
Requirements for Author Verification in Electronic Computer Science
Exams

Julia Opgen-Rhein1, Bastian Küppers1,2 and Ulrik Schroeder2

1IT Center, RWTH Aachen University, Seffenter Weg 23, Aachen, Germany
2Learning Technologies Research Group, RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany

Keywords: E-assessment, Cheating, De-anonymization, Stylometrics.

Abstract: Electronic exams are more and more adapted in institutions of higher education, but the problem of how to
prevent cheating in those examinations is not yet solved. Electronic exams in theory allow for fraud beyond
plagiarism and therefore require a possibility to detect impersonation and prohibited communication between
the students on the spot and a-posteriori. This paper is an extension of our previous work on an application for
detecting fraud attempts in electronic exams, in which we came to the conclusion that it is possible to extract
features from source code submitted for tutorials and homework in a programming course. These can be used
to train Random Forest, Linear Support Vector Machine, and Neural Network classifiers and assign the exams
from the same course to their authors. The Proof of Concept was further developed and this paper outlines
the experimentally determined requirements for the selection of training and test data and its pre-processing to
achieve applicable results. We achieve an accuracy larger than 89% on a set of source code files from twelve
students and found that material from all parts of a programming course is suitable for this approach as long
as it provides enough instances for training and is free of code templates.

1 INTRODUCTION

Electronic exams are increasingly employed by insti-
tutions of higher education. Especially in program-
ming courses, it is desirable to enable the students to
be tested on their coding skills in a more realistic set-
ting than a pen and paper exam. However, switch-
ing to another form of examination does not solve the
problem that some students resort to cheating to ob-
tain a better grade. At first appearance e-assessment
seems to offer even more or at least some new possi-
bilities to cheat (Heintz, 2017) - even more so, if the
students are allowed to work on their own computer
(bring your own device, BYOD). Cheating in an edu-
cational context can take many forms and ranges from
illegal practices like stealing over collusion in assign-
ments to copying (Sheard and Dick, 2012). Especially
illegal collaboration and plagiarism seem easier in an
electronic exam due to the possibility to exchange and
obtain larger amounts of information and whole files
via the internet or a Bluetooth connection.

The reasons for cheating are manifold and include
disadvantageous personality traits (Williams et al.,
2010) as well as practical reasons like a high work-
load, pressure and fear of failing (Sheard and Dick,

2012). This indicates that especially undergraduate
students of computer science who struggle to learn
programming are likely to cheat.

Although there are, unlike to online exams, lec-
turers and invigilators present during the examina-
tion, it cannot be completely ruled out that a cheat-
ing attempt is successful. The a-posteriori detection
of cheating by eyesight of the lecturer is time con-
suming, uncertain and not feasible for large courses
(Zobel, 2004). Additionally, it is hard to convict the
offenders if they do not admit to cheating since the
suspicion and intuition of the examiner is subjective
and no reliable evidence. Conventional plagiarism de-
tection software for written texts is not suitable for
source code because of its formalized structure and
fixed keywords. That is why a number of applications
have been developed to particularly address plagia-
rism. These approaches all fail in cases where the
source of the copied solution lies outside the reach of
the examiner, e.g. code copied from the internet or a
solution procured via communication with someone
outside the examination room. Impersonation, that
is another person taking the exam or submitting the
solution under a false name, is also not detected by
plagiarism detection tools.

432
Opgen-Rhein, J., Küppers, B. and Schroeder, U.
Requirements for Author Verification in Electronic Computer Science Exams.
DOI: 10.5220/0007736104320439
In Proceedings of the 11th International Conference on Computer Supported Education (CSEDU 2019), pages 432-439
ISBN: 978-989-758-367-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Therefore, a different way of cheating detection is
required. One way to do this is using author verifi-
cation methods to check the authorship of the person
who hands in the exam. Instead of comparing the sub-
missions to one another or to external sources, the ex-
ams of students are compared to their previously sub-
mitted solutions for similar tasks and assignments.

