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Abstract: In this paper, a cloud parallel programming system CSSP being under development at the Institute of 

Informatics Systems is considered. The system is aimed to be an interactive visual environment of functional 

and parallel programming for supporting of computer science teaching and learning. The system will support 

the development, verification and debugging of architecture-independent parallel programs and their correct 

conversion into efficient code of parallel computing systems for its execution in clouds. In the paper, the 

CPPS system itself, its input functional language, and its internal graph presentation of the functional 

programs are described.  

1 INTRODUCTION 

Parallel computing is one of the main paradigms of 

modern programming, but the existing curricula of 

most universities do not properly address the major 

transition from single-core to multi-core systems and 

sequential to parallel programming. They focus on 

applying application program interface (API) 

libraries and open multiprocessing (OpenMP), 

message passing interface (MPI), and compute 

unified device architecture (CUDA)/GPU techniques. 

This approach misses the goal of developing students' 

long-term ability to solve real-life problems by 

“thinking in parallel”. 

Functional programming is a programming 

paradigm, which is entirely different from the 

conventional model: a functional program can be 

recursively defined as a composition of functions 

where each function can itself be another composition 

of functions or a primitive operator (such as 

arithmetic operators, etc.). The first language of 

functional programming was Lisp, developed in 1961 

by the American scientist J. McCarthy. Although the 

language was widely known, due to its greater 

expressiveness and elegance compared with 

traditional languages, its applicability was limited 

mainly to the tasks of artificial intelligence.  

A new period of functional programming began 

with the 1978 Turing lecture of inventor Fortran 

J. Beckus “Can Programming Be Liberated from the 

von Neumann Style? A Functional Style and Its 

Algebra of Programs” (Backus, 1978). This new 

understanding and wider acceptance of functional 

programming was determined, first of all, by the 

process begun in those years to move to the 

consideration of the programming problem in its full 

context, beginning with the specification of the 

problem and the logical analysis of its solvability, the 

byproduct of which is the program itself. The 

emergence of computational systems with parallel 

architectures further increased the importance of 

functional programming, as it allows the user to be 

free from most of the parallel programming problems 

inherent in imperative languages and to entrust the 

compiler with the construction of a program 

effectively executed on a computing system of a 

particular parallel architecture. In addition, many 

technical problems of system and application 

programming become clear when presenting their 

solutions in a functional style. 

The development of functional methods of 

parallel programming successfully continued in the 

late 70s in the languages of VAL and BARS, as well 

as in a number of more modern projects, such as DCF, 

Pythagoras, COLAMO, and the SISAL language (an 

abbreviation with the English expression Streams and 

Iterations in a Single Assignment Language) 

(Gaudiot et al., 1995), the first version of which refers 

to 1983. SISAL is developed as a functional 

programming language, specifically oriented to 

parallel processing and the replacement of the Fortran 

language on supercomputers in scientific computing. 
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It is still early to speak about real displacement, but 

SISAL as a parallel programming language is quite 

interesting itself and has already found its application 

in dozens of organizations around the world. There 

are several implementations of the SISAL language 

(version 1.2 (McGraw et al., 1985)) for 

supercomputers, in particular Denelcor HEP, Vax 11-

780, Cray-1, Cray-X / MP, TERA, * T, TAM and 

MIDC. The Livermore National Laboratory and 

Manchester University have developed an improved 

version of the SISAL language (SISAL-90 (Feo et al., 

1995)), which has not yet been implemented. 

In this paper, the cloud parallel programming 

system (CPPS) being under development in the 

Program construction and optimization laboratory of 

the Institute of Informatics Systems with support of 

the grant of the Russian Science Foundation (project 

18-11-00118) is considered. Main properties of the 

CPPS system itself, its input functional language 

(Cloud Sisal language) and its internal graph 

representation of Cloud Sisal programs are described. 

