
Consolidating a Model for Describing Situated Software Practices

Diana Kirk1 and Stephen MacDonell2 and Ewan Tempero3

1Technology Academy, EDENZ Colleges, 85 Airedale Street, Auckland 1010, New Zealand
2SERL, School of Engineering, Computer & Mathematical Sciences, Auckland University of Technology,

Private Bag 92006, Auckland 1142, New Zealand
3Department of Computer Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Keywords: Software Development Practices, Software Process Context, Decision Support, Theoretical Model.

Abstract: Many prescriptive approaches to developing software intensive systems have been advocated but each is based
on assumptions about context. It has been found that practitioners do not follow prescribed methodologies,
but rather select and adapt specific practices according to local needs. As researchers, we would like to be in
a position to support such tailoring. However, at the present time we simply do not have sufficient evidence
relating practice and context for this to be possible. We have long understood that a deeper understanding
of situated software practices is crucial for progress in this area, and have been exploring this problem from
a number of perspectives. In this position paper, we draw together the various aspects of our work into a
holistic model and discuss the ways in which the model might be applied to support the long term goal of
evidence-based decision support for practitioners. The contribution specific to this paper is a discussion on
model evaluation, including a proof-of-concept demonstration of model utility. We map Kernel elements from
the Essence system to our model and discuss gaps and limitations exposed in the Kernel. Finally, we overview
our plans for further refining and evaluating the model.

1 INTRODUCTION

The history of software engineering process has been
one of advocacy. Many authors, from both academia
and industry, have architected software development
methodologies and processes in the belief that strict
adherence by practitioners will inevitably result in
project success. Examples include traditional models
such as waterfall (Royce, 1970) and spiral (Boehm,
1988) and agile methods such as eXtreme Program-
ming (XP) (Beck, 2000) and Feature Driven Devel-
opment (FDD) (Luca, nd). The wisdom manifested
was that “development models are best regarded as a
coherent set of practices, some of which are required
to balance the performance trade-offs arising from the
use (or absence) of others” (Cusumano et al., 2003).

However, each of the proposed methodologies is
based on a number of assumptions about context. For
example, testing in XP requires an active customer
to test a delivered increment and provide feedback
i.e. it is assumed that a capable and empowered cus-
tomer is available and that the product has a human
interface. Turk et al. point out that this is inappro-
priate if the product-under-development is, for exam-
ple, an embedded system (Turk et al., 2005). Ag-

ile approaches in general tend to advocate continuous
refactoring, but again this may be inappropriate when
the system to be developed is large and complex.
The notion of ‘tailoring according to contexts’ has
become the accepted wisdom (MacCormack et al.,
2012; Müller et al., 2009; Petersen and Wohlin, 2009;
de Azevedo Santos et al., 2011; Turner et al., 2010).
However, at the present time, we as researchers are
not in a position to support such tailoring because we
simply do not have sufficient evidence relating prac-
tice and context.

We have long been interested in deepening our un-
derstanding of the relationships between practice and
context, and have been exploring this problem from
a number of perspectives. Three key insights have
been gained from these explorations. First, we can-
not know exactly what a practice entails without an
awareness of the context in which it was enacted i.e.
we must now view practice and context as inherently
intertwined. This notion has precedence in the or-
ganisational and management sciences (Orlikowski,
2002) and our recent research has exposed this depen-
dence for software practices (Kirk and MacDonell,
2016). Second, if we wish to discuss and compare
disparate practices, we must apply a research frame-

402
Kirk, D., MacDonell, S. and Tempero, E.
Consolidating a Model for Describing Situated Software Practices.
DOI: 10.5220/0007741304020409
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 402-409
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



