstration purposes a few more have to be 
introduced. Below, they are presented together with the 
necessary set of parameters: 
 Highly autonomous vehicles require a full 

perception of their environment in order to act and 
react according to it. Thus, a full surround view is 
indispensable. 

 Sensor redundancy significantly increases the 
reliability of the system. For this reason, full-
surround video, LIDAR, and radar systems, with 
front and rear ranges of 100	m (video), 120	m 
(LIDAR) and 180	m (radar) are discussed.  

 Even though side sensors will have a much lower 
range than their front and rear peers, it will be 
sufficient to cover the full street width.  

 To reduce the number of variables a constant 
vehicle density is presumed for the purposes of 
this analysis. 

 The vehicle length and width are set to  4.4	m and 
1.8	m respectively, corresponding to the average 
dimensions of vehicles sold in Germany in 2018 
(Centre for Automotive Research (CAR) of the 
Duisburg-Essen University, 2018). 

 The lane width was set to 3.5	m as defined in the 
German RQ26, RQ33 and RQ10.5 highway 
standards by the FGSV (1982). 

Fig. 5 shows the results of the postulated model for a) 
the video-, b) the LIDAR-, and c) the radar-system on 
a four-lane highway. The x- and y-axes of the upper 
three plots represent the ego-lane and the vehicle 
density respectively.  

As could be expected, cars on the centre lanes 
detect more vehicles than those on outer ones. 
Moreover, the number of detectable objects reaches a 
maximum for a certain vehicle density. The location of 
this maximum further depends on the range of the 
sensor system. Apparently, a higher range shifts the 
maximum down to lower densities. This can easily be 
explained, considering that the inter-vehicle distance 
increases with decreasing vehicle density. 

 

Figure 5: Expected object detections (above) and Environment Awareness Ratio (EAR, bellow) of a vehicle depending on its 
actual driving lane on a 4-lane highway and the average linear vehicle density for different full surround sensor systems. 
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Figure 6: Vehicles in LOS (left) and Environmental Awareness Ratio (EAR, right) of a vehicle depending on the number of 
highway-lanes and the vehicle density for full surround video, LIDAR and radar systems.  

At low inter-vehicle distances, the number of 
detected vehicles will not increase significantly with 
increasing sensor range, since shadowing by cars in the 
proximity dominates. However, at lower vehicle 
densities, vehicles that are further away may also be 
detected. The maxima are located at densities of 
approximately 38 (video), 32 (LIDAR) and 21 (radar) 
vehicles per kilometre. This corresponds to average 
inter-vehicle distances of 22	m, 27	m and 41	m 
respectively, proving the direct correlation with the 
range of the sensor system.  

Besides the number of detectable vehicles, also 
the Environmental Awareness Ratio (EAR) i.e. the 
detection probability of an object within the FOV is 
of great interest. It can be determined as follows: 

EAR ൌ
݊ୗ
	

݊୭ୠ୨
	  (26)

The lower row of Fig. 5 shows the environmental 
awareness ratio for a) the video-, b) LIDAR-, and c) 
radar system. As can be seen, the number of 
detectable objects decreases at lower densities, 
however, the awareness ratio improves due to the lack 
of shadowing vehicles in the vicinity. For this reason, 
the EAR is essential to complement the number of 
detectable objects. 

To investigate the effect of the number of lanes on 
the number of detectable objects, the latter was 
determined for highways of 3, 4, and 5 lanes as an 
average over each of their lanes for the three 
investigated sensor systems (Fig. 6, left). It is worth 
noticing that the maximal amount of detectable 
vehicles always moves towards higher densities with 
increasing number of lanes. Moreover, the previous 
findings of the four-lane highway seem to hold 
accordingly for the three- and five-lane highways. 

 

Opposed to the EARs of Fig. 5, which were normed 
on the ranges of each sensor system, the EARs in Fig. 
6 (right) take the range of the radar system as 
reference. This allows to directly compare the 
performances of the three sensor systems. As was to 
be expected, the radar system clearly outperforms the 
radar and video systems at vehicle densities of up to 
20 vehicles per kilometre due to its higher range. 
However, in the region between 20 and 40 vehicles 
per kilometre the performance gap closes quickly, 
and almost fully vanishes for densities over 40 
vehicles per kilometre. Another interesting, yet 
expectable finding is that the number of lanes has a 
much smaller effect on the EAR. The addition of 
further lanes only leads to a slight deterioration of the 
vehicle’s environmental awareness. Finally, the fast 
drop in EAR with the vehicle density down to around 
10% at a density of 100 vehicles per kilometre clearly 
emphasises the need for an enhancement of the LEM. 

5.2 Global Environmental Model  

To investigate the GEM, further assumptions and 
simplifications are made: 
 The channel capacity is expected to be high 

enough to avoid channel congestion. 
 The communication range is assumed high 

enough to cover double the sensor range. 
Considering current technologies, e.g. LTE-
V2X, IEEE 802.11p and the upcoming 5G-V2X, 
the communication range should not be a 
limiting factor on a highway scenario (Molina-
Masegosa, 2017)  

 The number of transmitted objects per CPM is 
limited to 20 to control the message size. 