2 CLOUD PARALLEL 

PROGRAMMING SYSTEM 

CPPS 

Modern approaches to the development of parallel 

programs are mostly architecturally oriented, when 

the created programs to achieve effective work are 

closely related to the parallel computing architecture 

on which they are executed and, as a rule, are 

developed. Therefore, the requirements for the 

qualification of developers of parallel programs are 

very high, especially since testing and debugging a 

parallel program is much more complicated than a 

sequential one, and the problem of verifying parallel 

programs is very far from solving not only practically 

but also theoretically. At that, only a little part of 

domestic users has access to high-performance 

computing equipment, which in terms of the number 

of supercomputers and their total capacity is quite 

inferior to those available in developed countries and 

is concentrated in a relatively small number of places 

outside which parallel programming is not developed, 

but the main part of applied programmers works.  

Moreover, in modern computer technology there 

is a constant change of architectural paradigms, 

which, in turn, leads to the problem of portability of 

already developed parallel programs. We have to 

constantly adapt the already created product to the 

changed hardware. This is due to the fact that 

different parallel computing systems have their own 

resource limitations, which must be taken into 

account during the development of the program. 

Carrying out such adaptations is a very intellectual 

task, requiring substantial rewriting of parallel 

programs and performing again their verification and 

debugging. As a result, adapted parallel programs 

often contain new errors and are not as effective as 

they should and could be. 

Therefore, it seems very promising to carry out a 

project to develop language and software tools that 

support the construction, verification and debugging 

of architecture-independent parallel programs as well 

as the correct conversion them into efficient code for 

parallel computing systems of various architectures 

using semantic transformations.  

Methods will be developed and an experimental 

version of the cloud extensible integrated visual 

parallel programming system CPPS will be 

developed. The input language of the CPPS system is 

the Cloud Sisal language (Kasyanov, Kasyanova, 

2018) which continues the tradition of previous 

versions of SISAL (such as Sisal 90 (Feo et al., 1995) 

and Sisal 3.2 (Kasyanov, 2013)) while remaining a 

functional data-flow language focused on writing 

large scientific programs and expanding their 

capabilities by supporting cloud computing. The 

functional semantics of Cloud Sisal guarantees 

deterministic results for parallel and sequential 

implementation — something that cannot be 

guaranteed for traditional imperative languages like 

Fortran or C. Moreover, the implicit parallelism of the 

language removes the need to rewrite the source code 

when transferring it from one computer to another. It 

is guaranteed that the Cloud-Sisal-program, correctly 

executed on a personal computer, will be guaranteed 

to be correctly executed on any high-speed parallel or 

distributed computer. 

Wherein, annotated programming methods and 

concretizing transformations used in the CPPS 

system will allow us within the framework of the 

declarative programming style to adapt the portable 

parallel programs to the task classes and the 

architecture of the supercomputer, while preserving 

their correctness, and also to obtain a more efficient 

parallel code by using during adaptation knowledge 

of the user about the task, program and computer, 

expressed in annotations. 

CPPS is developed as an integrated cloud 

programming environment in the Cloud Sisal 

language, which contains both an interpreter that 

supports interactive user interaction when creating 

and debugging a functional program, and an 

optimizing cross-compiler that builds a parallel 

program according to its functional specification. 
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Using the CPPS system, an application 

programmer will be able to develop, verify and debug 

a Cloud-Sisal-program in a visual style and without 

taking into account the target supercomputer, and 

then use the optimizing cross-compiler to tune the 

debugged program to one or another supercomputer 

available to him in network, in order to achieve high 

performance execution of the parallel program, as 

well as transfer the built program to the 

supercomputer to run it and receive its results. 

The CPPS system uses an internal graph 

representation of functional programs that is focused 

on their visual processing and is based on attributed 

hierarchical graphs (Kasyanov, 2013). It supports the 

construction of visual images of graph internal 

representations of Cloud-Sisal-programs and their 

use in the construction of correct functional programs 

(Kasyanov, Kasyanova, Zolotuhin, 2018). It is 

assumed that the system will also support the 

construction of visual representations of the internal 

data structures that arise in the cross-compiler when 

parallel programs are constructed as well as of the 

dynamic processes that occur when the parallel 

programs are executed. These visual representations 

can help users to control optimizations during cross-

compilation to improve efficiency of the compiled 

parallel programs. 