work that focusses on what a practice is meant to
achieve, rather than how it achieves it (Kirk and Tem-
pero, 2012a). For example, an organisation producing
medical equipment for a specific client may imple-
ment a strict requirements elicitation process involv-
ing formal sign-off by the client, whereas a startup
organisation may adopt a ‘try it and see’ approach
with feedback from many clients. Both approaches
aim to establish requirements, but do so in very dif-
ferent ways. We also note that each alters the envi-
ronment, but in a different way. In the former case,
the product becomes more formally defined whereas
in the latter case, understanding resides in the heads
of the development team. Third, when exploring con-
text in the literature, we found that many different
kinds of contextual factor were mentioned. In addi-
tion to factors that described context at an operational
level, we also found factors that described project
objectives, factors that described high level organi-
sational objectives and factors that were simply un-
clear (Kirk and MacDonell, 2018; Kirk and Buchan,
2018). Factors tended to be organised in a way that
does not comply with Nickerson et al.’s viewpoint that
the criteria for classification must be identified and
must not be purely descriptive in nature (Nickerson
et al., 2013). For example, the framework proposed
by Clarke and O’Connor contains a factor ‘Cohesion’
which includes ‘team members who have not worked
for you’, ‘ability to work with uncertain objectives’
and ‘team geographically distant’. There is no clear
criteria upon which to base classification decisions as
these sub-factors have different meanings.

Our previous explorations have led us to adopt the
position that, before we can confidently support prac-
titioners in their tailoring efforts, we must address two
issues. First, we must build an evidence base that re-
lates a situated practice (a practice performed within
a specific context) and its outcomes with respect to
desired objectives. As pointed out by Lengnick-Hall
and Griffith, if the intention is to achieve “a specific,
designated outcome”, as is the case for most software
practices, the knowledge (practice) must be applied
as-is. Applying the knowledge in an intuitive or ex-
perimental way introduces a lack of fit between type
of knowledge and how it is applied, and this inevitably
leads to reduced effectiveness, at best (Lengnick-Hall
and Griffith, 2011). From this perspective, ad-hoc
tailoring that is not grounded in evidence might be
viewed as a ‘hidden’ issue. Second, we require some
notion of ‘equivalent practices’. For example, we
might view the two requirements elicitation practices
mentioned above as ‘equivalent’, as each results in an
understanding of scope i.e. they are similar as regards
‘what’ is achieved.

In this position paper, we draw together the mod-
els we have created to address the issues highlighted
above into a holistic model. These models repre-
sent the exploratory stages of our research. We are
now entering a second, more formal, refinement stage
(Routio, 2007). This approach is consistent with the
notion of developing theory (models) inductively with
“inductive theory building ... producing new theory
from data” followed later by “deductive theory test-
ing completing the cycle by using data to test the-
ory” (Eisenhardt and Graebner, 2007). We discuss
the ways in which the model might be applied to sup-
port the goal of evidence-based decision support for
practitioners and overview our plans for further refin-
ing and evaluating the model. Contributions specific
to this paper include a discussion on our approach
to model evaluation and a critique of the established
Essence Kernel based on a mapping between Kernel
and model.

In section 2, we overview the model and in section
3 we discuss how it can be used to support evidence
accumulation and (eventually) decision support. In
section 4, we present our approach to evaluating and
further refining the model and discuss the results from
mapping the Essence Kernel onto our model. In sec-
tion 5, we briefly overview related work and in section
6, we summarise the paper.

2 MODEL OVERVIEW

In this section, we present the model that is the re-
sult of previous works in which we explored vari-
ous aspects of situated software practices (Kirk et al.,
2009; Kirk and Tempero, 2012a; Kirk and Mac-
Donell, 2014; Kirk and MacDonell, 2018; Kirk and
MacDonell, 2016; Kirk and Buchan, 2018). We
overview the model in Figure 1 and Table 1. At top
level is a Software Initiative. A Software initiative
is any endeavour that involves defining, creating, de-
livering, maintaining or supporting software intensive
products or services. It thus encompasses the more re-
cent client-focussed delivery paradigm and subsumes
the traditional ‘project’.

We view a software initiative as a set of practices
implemented with the aim of meeting specified ob-
jectives and enacted within an operational context.
This is in keeping with an earlier understanding that
”Sound tailoring requires the ability to characterise ...
goals ..., the environment ..., and the effect of meth-
ods and tools on achieving these goals in a particular
environment” (Basili and Rombach, 1987). The ini-
tiative thus comprises some objectives, for example,
‘time-to-market’, a set of practices, for example, ‘de-

Consolidating a Model for Describing Situated Software Practices

403



Table 1: Local operational context factors.