Previous work of the authors resulted in a proto-
typical application that uses machine learning tech-
niques to verify the authorship of solutions in elec-
tronic exams (Opgen-Rhein et al., 2018). It can
process Java source code files, which is still one of
the most popular first programming languages stu-
dents learn at university, along with C++ and Python
(Aleksić and Ivanović, 2016), (Siegfried et al., 2016).

This approach depends on the hypothesis that even
novice programmers have an individual programming
style that can be used to distinguish their source
code from the one developed by others. Program-
ming styles are distinguishable even if the students
are working on the same task and learn from the same
script and tutor. These styles influence the layout of
the code, the naming of classes, methods and vari-
ables and the use of different keywords and constructs
of a programming language. There is no right or
wrong in such stylistic choices and they are made in-
dependent from the tasks which students solve. Fig-
ure 1 illustrates this. The two methods differ in var-
ious aspects such as the number of spaces and blank
lines, the accessibility of the method and the type of
loop used for the summation.

This paper lists the conditions and data processing
steps that are necessary to transform the raw submis-
sions into a form suitable for the application to learn
each student’s programming style and achieve a fea-
sible accuracy in the context of a programming exam.

2 RELATED WORK

In the context of an exam, different kinds of cheating
can occur. One is plagiarism, i.e. that a student copies
parts of or the whole answer to a question or assign-
ment from another student or an external source. This
can be discovered by using plagiarism detection tools
for source code, if the source of the duplicated solu-
tion is known so that a comparison can be made. Pla-
giarism detection is independent from the skill level
of the student and the type of task although for pro-
gramming tasks, a different approach has to be chosen
than for natural language texts. If two exams are sim-
ilar according to such a tool it cannot be determined,
if they both had access to the same (internet) resource
or if one of them and who gave the solution to the

public double calc_pi(int it) {
double pi = 0;

for (int i = 1; i < it; i++) {
double r = 1.0 / (2.0 * i - 1);
if (i % 2 == 0) {

r *= -1.0;
}
pi += r;

}
return pi * 4.0;

}

private double calcPi(int it){
double pi=0;
int k=1;
while(k!=it){

if(k%2==0)
{

pi+=-1.0/(2.0*k-1);
}
else
{

pi+=1.0/(2.0*k-1);
}

k++;
}

return 4.0*pi;
}

Figure 1: Two different solutions to the task ’Write a
method that calculates π with the Leibniz formula and stops
the summation after it iterations’.

other student.
The TeSLA Projekt (Noguera et al., 2017) aims at

developing a trust-based system for e-assessment in
online learning scenarios. The authors describe vari-
ous measures to prevent and detect cheating, includ-
ing biometric recognition for authentication, plagia-
rism detection and forensic linguistics techniques. A
solution for submissions in other forms them natural
language is not mentioned.

The plagiarism detection tool MOSS has already
been successfully used to find similarities between
sections of source code (Schleimer et al., 2003). It
finds similar sequences of strings by local fingerprint-
ing. MOSS is able to perform fast comparisons be-
tween different kinds of sources, so that a comparison
with internet resources is possible, but this system can
be deceived by renaming of variables and methods.

A slightly different approach is followed by the
authors of the program JPLAG (Malpohl et al., 2002).
They break down the source code into tokens and
search for similar sequences of maximal length of
tokens between files. But the problem remains that
the plagiarism detection only works in cases where

Requirements for Author Verification in Electronic Computer Science Exams

433

the source is available for comparison. Moreover,
the tasks that are solved in introductory programming
courses usually result in code that does not differ
much in structure, e.g. all students write a class with
certain attributes and methods.

Earlier work by Peltola et al. does not use fea-
tures derived from the source code but utilizes the
fact that students write their texts on electronic de-
vices. They use an analysis of recorded keystrokes
during the solution of exercises and the exam for au-
thor identification (Peltola et al., 2017). This works
for both programming and writing tasks and is inde-
pendent of what is written. The disadvantage of this
approach is that additional software is needed to track
typing behavior on students’ devices.