3 CLOUD SISAL LANGUAGE 

The Cloud Sisal language has the usual advantages of 

functional programming languages, such as, for 

example, single assignment (that is, each variable in 

a program is defined only once), but contains arrays 

and loops that are not inherent in functional 

languages.  

Consider the following fragment of the Cloud 

Sisal program: 

 
type OneDim = array [..] of integer;  

type TwoDim = array of OneDim; 

function generate 

( N : integer 

returns TwoDim, OneDim  

)  

for i in 1, N cross j in 1, N  

do 

  A := i * j;  

B := i + j  

 returns array [.., ..] of A; 

  array of B  

 end for  

end function 

 

The first two lines define the type names for the 

arrays. It can be seen that the dimensions are not 

specified in them, and all instances of the described 

composite data types must be dynamically created, 

changed, and deleted during program execution. Only 

the form and types of elements are contained in these 

specifications of array types. In the second line (in the 

TwoDim type definition), the form is omitted and by 

default it is assumed to be [..]. 

The header of the “generate” function indicates 

that one integer argument, “N”, is expected, and two 

unnamed values are calculated (returned). Each return 

value is an array of integers, but again, only the 

shapes of the arrays are indicated, not their sizes. 

Names can be bound to these returned values at the 

place where the function is called if the programmer 

needs it. 

A function call is semantically equivalent to the 

reproduction of a function code at the call site with 

the corresponding change of parameters. This 

equivalence, often referred to as “reference 

transparency”, is a fundamental property of 

functional languages and is one of the strengths of the 

Cloud Sisal language. This property in particular 

simplifies the analysis processes performed by the 

optimizing compiler, since the functions have no side 

effects and are deterministic. In other words, any two 

functions can be executed in parallel, if there is no 

data dependency between functions, and the same 

function with the same actual parameters always 

returns the same values. This means that the body of 

the loop will be executed as many times as there are 

values in the range of indices, in this case N * N, and 

all instances of the body will be independent, since 

there are no data dependencies between them. Those 

sets of independent cycle bodies that will be executed 

in parallel, and which will not, will be selected on the 

basis of the costs associated with the compiler and the 

system, and also on the options set by the 

programmer. 

All Cloud Sisal program expressions, including 

functions entirely, compute sets of values. In the 

above case, the generate function computes two-

dimensional and one-dimensional arrays, which are 

the values of the expression contained in the function 

definition. The specified expression is a loop 

construct that tells the compiler for Cloud Sisal about 

potential concurrency. This cycle has an index range, 

defined as the Cartesian product of two simpler 

ranges. This means that the body of the loop will be 

executed as many times as there are values in the 

range of indices, in this case N * N, and all instances 

of the body will be independent, since there are no 

data dependencies between them. Those sets of 
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independent cycle bodies that will be executed in 

parallel, and which will not, will be selected on the 

basis of the costs associated with the compiler and the 

system, and also on the options set by the 

programmer. 

The names “A” and “B” inside the loop body 

should not be viewed as reusing these names in the 

sense of assigning a variable in an imperative 

program. Here, these names are used to denote values 

in the loop body, and in fact they most likely will not 

actually exist in the executable program. The 

important point here is that each instance of the loop 

body, containing specific values for i and j, will 

independently calculate specific instances of integer 

values, defined as i * j and i + j; then all of these 

individual values will be collected together in a 

couple of arrays and returned. The positions of the 

values in the result arrays, as well as the total size and 

dimension of the returned arrays, are determined by 

their shapes and ranges of cycle indices. In this case, 

two arrays are returned, each of which consists of N2 

integers: a two-dimensional array with an index from 

1 to N in each dimension and a one-dimensional array 

with an index that varies from 1 to N2. The use of 

temporary names in the loop is optional, and the 

above return condition can be rewritten as follows: 
 
returns array [.., ..] of i * j; 

array of i + j 

 

without changing the final results. With such a 

change, the body of the loop will become empty, and 

essentially the language treats the expressions in the 

“array of” as anonymous temporal. 

The language offers the user a rich set of various 

standard reductions, and also allows the definition 

and use of its own reductions. The use of reductions 

is good in that their implementation may depend on 

the target computing system. When a program is 

executed in a single-threaded environment, the 

reduction can be performed sequentially, but when 

executed in several threads it can be executed in 

parallel. 