People Entity Capability
Motivation
Empowerment
Team cohesion

Interface Team cohesion
Place Entity Physical distance

Temporal distance
Availability

Interface Physical distance
Temporal distance
Availability

Product Product type e.g. embedded
Lifecycle stage e.g. new, mature
Standards e.g. safety
Requirements e.g. clear, complete
Implementations e.g. consistency, modularity

Process Client
Parent org
Legal
Financial

sign review’, and an operational context. The oper-
ational context is many-faceted and includes factors
that directly affect practice efficacy, for example, cul-
tural mis-matches between development teams.

The initiative exists within a higher level strategic
context. Strategic context factors do not directly affect
practice efficacy, but rather spawn decisions relating
to objectives and operational context i.e. the effect is
indirect. Examples are the organisation’s need to gain
consumer trust, or to expand into a global market-
place. The first may result in a project where product
quality is stated as the key objective. The second may
result in the establishment of off-shore teams, thus af-
fecting operational context.

Figure 1: Model for situated software practices.

Operational context abstracts the many factors
that are of direct interest for practice efficacy. Work-
ing context comprises the base dimensions of our con-
text mode i.e. the elements that must be taken into
account for practice selection and tailoring. The four
dimensions are:

People. Cultural characteristics affecting peoples’
ability to perform

Place. Peoples’ availability affecting logistics and
communications

Product. Characteristics of the product that is being
developed

Process. Processes external to the initiative (as com-
pared with practices within the initiative).

The sub-categories for working context are shown
in Table 1.

However, our earlier investigations revealed that
some of the terms commonly used in the literature
are simply not sufficiently clearly defined and we con-
sider these to be Unresolved factors. Secondary fac-
tors are those made up of multiple ideas. An exam-
ple is ‘outsourcing’, which has many possible scenar-
ios relating to what (product) is outsourced by whom
(people), where (place). Ambiguous factors require
deeper consideration. An example is ‘uncertain re-
quirements’, which may exist because the client is un-
clear about what is wanted (product), client processes
result in delays before decisions can be made (pro-
cess), or the client isn’t available (people).

Our abstraction for practices resulted from an ear-
lier study in which we wished to understand why
some SMEs are successful, despite failing to follow
the standard process reference models (Kirk and Tem-
pero, 2012a). This led to our subsequent viewpoint
that we will be in a position to compare practices only
if we categorise based on function. Our functional
categories are shown in Table 2.

Table 2: Categories for practices.

Define Roadmap
Scope

Make Architect
Implement
Integrate

Deliver Release
Support

Because we have structured based on function, the
categorisation will support any practice deemed to be
relevant for meeting objectives. For example, infor-
mal meetings in the lunch room that help developers
understand scope clearly fit into the ‘scope’ category.
Of note is that project management activities such as
tracking are not included. Such activities do not di-
rectly address objectives, but rather impact context for
example, team cohesion, and integrate into our model
via the contexts affected. A precondition that an ob-
jective be met is that each category must contain one
or more effective practices. To illustrate, for a ‘Qual-
ity’ objective, including quality considerations during
product architecture, implementation and integration
will fail to achieve the objective if quality expecta-

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

404



tions are not included during scoping. The identifica-
tion of gaps in the overall process is straightforward.

A characteristic of the above categorisation is that
of flexibility. There is no assumption about order-
ing of practices, and no expectation that, for example,
practices relating to Implement and Integrate need be
separate. Such ordering would exist at a higher level
and might be used to describe strategies of iteration
and incremental delivery. We also submit that the
categorisation is ‘paradigm-agnostic’ — whether an
initiative is run in a traditional or agile way, the ba-
sic functions of defining, making and delivering the
product must be carried out. Of note is the fact that
the sub-categories ‘Roadmap’ and ‘Support’ lie out-
side of a traditional development project and sub-
categories ‘Define’ and ‘Deliver’ relate to practices
that span development organisation and client.

3 PROGRAMME OF RESEARCH

In this section, we overview our planned programme
of research. Our overall goal is to support practition-
ers with selecting practices that are suitable for their
local context. We note that studies carried out are ex-
pected to result in refinements to our research model
as our understanding deepens (Routio, 2007). We also
note that studies will act as an evaluation of the model
(see section 4).