A study from (Caliskan-Islam et al., 2015) ex-
tracts features from C++ source code and uses a ran-
dom forest classifier for author attribution. This ap-
proach was modified for Java code. We were able to
show that such an approach is promising even though
the results are weaker for programming novices than
for experienced programmers. This technique is suit-
able for cheating detection because there is usually
source material available from every student in the
form of assignments and tutorials. Instead of compar-
ing submissions from different students, a ’positive’
comparison is made and the question that is answered
is ’was the code written by this student?’.

2.1 Previous Work

Previous research led to the development of a proto-
type application that extracts features from Java code
files, trains random forest, support vector machine
and neural network classifiers and attributes unknown
Java source code to one of the authors from the train-
ing set with a good accuracy. In this setting, the ran-
dom forest classifier performed best with an accuracy
around 58.36% on a small data set of 12 students. The
feature set is large which leads to a high dimensional
feature space and long computing times for bigger
data sets. This paper describes the improvements that
can be achieved by applying better data selection, fea-
ture reduction techniques and the combination of all
three types of classifiers into an ensemble.

2.1.1 Features

For each source code file a feature vector is con-
structed. The feature set is an adaptation of the Code
Stylometry Feature Set proposed by (Caliskan-Islam
et al., 2015) and consists of the components listed in
Table 1.

The first entries of the feature vector describe the
layout of the code and can be computed by treating the

tutorial assignment exam

source code training source code test

trained classifier

classification

Figure 2: Workflow of the Application.

Table 1: Structure of the Feature Vector.

number of chars
average line length
standard deviation of line length
number of lines
[term frequency of all words]
frequency of ’else if ’
max node depth in AST
[TF, TFIDF, avg node depth of AST node types]
[term frequency of AST node bigrams]
syntactic features
semantic features

source code as a plain text file. The parts of the vector
in square brackets have a variable length which de-
pends on the amount of distinct (key) words and con-
structs the programmer uses and therefore correlates
with the file length. Syntactic features capture design
decisions like the placement of brackets, the use of
tabs and the number and type of comments. Semantic
features describe the structure and inner logic of the
code, e.g. the type of loop that is used, the accessibil-
ity of classes and variables or the number of classes
and enumerations per file. The application computes
25 syntactic and 426 semantic features. Table 2 shows
examples of them.

Other machine learning approaches for author ver-
ification and also the plagiarism detection tools do not
consider the layout of the code and focus solely on its
structure. Since beginners lack knowledge of many
assets of a programming language their results differ
less than the ones of more experienced authors which
makes the utilization of the additional layout features
promising.

The computation of the features is done with two
techniques: The layout features, syntactic features as
well as the term frequency (TF) and term frequency -
inverse document frequency (TFID) are extracted by

CSEDU 2019 - 11th International Conference on Computer Supported Education

434

Table 2: Examples of Syntactic and Semantic Features.

Feature Category
spaces Syntactic
empty lines Syntactic
max # consecutive empty lines Syntactic
avg # consecutive empty lines Syntactic
{ in new line Syntactic
{ in same line Syntactic
short notations (e.g. +=) Syntactic
inline comments Syntactic
block comments Syntactic
consecutive calls (e.g. do1().do2()) Semantic
classes Semantic
chars/variable name Semantic
underscores/method name Semantic

treating the source code as text and applying regular
expressions. All other features are calculated by us-
ing an abstract syntax tree (AST). It is constructed
using the Python library javalang1 and breaks down
the source code into tokens and nodes that describe
its structure. The features that are directly computed
from the graph are an indicator for the complexity of
the code. Node bigrams are pairs of nodes that appear
one after another, their frequency hints to a prefer-
ence of certain constructs e.g. the invocation of the
constructor of a super class. The feature vectors are
scaled to a maximum value of 1 because most classifi-
cation algorithms other than the random forest require
normalized data to work correctly.