The Try-catch mechanism is quite popular today 

for error handling, but this approach has conflicts 

with parallel program execution. When an exception 

occurs, all execution threads must be stopped, the 

pipeline is cleared, etc. Also, there are difficulties 

with maintaining software determinism in the case of 

parallel execution and the occurrence of exceptions. 

For the Cloud Sisal language, such problems do not 

exist, because it uses the semantics of “always 

completed calculations”, which means that the Cloud 

Sisal program execution flow never stops and always 

returns the resulting value (possibly containing 

“error” values) even if any erroneous situations. For 

this, there is a distinguished erroneous value in each 

type, for example, a Boolean type consists of the 

values of true (true), false (false) and error value 

(error [Boolean]). Unless otherwise stated, and any 

arguments of operations on built-in types or 

predefined functions are erroneous, their results will 

also be erroneous values. It is always possible to find 

out if the value of an expression is wrong, using a 

special operation. 

The language supports annotated programming 

(Kasyanov, 1989) and concretizing transformations 

(Kasyanov, 1991), allowing the user to describe the 

semantic properties of the program, which are known 

to him, in the form of formalized comments. A 

comment that begins with the dollar symbol “$” is 

called an annotation (or a pragma) and sets the 

properties of the construction that follows (one 

construction can be compared with several 

annotations). The result of a unary expression in the 

annotation to which it refers is denoted by a single 

underscore “_”, and the arity of an n-ary (n> 1) 

expression is denoted as “_ [1]”, ..., “_ [n]”. An 

annotation can have the form “name” or “name = list 

of expressions”, where names that are visible at the 

location of the annotation can take part in list 

expressions. Unrecognized annotations cause 

compiler warnings. 

Let us give some examples of annotations. 

Before each expression there can be an annotation 

“assert = Boolean condition”, which should be true 

immediately after the expression is evaluated.  

The assertions can be placed in function 

declarations both before the returns keyword and 

impose conditions on the returned values, and in front 

of the first formal parameter and set conditions on the 

formal parameter names specified in them, which 

should be valid when the function is called 

immediately before executing body function. 

It is allowed also to replace the Boolean condition 

in the assertion with the so-called extended Boolean 

condition, which has either the form “(all <name>: 

<Boolean condition>: <extended Boolean 

condition>)” or the form “(is <name>: <Boolean 

condition>: <extended Boolean condition>)” and 

defines the scope for the name specified in it. For 

example, the extended Boolean condition (all i: i> 2: 

A [i] = 0) is true if all elements in the array or stream 

A are zero for which the index is greater than two and 

condition (is i: i> 2 : A [i] = 0) true if there is at least 

one zero element in A with an index greater than two. 

For example, the assertion in the header of the 

function definition indicates that the specified 
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function is always used for exponentiation when 

exponent is a power of two: 

 
function power  

( 

//$ (is k : k>=0 & k<n : n = 2**k) 

x : real n : integer returns real  

)  

 if n =0 then returns 1 

 elseif n%2 =0 then   

  returns (power(x, n/2)**2 

 else  returns (power(x, n-1))*x 

 endif 

end function 

 

and therefore it can be equivalently converted to the 

following function: 

 
function power  

( 

//$ (is k : k>=0 & k<n : n = 2**k) 

x : real  

n : integer  

returns real 

)  

 if n =0 then  returns 1 

 else returns (power(x,n/2)**2 

 endif 

end function 

 

Before each expression there may be a “non_used 

= list of values” annotation, which indicates the 

values becomes unnecessary immediately after the 

calculation of the expression (they are not used in the 

future when the program is executed) and can be 

removed from the program. For example, as indicated 

in the annotation below the second result of the 

“generate” function is never used 

 
function generate  

( N : integer  

 //$ non_used = _[2] 

 returns TwoDim, OneDim  

)  

 for i in 1, N cross j in 1, N  

do 

 returns array[.., ..] of i * j; 

array of i + j 

 end for  

end function 

 

and its calculation in the function body can be 

deleted: 
 

function generate  

( N : integer  

 //$ non_used = _[2] 

 returns TwoDim, OneDim  

)  

 for i in 1, N cross j in 1, N 

do 

 returns array [.., ..] of i * j 

end for  

end function. 