3.1 Practice Operating Limits

Our immediate plans relate to growing an evidence
base for situated software practices. We will include
studies to investigate within industry the indicated and
contra-indicated contexts for specific practices. We
will ask practitioners to select recently- or currently-
enacted practices and elicit information about contex-
tual factors that were perceived as supporting, and
those perceived as detracting from, meeting objec-
tives. The studies will take two forms. For some,
we will use our model as a guide and in others we
will elicit information from the practitioner perspec-
tive only. The goals of these studies are a) to refine
and evaluate the model, and b) to accumulate evi-
dence relating to ‘happy’ and ‘unhappy’ contexts for
specific practices. This evidence will later be used
as inputs to decision support mechanisms. We note
that the usefulness of this evidence will be reliant on
a context model that is complete i.e. evidence from
early studies may be ineffective if the model changes
too much during refinement. However, as mentioned
above, we must investigate practice and context to-
gether as these are inherently intertwined - we cannot

implement a set of studies on context alone.

3.2 Families of Practices

For this avenue of research, we want to build up ‘fam-
ilies’ of ‘equivalent’ practices. The aim is to sug-
gest to the practitioner a set of practices that per-
form the same function. For example, in section 1,
we discussed two possible ways of eliciting require-
ments (product scoping), one involving formal doc-
umentation and the other involving a ‘try it and see’
approach. A major challenge in this research will be
the establishing of exactly what we mean by ‘equiv-
alent’. Certainly, the starting point is with the func-
tion to which the practice belongs (‘Scope’). How-
ever, implementation of a practice has the side-effect
of changing context in some way, and it is unclear at
this point how this affects things, if at all. Once the
research has matured, we would expect to use the no-
tion of equivalence to suggest possible alternatives to
practitioners during decision support.

3.3 Decision Support

Once we are sufficiently confident in our model, we
plan to use this along with evidence accumulated to
create a decision support mechanism for supporting
practitioners with practice tailoring. As there are
many kinds of software initiative and many possible
situational factors, we envisage offering recommen-
dations based on available evidence, leaving final de-
cisions to be made by practitioners with local knowl-
edge. Clearly, an extensive body of evidence must be
accumulated before this can be implemented.

4 EVALUATION

For software engineering, it is suggested that an ap-
propriate approach to validation is to gather different
kinds of evidence from various sources. Dawson et al.
make a case for accumulating many little evidences
of various kinds (Dawson et al., 2004). Others sug-
gest the researcher should accumulate an ‘evidence
portfolio’ containing, for example, case studies, anec-
dotes, surveys, expert opinion and controlled experi-
ments (Kitchenham et al., 2005; Weaver et al., 2005).
We adopt this approach for our research model. We
implement a technique called argumentation and cap-
ture evidence goals, arguments and evidence items us-
ing Goal Structuring Notation (GSN) (GSN Working
Group, 2018). The notation helps the researcher see
what evidence is missing and allows stakeholders to
see ‘at a glance’ what is the evidence coverage.

Consolidating a Model for Describing Situated Software Practices

405



The evidence tree for our model is shown in
Figure 2. Our top level goal is ‘evaluate research
model’. We address this goal by sourcing viewpoints
on model/theory/taxonomy validation from the liter-
ature. S̆mite et al. suggest that a taxonomy must
exhibit dimensional orthogonality, should be used to
classify existing knowledge and should be bench-
marked against existing classifications (S̆mite et al.,
2014). These are shown as argument strategy A1.1
and sub-goals G1.1.1, G1.1.2 and G1.1.3. Ralph de-
fines three ‘truth claims’ inherently made by a taxon-
omy and suggests these form a suitable set for eval-
uation (Ralph, 2018). These are shown as A1.2 and
G1.2.1, G1.2.2 and G1.2.3. Stol and Fitzgerald re-
quire that a model can be used as a basis for empirical
studies (Stol and Fitzgerald, 2018). These are shown
as A1.3 and G1.3.1.