Fig. 7 shows the results for V2X penetration rates of 
0% (݊୭୲

	 ൌ ݊ୗ
	 ) to 100% (݊୭୲

	 ൌ ݊୭ୠ୨
	 ሻ for a five-
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Figure 7: Expected number of vehicles contained in a vehicle’s GEM (left), Environmental Awareness Ratio (EAR, middle), 
and Detected Object Redundancy (DOR, right) depending on the V2X penetration rate for a five-lane highway (Radar). 

lane highway scenario. Clearly, collective perception 
significantly increases the number of detected objects 
(left) and hence the environmental awareness 
(middle) already at penetration rates of φ ൌ 3 െ
10%. Only at very small inter-vehicle distances of 
around 2.5	m (ߪ ൎ 140	Veh/km) the EAR decreases 
to ~75% and ~96% for φ ൌ 10% and φ ൌ 25% 
respectively, making higher penetration rates 
necessary. However, higher penetration rates also 
increase the Detected Object Redundancy (DOR, 
Fig.7, right). While a penetration rate of φ ൌ 10% 
implies an expected detection redundancy of at most 
3 objects for an EAR of at least 75%, the DOR 
increases up to 7 and	27 for penetration rates of φ ൌ
25% and φ ൌ 100% respectively. Specially the 
increase from φ ൌ 25% to φ ൌ 100% brings low 
profit (∆EAR	 ൎ 4%) at a high price (ൎ 400% more 
transmitted data), suggesting the need for regulation 
mechanisms at higher V2X penetration rates. 

6 CONCLUSION 

The present work introduced an analytical model to 
determine the number of vehicles within the FOV of 
a sensor or a complete sensor system and the 
respective LOS fraction. The latter is important to 
estimate the quality of the LEM. It was found, that the 
environmental awareness ratio suffers a significant 
drop at denser traffic scenarios, making the exchange 
of data through V2X communication necessary. The 
integration of V2X services, such as cooperative 
awareness and collective perception, led to a 
significant enhancement of the environmental 
awareness already at very low V2X penetration rates. 
Higher penetration rates further increased the EAR; 
however, the gain was small in comparison to the rise 
in transmitted data.  

The model builds a good analytical basis, not only 
for the better understanding of current and future 
sensor systems, but also for the development of V2X 
services like the CPM and the corresponding 
congestion control mechanisms.  

REFERENCES 

Baig, Q., Vu, T.-D., and Aycard, O. (2009). Online 
localization and mapping with moving objects 
detection in dynamic outdoor environments. IEEE 5th 
International Conference on Intelligent Computer 
Communication and Processing (pp. 401-408). IEEE. 

Centre for Automotive Research (CAR) of the Duisburg-
Essen University. (2018, May 07). WACHSTUM - Die 
Autos werden immer dicker. Der Standard. 

Chen, Z. (2003). Bayesian Filtering: From Kalman Filters 
to Particle Filters, and Beyond. Statistics, 182(1), 1-69. 

Filzek, B., and Breuer, B. (2001). Distance behavior on 
motorways with regard to active safety ~ A comparison 
between adaptive-cruise-control (ACC) and driver. 
SAE Technical Paper (No. 2001-06-0066). 

Forschungsgesellschaft für Straßen- und Verkehrswesen 
(FGSV). (1982). Richtlinien für die Anlage von 
Straßen: (RAS) / Forschungs-gesellschaft für Straßen- 
und Verkehrswesen, Arbeitsgruppe Straßenentwurf; 
Teil (RAS-Q): Querschnitte. Köln: 
Forschungsgesellschaft für Straßen- und 
Verkehrswesen, Vol. 295. 

Geese, M., Ulrich, S., and Alfredo, P. (2018). Detection 
Probabilities: Performance Prediction for Sensors of 
Autonomous Vehicles. Electronic Imaging 2018 (17), 
1-14. 

Günther, H. J. (2016). Realizing collective perception in a 
vehicle. Vehicular Networking Conference (VNC) (pp. 
1-8). IEEE. 

Held, D., Levinson, J., and Thrun, S. (2012). A probabilistic 
framework for car detection in images using context 
and scale. In Robotics and Automation (ICRA) (pp. 
1628-1634). IEEE International Conference. 

VEHITS 2019 - 5th International Conference on Vehicle Technology and Intelligent Transport Systems

230



 

Molina-Masegosa, R. and. (2017). LTE-V for sidelink 5G 
V2X vehicular communications: a new 5G technology 
for short-range vehicle-to-everything communications. 
IEEE Vehicular Technology Magazine 12(4) (pp. 30-
39). IEEE. 

Rezatofighi, S. H., Milan, A., Zhang, Z., Shi, Q., Dick, A., 
and Reid, I. (2015). Joint probabilistic data association 
revisited. IEEE International Conference on Computer 
Vision (ICCV) (pp. 3047-3055). IEEE. 

Sivaraman, S. and. (2013). Looking at vehicles on the road: 
A survey of vision-based vehicle detection, tracking, 
and behavior analysis. IEEE Trans-actions on 
Intelligent Transportation Systems, 14(4) (pp. 1773-
1795). IEEE. 

 

Object Detection Probability for Highly Automated Vehicles: An Analytical Sensor Model

231