2.1.2 Classification

The samples are classified independently by three dif-
ferent algorithms: Random forest classifier (RF), lin-
ear support vector machine (SVM) and a neural net-
work (NN). The application uses implementations of
these classifiers from the scikit-learn2 library which
makes is possible to obtain the probability with which
a sample is attributed to a class and hence the cer-
tainty of the decision. This is utilized for weighing of
the algorithms in case they come to different results.
Additionally the most important features can be de-
rived so that it can be indicated on which properties
the decision is based. The three machine learning al-
gorithms can either be trained to distinguish between
all authors (multi class classification) or to distinguish
between one author and all others (binary classifica-
tion). Multi class classification is a case of author
identification since it presumes that the actual author
is present in the training set while binary classifica-

1https://github.com/c2nes/javalang
2https://scikit-learn.org/stable/

tion aims to decide if a piece of code was written by a
specific author. If a student received a solution from
someone who took the same exam, multi class clas-
sification will attribute this solution to its real author.
In binary classification the sample is attributed to the
class with the highest probability. For this approach,
a classifier has to be trained for each student and the
imbalance of classes represented in the training set
has to be considered. If the probability for a class
is smaller than 50%, this means that the algorithm at-
tributed a sample to another author, but in cases where
it is smaller for all classes, the class with the highest
probability is assumed. Both approaches are imple-
mented in the application and the parameters of the
algorithms were optimized separately for both cases.

3 CONDITIONS

This paper analyses the conditions that influence the
accuracy of the classification. Generally, the learning
process of a ML algorithm depends on the amount
and quality of the training material. Particularly in
the setting of cheating detection for programming ex-
ercises this means that it has to be similar in structure
to the actual exam and must be authored by the stu-
dent alone.

The necessary amount of reference material can
be examined by varying the number of samples in
the training set. A programming course during the
semester at university level usually consists of a lec-
ture that is accompanied by a tutorial and possible as-
signment that students solve at home and hand in for
grading. In this setting it is possible to gain at least
one file per week form each student. Group work
and collaboration of students is usually desired, but it
should be taken care, that each submission is written
by a single student and no group work is handed in. In
general, as much training material as possible should
be gathered. The similarity to the exam should be
automatically fulfilled if the reference material stems
from the course that is completed with the exam. The
last requirement is the hardest to guarantee because
tutorials are obviously not as strictly invigilated as ex-
ams and take-home-assignments are not checked at
all. On the other hand it should be considered that it
is rather unlikely that students hand in solutions that
are not their own from the beginning instead of trying
to solve them themselves.

Other important requirements for the training and
test data include:

1. The source files are long enough to show the cod-
ing style

Requirements for Author Verification in Electronic Computer Science Exams

435

2. The reference material is not too old, i.e. belongs
to the actual course, in case the students change
their style due to increased aptitude and knowl-
edge of new language features

3. The code is written with the same IDE and in the
same programming language

4. The code compiles so that an AST can be con-
structed

The use case for this approach is a BYOD device
exam of a programming course that can be open book
in the sense that it allows the students to have ac-
cess to their own code that they created during the
semester in tutorials or during practicing. This setting
fulfills most of the conditions automatically because
the exam is done on the same device and most likely
with the same IDE as the previous assignments.

Of course, a program alone cannot decide whether
an exam is a case of fraud, since plagiarism is a se-
rious case of academic fraud that can result in legal
prosecution (Zobel, 2004). If a software detects that
the work of a student does not resemble the previous
submissions, this should be considered a hint for the
examiner, not a final decision.

4 METHODOLOGY

To determine the necessary properties of the training
and test data, tests were carried out using the previ-
ously developed application. The experiments are de-
signed to answer the following questions:

1. What kind of source code is applicable for cheat-
ing detection and how does it have to be processed
to construct the feature vectors?

2. What level of complexity in the data set is needed
to obtain good results?

3. What features are useful? Is it possible and bene-
ficial to reduce the complexity of the feature vec-
tors?

The tests were performed with a set of as-
signments from an introductory Java programming
course. The set contains the solutions to 12 on-
campus tutorials from twelve students. All students
solved the same task individually on their own lap-
top. They handed in between one and five source files
per task without any requirements concerning the file
structure of the solution. The length of the files varies
between 8 and 279 lines. In most cases, snippets for
code testing were copied and pasted from the descrip-
tion. This corpus consists of 437 Java source code
files with an average length of 41.69 lines.