As is clear from the figure, only two pieces of ev-
idence have thus far been addressed in earlier work
(Kirk and Tempero, 2012b; Kirk and Buchan, 2018).
We are in the process of implementing two further
studies, the first to elicit practitioners’ perspectives
on context, and the second to explore the operating
limits for two agile practices. The first will address
goal 1.1.2 (classify existing knowledge) and the sec-
ond goal 1.3.1 (create empirical studies from model).
In the next section, we describe a mapping that ad-
dresses goal 1.2.2. (show useful for specific purpose).

The approach is useful for exposing breadth of ev-
idence but those interested must read the research out-
puts to establish the quality of the provided evidence.

4.1 Essence Analysis

In this section, we carry out a ‘proof-of-concept’ map-
ping between the Essence Kernel from the SEMAT
initiative (Object Management Group, 2018) and our
research model. The SEMAT initiative aims to pro-
vide a theoretical basis to support comparison, evalu-
ation and tailoring of software practices. Central to
the scheme is a Kernel. Practices are described in
Kernel elements, which are “integral to all software
engineering methods”. The kernel comprises Alphas
(attributes relating to assessing project health), Activ-
ity spaces (the essential things to do) and Competen-
cies (key capabilities required). Alphas capture the
main software engineering concepts along with pre-
defined states and checklists, thus providing critical
indicators for the measurement of project health. Ac-
tivity spaces provides a partitioning of the ‘things to
do’ i.e. addresses the activities that must be carried
out. Competencies provide a view of the key capabil-
ities required to carry out activities.

As the aim of the Kernel is similar to our aims

i.e. to support practitioners in adapting methods in
an agile way to suit their needs, we felt it necessary
to attempt a mapping between the two models as a
means of testing that our abstraction is sufficiently
comprehensive to allow us to critique an established
approach. In this section, we map the elements of the
Kernel to our model and discuss findings. The results
of the mapping are shown in Table 3.

According to our understanding, one of the Al-
phas (Opportunity) maps to both Strategic context and
an aspect of Working context, two map to practice-
related ideas and the remaining four to Working con-
text. As these seem to include different kinds of en-
tity, we checked the possible states for each Alpha to
gain a deeper understanding. The first point of interest
is found in the mappings of Requirements and Soft-
ware system to Product. States for Requirements in-
clude ‘Bounded’, ‘Coherent’ and ‘Fulfilled’ and these
are certainly consistent with our notions of ‘Clear’
and ‘Complete’ (see Table 1). However, Software
system in the Kernel is exemplified by, for example,
‘Usable’, ‘Ready’ i.e. describes the application with
respect to readiness (a project management perspec-
tive), whereas our abstraction describes the product
characteristics we believe to be relevant for practice
tailoring, for example, the degree of consistency be-
tween representations, design modularity, etc.

For Activity spaces as might be expected, most of
the Kernel elements map almost directly to Practices
in our model. However, our model contains no ele-
ments for the project management oriented activities
such as ‘Support the team’.

For Competencies, again as expected, most items
map to People:Entity:Capability. However, the Ker-
nel defines the set of competencies required in a soft-
ware project whereas, in our model, the ‘capability’
attribute represents the level of capability of a team
with respect to a specific practice.

4.1.1 Discussion

The two approaches are very different as regards ab-
straction choice. The Kernel perspective appears to
be more project management oriented, with Alphas
including notions of all of Who (people), What (prod-
uct) and How (process). Our perspective tends to be
more focused on ‘what does a team really need to
know to adapt practices?’ i.e. the perspective is that of
the people doing the work. The Kernel elements with
no mapping in Table 3 represent project management
activities. As discussed in section 2, these activities
affect objectives indirectly, via working context. To
illustrate, rather than knowing that someone is ‘sup-
porting the team’ or ‘coordinating activities’, we need
only know to what extent the team feels empowered

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

406



Figure 2: Evidence tree for model.

and cohesive as this affects tailoring choices.
A second observation relates to the pre-defining

of Alpha states. First, the inference is that these states
are relevant for all software initiatives. However, it
is not clear how the Requirements state of ‘Fulfilled’,
i.e. that the requirements addressed “... fully satisfy
the need for a new system”, apply in the very common
situations of the team and/or the customer being un-
sure about what is wanted i.e. when an evolutionary
approach is appropriate, perhaps in a startup situation.
Second, we do not need to know that a team is in state
‘formed’, we actually need to know if members share
a room or are spread across different countries, as this
will directly impact on which practices might be ef-
fective. We could not find such context-related ideas
represented in the Kernel.

