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Abstract: Application of the Robust Control Toolbox for Time Delay Systems with Parametric and Periodic 
Uncertainties Using SSV (Structured Singular Value) for the Matlab system to uncertain time delay system 
with astatism is performed. The D-K iteration and the algebraic approach implemented in the toolbox are 
applied to 2nd order system with astatism and uncertain time delay and two other parameters in the numerator 
and denominator of the plant transfer function. Multiplicative uncertainty is used for treating uncertain time 
delay, the parametric uncertainty is modelled using general interconnection for the systems with parametric 
uncertainty in numerator and denominator. 

1 INTRODUCTION 

Parametric uncertainties has been an issue of robust 
control for several decades, the first tool was Map-
ping Theorem (Zadeh and Desoer, 1963) succeeded 
by Kharitonov Theorem (Kharitonov, 1978; Bar-
mish, 1984 and Bialas, 1983), Edge Theorem (Bart-
lett et al., 1988; Barmish, 1989 and Sideris and de 
Gaston, 1986) and Generalized Kharitonov Theorem 
(Chapellat and Bhattacharyya, 1989) treating conser-
vatism in applications to feedback loop with SISO 
(single-input single-out-put) controller. One of the 
latest results is tree structured decomposition (Bar-
mish et al., 1989) yielding a general procedure 
allowing the analysis of complex closed-loop cha-
racteristic polynomials in a polynomial time and the 
results for specific multilinear structures (Barmish 
and Shi, 1990; Chapellat et al., 1993 and Fu et al., 
1995) considering the closed-loop characteristic po-
lynomials corresponding to the series connections of 
interval plants. 

In this paper, toolbox treating parametric and 
periodic uncertainties using structured singular value 
(SSV or μ, see Packard and Doyle, 1993) imple-
mentting both the algebraic approach with subse-
quent optimization using evolutionary algorithm 
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(Dlapa, 2011; Dlapa, 2018) and D-K iteration as 
reference method is applied to 2nd order system with 
astatism and uncertain time delay and parameters. 
The toolbox solves both parametric and dynamic 
uncertainties including uncertain time delay. The 
Robust Control Design Toolbox for Time Delay 
Systems with Parametric and Periodic Uncertainties 
Using SSV (http://dlapa.cz/homeeng.htm) deals with 
uncertain time delay and parametric uncertainties in 
the numerator and denominator of the plant transfer 
function. The controller is derived for two-degree-of-
freedom and single feedback loop (2DOF and 1DOF 
see Dlapa, 2014). 

The controller is tuned using pole placement of 
nominal closed loop poles solving Diophantine 
equation in the ring of Hurwitz-stable and proper 
rational functions (RPS). The poles of the nominal 
closed loop are tuned via direct search methods – 
Differential Migration (Dlapa, 2017) and Nelder-
Mead simplex method managing the issue of multi-
modality of the structured singular value in relation-
ship with nominal closed loop poles. This algorithm 
tackles impossibility of usage of the weights with 
poles on imaginary axis and convergence to a global 
or even local minimum causing non-optimality of the 
resulting controller in the D-K iteration (Stein and 
Doyle, 1991). 
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Figure 1: Modelling general parametric uncertainties system. 

For reference, the controller derived using the D-
K iteration (see Doyle, 1985) is compared to the one 
obtained from the algebraic approach showing the 
pros and cons of both procedures. The resulting 
controllers are compared in simulations of step res-
ponse for different values of time delays and perio-
dic changes of parameters with simple feedback loop 
and two-degree-of-freedom structure (1DOF and 2DOF). 

Notation used in the paper: ||  || is H norm, 
)(  denotes maximum singular value, R and Cnm 

are real numbers and complex matrices, respec-tively, 

R  are positive real numbers, In is the unit matrix of 

dimension n and RPS denotes the ring of Hurwitz-
stable and proper rational functions. 

2 DEFINITIONS 

Define  as a set of block diagonal matrices 
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where S, T is the number of repeated scalar complex 
and real blocks, 

 F, K is the number of full complex and real 
blocks, 

 r1,, rS, r1,, rT, m1,, mF, n1,, nK are 
positive integers defining dimensions of scalar 
and full blocks. 

For consistency among all the dimensions, the fol-
lowing condition must be held 
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Definition 1: For M  Cnn is μ(M) defined as 
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If there is no    making I – M singular, then 
μ(M) = 0. 

3 MODELLING OF PARAMETRIC 
UNCERTAINTIES FOR SSV 
DESIGN 

Consider general system with uncertain numerator 
and denominator and uncertain time delay treating 
parametric, periodic and time delay uncertainties: 
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Time delay and parametric uncertainties vary in the 
predefined intervals. 
 