4 INTERNAL 

REPRESENTATIONS OF 

CLOUD SISAL PROGRAMS 

The CPPS system uses an internal graph 

representation (IR) of Cloud Sisal programs, which is 

focused on their semantic and visual processing and 

is based on the attributed hierarchical graphs 

(Kasyanov, Kasyanova, 2013). It is assumed that the 

IR representations of the Cloud Sisal programs are 

shown to users of the system along with their textual 

representations and are used by users for the purpose 

of visual debugging of the Cloud Sisal programs and 

their controlled optimization (Kasyanov, Kasyanova, 

Zolotuhin, 2018). It is assumed also that the Cloud 

Sisal program is assembled from IR-modules (both in 

the interpreter and the compiler) before interpreting it 

or optimizing translation.  

In developing the internal presentation, the 

following essential requirements were taken into 

account. 

1. Machine independence for both representation of 

parallelism (there is no explicit splitting of 

computations into several streams), and for the values 

(independence from the capacity of the machine 

architecture) data types. 

2. Completeness of the internal representation, 

allowing to translate any design of the source 

language into a semantically equivalent fragment of 

the internal representation. 

3. The possibility of relaying into a syntactically 

correct program after the transformations of the 

internal representation of the program, preserving its 

semantics. 

4. Simplicity of interpretation (execution given by the 

internal representation of calculations) without any 

additional transformations of the internal 

representation. 

5. Structuredness of objects of internal representation 

for the task of the natural nesting of some 

constructions of the original programming language 

into others. 

6. All implicit actions on data, such as type 

conversions, must be explicitly expressed using 

objects of internal representation. 
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7. Extensibility, in the sense of easily introducing new 

objects of internal representation to define new 

programming language constructs and data types. 

There are several ways of defining an internal 

representation, for example, in this capacity we can 

consider the parse tree of the program being 

broadcast. However, in our case, it does not satisfy 

the requirement of interpretability, since this 

requirement implies the availability of contextual 

(semantic) information. At the same time, the 

requirement of machine-independent parallelism and 

the functionality of the represented programming 

languages lead us to use data flow graphs as a natural 

basis for the structure of the internal representation. 

Thus, the IR graph, in contrast to the control flow 

graph (CFG), commonly used in optimizing 

compilers for imperative languages (such as C or 

Fortran languages), expresses not the control flow, 

but the data flow in the program. Data flow graphs 

have several useful properties for the required internal 

representation, including the following. 

1. Explicitly specified information (semantic) links 

(arcs) between operand operations (vertex ports) 

make the interpretation process feasible without 

additional transformations. This implies the absence 

of side effects of computations (due to the absence of 

the concept of a variable) — the natural property of 

purely functional languages. 

2. Parallelism at the level of individual informational 

independent operations, independent of the machine 

architecture. 

The vertices of the IR graph correspond to the 

program expressions, and the arcs reflect data 

transmissions between the vertex ports, the ordered 

sets of which are assigned to the vertices as their 

arguments (input ports or inputs) and results (output 

ports or outputs). By virtue of the property of the 

Cloud Sisal language, this graph is acyclic and does 

not contain two arcs entering the same input. 

Vertices denote operations on their inputs 

(arguments), the results of which are at the outputs of 

the vertices. There is, however, a special kind of 

vertices denoting literals (constants) of any type, each 

of which has one output and an empty set of 

inputs.Vertices are simple and composite. Simple 

vertices (or simply vertices) have no internal structure 

and represent elementary operations, such as, for 

example, plus or minus. Composite vertices (or 

fragments) correspond to the composite expressions 

of the Cloud Sisal program, such as, for example, a 

loop expression or function body, and additionally 

directly contain sets of vertices corresponding to the 

expressions they consist of. For each fragment F, the 

number and types of the set of vertices M that are 

directly contained in it, as well as the set of arcs (p, q) 

that exist between its ports and the ports of these 

vertices, are determined by the type (or semantics) of 

the compound expression, but satisfy the following 

property: p is the output of some vertex from M or the 

input of the fragment F, and q is the input of some 

vertex from M or the output of the fragment F. It is 

clear that the fragment F in addition to the above 

vertices of M and the arcs incident to their ports, 

which are directly contained in F, will contain other 

vertices and arcs of the graph if there are fragments 

among the vertices of M, but due to the properties of 

the Cloud Sisal language there are no arcs among 

them which are incident to the ports of fragment F 

and are not directly nested in F. 