The fact that most of the Kernel competencies map
to People:Entity:Capability illustrates the differences
in the viewpoint of ‘prescribe what competencies are
required’ and ‘whatever practice is being considered,
we need to know the competency level of the team
with respect to the practice’. Our critique of the Ker-
nel approach is the implicit assumption that the com-
plete set of required competencies is known i.e. the
approach does not support extension. For example, a
startup group must be innovative, a competency not
currently included in the Kernel.

Another consideration relates to the notion of flex-
ibility, In agile approaches, developers often combine,
for example, design and implementation. Activity
spaces in the Kernel appear to be fixed and disjoint
and it is not clear that such flexibility is supported.

In section 1, we presented our viewpoint from ear-
lier studies that, before we are in a position to offer
decision support for tailoring, we must first a) gather
evidence relating context, software practice and out-
comes, and b) understand practice ‘equivalence’ in or-
der that we know when it is acceptable to replace one
practice with another and can identify gaps in the pro-
cess. We cannot see how the Kernel is able to fully
address either of these. A detailed notion of relevant
context is a pre-requisite for the first. The second im-

plies that the set of practices for an objective must
include an element from each category. There is no
point in implementing strong quality related practices
during architecture, implementation and release if the
‘scoping’ practices are weak from a quality perspec-
tive. The statement in section 8.1.1 that the Kernel
allows you “... to apply as few or as many practices
as you like” is not consistent with the notion of iden-
tifying practice gaps.

Finally, we notice that none of the Kernel ele-
ments maps to our Working context dimensions Place,
Product or Process. We have identified these as be-
ing crucial ideas for selecting and tailoring practices.
Some examples of different practices being indicated
include co-located versus dispersed team members,
(un)availability of architectural documentation and
the culture of the parent organisation. Our main cri-
tiques relates to the lack of any deep consideration
of working context, including type of product and lo-
cational information. Without this, any tailoring can
not be grounded in evidence and remains potentially
problematic, as discussed in section 1.

5 RELATED WORK

Routio describes three kinds of research as a) there
is no model to use as a starting point (exploratory re-
search), b) an existing model is being expanded or
refined, and c) hypotheses based on an established
model are being tested. Exploratory research is ap-
propriate for a “phenomenological pursuit into deep
understanding”. The researcher begins with a “pre-
liminary notion” of the object of study. During the
study the “provisional concepts ... gradually gain pre-
cision” until a suitable conceptualisation is achieved
(Routio, 2007). We have adopted this approach for
our research.

Ralph suggests that a framework or model may be
viewed as a taxonomy and represents a theory stated
as “a system of ideas for making sense of what ex-
ists ... in a domain.” He suggests that a taxonomy

Consolidating a Model for Describing Situated Software Practices

407



Table 3: Mapping between Essence Kernel and model.

Alphas Opportunity Reason for creation of ... system Strategic context
Shared understanding of stakeholders’ needs People::Capability

Stakeholders People, groups or organizations affected ... People
Requirements What the software system must do Product:Req
Software system System of software, hardware and data Product:Impl
Work Activity to achieve a result Practices
Team People engaged in implementation activities People
Way-Of-Working Tailored set of practices to support work Practices

Activity Space Explore possibilities Opportunities to be addressed Practices::Roadmap
Identify stakeholders Practices::Roadmap
Understand stakeholder needs Practices::Scope

Ensure stakeholder satisfactn Gain acceptance from stakeholders Practices::Release
Use the system Observe benefits in live environment Practices::Support
Understand the requirements Gain shared understanding of products Practices::Scope
Shape the system Shape for reuse and expected demands Practices::Architect
Implement the system Implement and test system elements Practices::Implement

Build by integrate and test system elements Practices::Integrate
Deploy the system Make system available externally for use Practices::Release
Operate the system Support system in a live environment Practices::Support
Prepare to do the work Set up team and working environment No mapping
Coordinate activity Co-ordinate and direct team’s work No mapping
Support the team Support team to help themselves No mapping
Track progress Measure and assess progress No mapping
Stop the work Shut down SE endeavour No mapping

Competencies Stakeholder representatn Team understands customer needs People::Team cohesn
Analysis Ability to transform needs to requirements People::Capability
Development Ability to design and program SW systems People::Capability
Testing Ability to verify system meets requirements People::Capability
Leadership Ability to motivate and inspire a team People::Capability
Management Ability to coordinate, plan and track work People::Capability

by its nature posits three ‘truth claims’, a) the tax-
onomy improves cognitive efficiency, b) it facilitates
inferences and c) it is useful for a specific purpose.
Evaluation involves addressing each of these claims
(Ralph, 2018). We have included these truth claims
as items in our evidence tree.