1ai 1bi 1del  (5)
 

And for weights Wai, Wai and Wdel the following 
inequalities must be held for all   R: 
 

1,,1,0 ,  niAW iai   (6)

niBW ibi ,,1,0 ,   (7)

dTj
del ejW   1)(  (8)

 

 

Figure 2: Closed-loop interconnection. 

Plant (4) and Figure 1 can be transformed to the 
interconnections in Figure 2 with the sensitivity 
function as a performance indicator and Pnom being 
open-loop interconnection from Figure 1. 
Perturbation matrix has the form: 
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For stability and performance Theorem 1 and the 
following Corollary 1 hold: 
 

Theorem 1: For  defined by (9) the loop in Figure 2 is well-
posed, internally stable and 1]),Δ,([ 2 
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Proof: The proof is the same as in Doyle et al., 1982 
and Packard and Doyle, 1993 except for the fact that 
perturbations are complex matrices which simplifies 
the proof and complies with the definition of μ (De-
finition 1). 

Define sensitivity function as transfer function 
from reference r to error e in Figure 3: 
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Now, as a consequence of Theorem 1, a suffi-cient 
condition for the robust stability and perfor-mance of 
the feedback loop in Figure 3 can be formed for 
sensitivity function S and family of plants (4). 

 

Figure 3: Feedback loop. 

Corollary 1: For the set of plants (4), the feedback 
loop in Figure 3 is internally stable and 11 


SW  if 

and only if (12), (5), (6), (7) and (8) hold. 

Proof: The proof follows from Figure 1, inequalities 
(12), (5), definitions (6), (7) and (8) and Theorem 1. 

4 ALGEBRAIC -SYNTHESIS 

The algebraic μ-synthesis can be applied to any 
control problem that can be transformed to the loop 
in Figure 2 where G denotes the generalized plant, K 
is the controller, del is the perturbation matrix, r is 
the reference and e is the output. 

For the purposes of the algebraic μ-synthesis, the 
MIMO system with l inputs and l outputs has to be 
decoupled into l identical SISO plants. The nominal 
model is defined in terms of transfer functions: 
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For decoupling the nominal plant Pnom (Pnom 
invertible) it is satisfactory to have the controller in 
the form 
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where Pxy is an element of adj[Pnom(s)] = det[Pnom(s)] · 
· [Pnom(s)]–1 with the highest degree of numerator 
{adj[Pnom(s)] denotes adjugate matrix of Pnom}. The 
choice of the decoupling matrix prevents the 
controller from cancelling any poles or zeros from the 
right half-plane so that internal stability of the 
nominal feedback loop is held. The MIMO problem 
is reduced to finding a controller K(s) which is tuned 
via setting the poles of the nominal feedback loop 
with the plant 
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Define 
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Transfer function Pdec can be approximated by a 
system *

decP  with lower order than Pdec 
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which can be rewritten in terms of its coefficients and 
transformed to the elements of RPS 
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The controller K = NK/DK is derived as solution of the 
Diophantine equation 

 

ADK + BNK = 1 (20)
 

with A, B, DK, NK  RPS. Equation (20) is the Bezout 
identity. All feedback controllers NK/DK are given by 
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where 
0KN , PS0

RKD  are particular solutions of 

(20) and T is an arbitrary element of RPS. 
The controller K satisfying equation (20) guaran-

tees the BIBO (bounded-input bounded-output) sta-
bility of the feedback loop in Figure 4. This is a cru-
cial point for the theorems regarding the structured 
singular value. If the BIBO stability is held, then the 

nominal model is internally stable and theorems 
related to robust stability and performance can be 
used. The BIBO stability also guarantees stability of  
FL(G, K) making possible usage of performance 
weights with integration property implying non-exis-
tence of state space solutions using DGKF formulae 
(see Doyle et al., 1989) due to zero eigenvalues of 
appropriate Hamiltonian matrices. This procedure 
results in zero steady-state error in the feedback loop 
with the controller obtained as a solution to equation 
(20) being neither possible in the scope of the 
standard μ-synthesis using DGKF formulae, nor 
using LMI approach (see Gahinet and Apkarian, 
1994) leading to numerical problems in most of real-
world applications. 

 

 

Figure 4: Nominal feedback loop. 

The aim of global optimization in the algebraic 
approach is to design a controller satisfying the 
condition: 
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where n + n1 + n2 is the order of the nominal feedback 
system, n1 is the order of particular solution, K0, ti are 
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 and µ denotes the 

structured singular value of LFT on generalized plant 
G and controller K with Δ defined in (12). 

Tuning parameters are positive and constrained to 
the real axis since parameters of the transfer function 
have to be real and due to the fact that com-plex poles 
cause oscillations of the nominal feed-back loop. 