Additionally, the submissions of the best 40 par-
ticipants of the 2017 Google Code Jam (GCJ) pro-
gramming contest3 was used for comparison. The
files from the second data set on average contain more
lines and the solution to each task is contained in a
single file while the students often handed in more
than one file and additional test classes. This data set
represents a high level of complexity and was written
by experienced programmers. This data set is com-
prised of 699 files with an average length of 160.49
lines.

5 REQUIREMENTS

5.1 Data Selection

The number of lines of code that is sufficient for clas-
sification is hard to determine, so that it was decided
to keep all files, regardless of their length. Caliskan et
al. state that just 8 training files are sufficient to clas-
sify a large number of authors correctly (Caliskan-
Islam et al., 2015), but they tested their approach on
files that consist of significantly more lines of code
and contain a whole program, while students are of-
ten advised to distribute their code on multiple files
containing one class each. Files that do not consist
of valid Java code or do not compile are discarded by
the application because no feature vector can be com-
puted from them. Especially in a beginner’s course
the first lectures can consist of getting familiar with
the IDE and producing simple text output by copying
some kind of ’hello world’ program. Such files are
omitted. Since there are no exams from the course
available, the files are randomly split into training and
test data via cross validation. Files that are not writ-
ten by the students themselves like test classes are re-
moved manually from the data set. This resulted in 47
of 437 files from the raw data set not being used for
classification.

The data from the second data set was simply
saved in a folder structure that can be processed by
the application and all Java submissions from the con-
testants were used.

5.2 Pre-processing

After computing the feature vectors, outlier detection
is performed to obtain a less noisy data set. The re-
moval of duplicate (test) files is done by clustering the
data and removing files with the same name if they
form a cluster for all the students.

3https://code.google.com/codejam/past-contests

CSEDU 2019 - 11th International Conference on Computer Supported Education

436

After reading and processing all samples it has to
be checked whether there is a sufficient amount of (or
at all) training data present for the classes in the test
set. Otherwise, no classification is performed and the
exam has to be checked with another method.

Since large feature vectors lead to a high comput-
ing time for the application, feature reduction tech-
niques were tested. Principal Component Analysis
(PCA) was done on the training set and the 250 fea-
tures that contributed most to the variance were kept.
These features kept around 90% of the overall vari-
ance. The same reduction was then done on the set of
samples that needed to be attributed. PCA was bene-
ficial for the results of SVM but reduced the accuracy
of RF and NN classifiers. The reason for that lies in
the nature of these classifiers. A reduction of dimen-
sionality makes it easier for the SVM to separate the
data while it removes features that the RF classifier
needs in a split for the decision. Fewer features mean
that the Random Forest consists of a lower number of
different trees.

6 RESULTS

By the steps described in the previous sections it was
possible to increase the recognition rates on the data
sets significantly in comparison to the old approach
(Opgen-Rhein et al., 2018). To assess the influence of
the data selection and pre-processing, the accuracy of
the three classifiers was calculated as the average after
performing ten times 10-fold cross validation. Table
3 shows the final results for each classifier for multi
class and binary classification.

Table 3: Accuracy of NN, SVM and RF using 10-fold cross
validation - small data set.

RF lin. SVM NN
multi 89.15% 77.18% 78.49%
binary 88.72% 80.15% 78.85%

Table 4: Accuracy of NN, SVM and RF using 10-fold cross
validation - Google Code Jam data set.

RF lin. SVM NN
multi 100.00% 99.34% 99.69%
binary 99.41% 100.00% 99.81%

As expected, a sufficient amount of data (at least
ten files as training data from each student) and a
number of snippets with a sufficient length of the code
is an essential prerequisite for a successful classifica-
tion. The results above were obtained by using all
available code for training. The low number of train-

ing files described by Caliskan et al. only works on
the Google Code Jam Data set. This is due to the
greater differences between the tasks for students who
range from writing classes, interfaces and exceptions
to recursion and often focus on one topic per task,
while the contest asks for reading a text file, process-
ing the data and writing the result to a text file in all
cases.

Due to the assignment description, the students of-
ten turned in test cases that were copied from the de-
scription to show that their code is functional. Test
cases can either be written by the students themselves
or are done in a separate file that is not used for clas-
sification. Dilemma: own testing has a learning effect
but is harder to assess and grade.