5 CONCLUSIONS 

The CPPS system is intended to provide means to write 

and debug parallel programs regardless target 

architectures on low-cost devices and then execute 

them in clouds on high performance parallel computers 

without extensive rewriting and debugging.  

So, it can open the world of parallel and functional 

programming to all students and scientists without 

requiring a large investment in new, top-end computer 

systems. Using the CPPS system, any user will be able 

to develop, verify and debug a Cloud-Sisal-program in 

a visual style and without taking into account the target 

supercomputer, and then use the optimizing cross-

compiler to tune the debugged program to one or 

another supercomputer available to him in network, in 

order to achieve high performance execution of the 

parallel program, as well as transfer the built program 

to the supercomputer to run it and receive its results.  

The CPPS system can be used also for teaching and 

learning of optimizing compilation and high 

performance computing. 

The use of the CPPS system can also increase the 

efficiency of using supercomputers by transferring the 

work of programmers to design and debug programs 

from expensive supercomputers to cheaper and more 

familiar personal computers, as well as by eliminating 

the need for a programmer to build, verify and debug a 

program to solve the same problem each time when 

switching from one supercomputer to another. 

ACKNOWLEDGEMENTS 

The authors are thankful to all colleagues taking part 

in the project described. This work was carried out 

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

628



with a grant from the Russian Science Foundation 

(project 18-11-00118). 

REFERENCES 

Backus, J., 1978. Can programming be liberated from the 

von Neumann style? Commun. ACM, 21 (8), 613–641. 

Feo, J. T., Miller, P. J., Skedzielewski, S. K., Denton, S. M., 

Solomon, C. J., 1995. SISAL 90. In: Proceedings of 

High Performance Functional Computing. pp. 35-47, 

Denver. 

Gaudiot, J.-L., DeBoni, T., Feo, J., et al., 2001. The Sisal 

project: real world functional programming. In: Pande, 

S., Agrawal, D.P. (Eds.) Compiler Optimizations for 

Scalable Parallel Systems: Languages, Compilation 

Techniques, and Run Time Systems. LNCS, vol.1808, 

pp. 45-72, Springer, Heidelberg. 

Kasyanov, V. N., 1989. Program annotation and 

transformation. Programming and Computer Software, 

15 (4), 155-164. 

Kasyanov, V. N., 2013. Sisal 3.2: functional language for 

scientific parallel programming. Enterprise Information 

Systems, 7 (2), 227-236. 

Kasyanov, V. N., 1991. Transformational approach to 

program concretization. Theoretical Computer Science 

90 (1), 37-46. 

Kasyanov, V. N. Kasyanova, E. V., 2013. Information 

visualization based on graph models. Enterprise 

Information Systems, 7 ( 2), 187-197. 

Kasyanov, V. N., Kasyanova, E. V., 2018. Programming 

Language Cloud Sisal. Preprint IIS 181, Institute of 

Informatics Systems, Novosibirsk. (in Russian) 

Kasyanov, V. N., Kasyanova, E. V., Zolotuhin, T. A., 2018. 

Visualization of graph presentations of data-flow 

programs. WSEAS Transactions on Information 

Science and Applications, 15, 140-147. 

McGraw, J., Skedzielewski, S., Allan, S., Grit, D., 

Oldehoeft, R., Glauert, J., Dobes, I., and Hohensee, P., 

1985. SISAL — Streams and Iterations in a Single 

Assignment Language, Language Reference Manual: 

Version 1.2. Technical Report TR M-146, University of 

California, Lawrence Livermore Laboratory, March. 

Methods and System for Cloud Parallel Programming

629