A crucial problem of the cost function in (22) is 
the fact that many local extremes are present. Hence, 
local optimization does not yield a suitable or even 
stabilizing solution. This can be overcome via 
evolutionary computation solving the task very 
efficiently. 

5 EXAMPLE - PROBLEM 
FORMULATION & SOLUTION 

The problem to solve is 2nd order system with 1st order 
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astatism and uncertain time delay: 
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a1  [1.8, 2.2], a2 = 1, 
b0  [1.8, 2.2],   [0, 4] 

 

The control objective is to find a controller for which 
the robust stability and performance is held for every 
plant from the set P. The weights follow from (6) and 
(7): 
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The time delay is treated by multiplicative uncertain-
ty (see Figure 1) 
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Figure 5: Bode plot of Wdel and 14  je . 
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then for the weighting function Wdel the following 
inequality must be held P  being the set P omitting 
the parametric uncertainties 
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The weight Wdel is defined as an envelope curve of 

1  je . For τ = 4, Wdel can have the Bode plot 

depicted in Figure 5: 
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The performance condition is of the form: 
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where S is the sensitivity function and weight W1 (see 
Figure 2) is defined for the algebraic approach and D-
K iteration as follows: 
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By the optimization of the poles αi via the Differen-
tial Migration and subsequent tuning by the Nelder-
Mead simplex method, resulting poles were obtained: 
 

α1 = 0.065, α2 = 0.063, α3 = 2.021, α4 = 62.338 (33)
 

yielding the controller 
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The controller obtained from the D-K iteration was 
approximated by the 3rd order transfer function: 
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The μ-plot in Figure 8 shows that both control-lers 
have the supremum of μ below one and the ro-bust 
stability and performance condition is satisfied. 
 

   
                           a                                                 b 

Figure 6: 2DOF feedback loop. 

The controllers for 2DOF feedback loop (Figure 
6a, 6b - algebraic approach and D-K iteration, respec-
tively) have the compensator (nk2, dk2, nkdk2, dkdk2) 
defined as fraction of the factors corresponding with 
most stable zero and least stable pole of KA and KD-K 
and feedback (nk1, dk1, nkdk1, dkdk1) and feed-forward 
part (nFW, dk1, nFW, dkdk1) defined by the fraction of the 
factors corresponding with remaining zeros and poles 
of KA and KD-K with 0

1kFW nn   and FWdkn  0
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1kdkn  being the coefficients of nk1 and nkdk1 of 

zero exponent of s): 
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The periodicity is defined via sinusoids changing the 
uncertain parameters in the intervals defined by (23): 

 

)]sin(1[
0000 tbb bb   (38)

 

where 20 b 2.0
0
b  and 1.0

0
b . The step res-

ponse for the periodic change (38) is in Figure 7. 

 

Figure 7: Step response for periodic changes of parameters. 

 

Figure 8: μ-plots for the controllers obtained by the D-K 
iteration and algebraic approach 

 

Figure 9: Simulations for simple feedback loop without 
periodic changes – algebraic approach and D-K iteration. 

Simulations in Figure 9 and 10 show that D-K 
iteration yields non-zero steady-state error in contrast 

to the algebraic approach having no steady state error 
and faster set point tracking than the D-K iteration 
controller. Simulations for periodic changes (38) in 
Figure 11 and 12 prove that the 1DOF and 2DOF 
feedback loops are stable for both the algebraic 
approach and D-K iteration. In all simu-lations full 
time delay is connected, i.e. τ = 4 s. 

 

 

Figure 10: Simulations for 2DOF feedback loop without 
periodic changes – algebraic approach and D-K iteration. 

 

Figure 11: Simulations for simple feedback loop with 
periodic changes – algebraic approach and D-K iteration. 

 

Figure 12: Simulations for 2DOF feedback loop with 
periodic changes – algebraic approach and D-K iteration. 
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6 USER INTERFACE 

The main window of the Matlab toolbox consists of 
three sections (see Figure 13): 
- System Definition 
- Controller Design 
- Simulation and Verification 
 

 

Figure 13: The main window. 

6.1 System Definition 

System definition has the button for displaying the 
dialog for entering parameters of the control plant 
where the parameters of transfer function, the 
maximum value of time delay and parameters for 
periodic changes can be entered (Figure 14). 

 

Figure 14: Dialog for entering parameters of the controlled 
plant. 

 

Figure 15: Dialog for entering the parameters of the weight 
Wdel. 

Another button displays the dialog for entering the 
parameters of the weight Wdel treating uncertain time 

delay (Figure 15) with button showing the Bode plot 
of the weight Wdel compared to the left side of (28). 

In the last part of system definition, buttons 
showing dialogs for entering parameters of the 
performance weight W1 are placed. There are separate 
weights for the D-K iteration and algebraic approach. 
Each dialog has a button for showing the Bode plot of 
the particular weight. 
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