Stol and Fitzgerald present a set of metaphors for
the various kinds of research within software engi-
neering (Stol and Fitzgerald, 2018). The metaphor
applied for building theories or models with some de-
gree of generalisability is that of a jigsaw puzzle. Each
piece of the puzzle is considered and theorised with
respect to the whole. The authors suggest that such
studies are important as they provide “a new concep-
tual lens to design future empirical studies”. Result-
ing models must, of course, be validated during sub-
sequent empirical studies. The refinement stage for
our context model fits into this category, as we are
effectively uncovering new pieces of the puzzle and
integrating into the whole.

6 CONCLUSIONS AND FUTURE
WORK

In this position paper, we have drawn together the re-
sults of our previous studies to create a holistic model
which we plan to use as a basis for accumulating ev-
idence relating to situated software practices. Such
evidence is a pre-condition for our long term goal of
supporting evidence-based decision making for prac-
titioners who wish to tailor software practices to suit
local context.

Contributions specific to this paper include a dis-
cussion on our approach to model evaluation and a
critique of the established Essence Kernel based on
a mapping between Kernel and model. The mapping
exposed several issues relating to generality and flex-
ibility and rooted in the pre-defining of Alpha states,
Competencies and Activities. We conclude that, even
at this early stage, our conceptual model has proven
useful.

The model is now entering a ‘use-and-refine’ cy-
cle. Future work planned includes a) consolidating
the context-related elements of the model, and b) ac-
cumulating evidence on operating limits for specific
situated software practices.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

408



REFERENCES

Basili, V. R. and Rombach, H. D. (1987). Tailoring the
Software Process to Project Goals and Environments.
In Proceedings of the Ninth International Conference
on Software Engineering, pages 345–357. IEEE.

Beck, K. (2000). eXtreme Programming eXplained - Em-
brace Change. Addison-Wesley, USA.

Boehm, B. W. (1988). A Spiral Model of Software
Development and Enhancement. IEEE Computer,
May(11):61–71.

Cusumano, M., MacCormack, A., Kemerer, C., and Cran-
dall, B. (2003). Software development worldwide:
The state of the practice. IEEE Software, 20(6):28–
34.

Dawson, R., Bones, P., Oates, B. J., Brereton, P., Azuma,
M., and Jackson, M. L. (2004). Empirical Method-
ologies in Software Engineering. In Proc. Eleventh
Annual Int. Workshop on SW Technology and Engi-
neering Practice. IEEE.

de Azevedo Santos, M., de Souza Bermejo, P. H.,
de Oliveira, M. S., and Tonelli, A. O. (2011). Ag-
ile practices: An assessment of perception of value of
professionals on the quality criteria in performance of
projects. Journal of Software Engineering and Appli-
cations, 4:700–709.

Eisenhardt, K. M. and Graebner, M. E. (2007). Theory
Building from Cases: Opportunities and Challenges.
Academy of Management Journal, 50(1):25–32.

GSN Working Group (2018). GSN Standard.
http://www.goalstructuringnotation.info.

Kirk, D. and Buchan, J. (2018). Developing a Taxonomy
for Software Process Context. In Proc. of the 13th In-
ternational Conf. on Software Technologies (ICSOFT
18), pages 312–319, Porto, Portugal. SCITEPRESS.

Kirk, D., MacDonell, S., and Tempero, E. (2009). Mod-
elling software processes - a focus on objectives. In
Proc. OOPSLA 2009, Session: Onward short papers
session 2., pages 941–948, Florida, USA. ACM.

Kirk, D. and MacDonell, S. G. (2014). Investigating a con-
ceptual construct for software context. In Proceedings
of the Conference on Empirical Assessment in Soft-
ware Engineering (EASE), number 27.

Kirk, D. and MacDonell, S. G. (2016). An Ontological
Analysis of a Proposed Theory for Software Devel-
opment. In P. Lorenz et al., editor, Software Tech-
nologies - ICSOFT 2015, volume 586 of CCIS, pages
1–17. Springer, Switzerland.

Kirk, D. and MacDonell, S. G. (2018). Evolving a Model
for Software Process Context: An Exploratory Study.
In Proc. 13th Int. Conf. on SW Technologies (ICSOFT
18), pages 296–303, Porto, Portugal. SCITEPRESS.

Kirk, D. and Tempero, E. (2012a). A lightweight frame-
work for describing software practices. Journal of
Systems and Software, 85(3):581–594.

Kirk, D. and Tempero, E. (2012b). Software Development
Practices in New Zealand. Technical report, Univer-
sity of Auckland, Dept. Computer Science.

Kitchenham, B., Budgen, D., Brereton, P., and Linkman,
S. (2005). Realising Evidence-Based Software Engi-
neering. In Realising Evidence-Based Software Engi-
neering ICSE Workshop 2005, St. Louis.

Lengnick-Hall, C. A. and Griffith, R. J. (2011). Evidence-
based versus tinkerable knowledge as strategic assets:
A new perspective on the interplay between innova-
tion and application. Journal of Engineering and
Technology Management, 28:147–167.

Luca, J. D. (n.d.). Agile Software Developmet using Feature
Driven Development (FDD).

MacCormack, A., Crandall, W., Henderson, P., and
Toft, P. (2012). Do you need a new product-
development strategy? Research Technology Man-
agement, 55(1):34–43.

Müller, S. D., Kræmmergaard, P., and Mathiassen, L.
(2009). Managing Cultural variation in Software Pro-
cess Improvement: A Comparison of Methods for
Subculture Assessment. IEEE Transactions on Engi-
neering Management, 56(4):584–599.

Nickerson, R. C., Varshney, U., and Muntermann, J. (2013).
A method for taxonomy development and its applica-
tion in information systems. European Journal of In-
formation Systems, 22:336–359.

Object Management Group (2018). Essence - Kernel and
Language for Software Engineering Methods version
1.2. https://www.omg.org/spec/Essence/.

Orlikowski, W. (2002). Knowing in Practice: Enabling a
Collective Capability in Distributed Organizing. Or-
ganization Science, 13(3):249–273.

Petersen, K. and Wohlin, C. (2009). A comparison of issues
and advantages in agile and incremental development
between state of the art and an industrial case. Journal
of Systems and Software, 82:1479–1490.

Ralph, P. (2018). Towards methodological guidelines for
process theories and taxonomies in software engineer-
ing. IEEE Transactions on Software Engineering.

Routio, P. (2007). Models in the Research Process.
http://www2.uiah.fi/projects/metodi/177.htm.

Royce, W. (1970). Managing the Development of Large
Software Systems. In Proceedings, IEEE WestCon,
pages 328–339. IEEE.

Stol, K.-J. and Fitzgerald, B. (2018). The ABC of Software
Engineering Research. ACM Trans. Software Engi-
neering and Methodology, 27(3):11.1–11.51.

Turk, D., France, R., and Rumpe, B. (2005). Assumptions
Underlying Agile Software Development Processes.
Journal of Database Management, 16(4):62–87.

Turner, R., Ledwith, A., and Kelly, J. (2010). Project
management in small to medium-sized enterprises:
Matching processes to the nature of the firm. Interna-
tional Journal of Project Management, 28:744–755.

S̆mite, D., Wohlin, C., Galviņa, Z., and Priladnicki, R.
(2014). An empirically based terminology and taxon-
omy for global software engineering. Empirical Soft-
ware Engineering, 19:105–153.

Weaver, R., Despotou, G., Kelly, T., and McDermid, J.
(2005). Combining Software Evidence - Arguments
and Assurance. In Realising Evidence-Based Software
Engineering ICSE Workshop 2005, St. Louis.

Consolidating a Model for Describing Situated Software Practices

409