The analysis of the most important features for the
data sets made it clear, that it is not possible to find a
small feature set that can be used to discriminate be-
tween all authors. The features that contribute most
to the decision vary from data set to data set and be-
tween runs and classifiers. Therefore, it is necessary
to compute a big feature set over all training examples
and reduce it afterwards, depending on its inner vari-
ance. With respect to the application’s run time this
is feasible since the computation of the feature values
and their reduction is not computationally expensive
in comparison with the actual classification.

The results of multi class and binary classification
show no big differences. Binary classification yields
better classification results for the linear SVM while
multi class classification works better for the RF clas-
sifier. Multi class classification should be preferred
because it is evidently less time consuming to train
one classifier to distinguish between n classes than to
train n classifiers to distinguish between one author
and all others.

The files from the student data set that were mis-
classified turned out to be mostly very short files like
interface declarations and custom exceptions that are
too simple to show the individual coding style. These
files can remain in the training set but are useless if
they are the only sample that is used to check the au-
thorship.

Additionally, homework for which the teacher
provided parts of the result, for example a code skele-
ton, is more often confused and should not be used.
This constraint must hold for the exam as well.

The results show that pure ’data containers’ with
pre-defined names for classes and methods are also
less useful for classification.

Finally, a weighting of the algorithms is needed,
too. Since the analysis of the classifications showed
that in many cases the real class of a sample did not
have the highest probability but appeared in second or

Requirements for Author Verification in Electronic Computer Science Exams

437

third place. It is assumed that there has been no fraud,
if at least one of the following conditions holds for
one of the classifiers:
• The classifier gives the highest probability to the

class of the presumed author

• The probability of the class of the presumed au-
thor is bigger than 50%, even if it is not the high-
est probability (this is possible in case of binary
classification)

• The probability of the class of the presumed au-
thor is the second or third highest probability but
amounts to at least 0.8 times the highest probabil-
ity
This is especially beneficial for the linear SVM

classifier because it was found to return its results
with a lower certainty than the other two. The results
for this relaxed classification on the student data set
are shown in Table 5. If the authorship of a student is
considered to be verified, if one of the algorithms con-
firms it (comb.), the number of cases that have to be
checked for fraud by a human examiner is reduced by
more than 90%. For the GCJ data this technique re-
sulted correct author attribution in 100% of the cases.

Table 5: Accuracy of relaxed classification for the student
data set using ten times 10-fold cross validation.

RF lin. SVM NN comb.
multi 91.18% 81.64% 79.10% 91.46%
binary 90.44% 83.54% 80.41% 90.95%

7 DISCUSSION AND FUTURE
WORK

Data selection and pre-processing are crucial steps to
obtain data for cheating detection. Their usefulness
was tested by looking at changes in the classification
accuracy.

From our findings, rules for the construction of as-
signment tasks and electronic examinations that shall
be checked for cheating can be derived. These condi-
tions lead to a number of rules that must be obliged
for assignments, tutorials and exams in order to al-
low classification for cheating detection afterwards:
the students have to submit their own work in all
cases and the number of assignments should produce
at least ten source files with testing in an extra file
(which is good practice anyway, especially if testing
is done with unit tests). The results show that pure
’data containers’ with pre-defined names for classes
and methods are not useful for classification. The
ideal exam for this scenario asks the students to ap-
ply the things they learned in class and practiced at

home and during tutorials. Its length might be higher
than the length of an assignment because it asks to ac-
tivate knowledge rather than forcing to explore some-
thing new. In an open book exam it is even allowed
to copy and paste code that a student himself wrote
earlier. Although the exam presents a ’mix’ of assign-
ment types the approach still yield satisfactory results.
The exam should be (as it is in most cases and in paper
based exams, too) subdivided thematically into tasks.
The solution of each task should be written into one
source file. More than one file for testing also offers
the chance to rule out impersonation (but not plagia-
rism) in cases where not all but at least the majority
of files of one submission are attributed to the student
who claims to have written it.

It is beneficial for the classification if the code
samples reflect the programming style of the student
alone and is free of parts that are written be e.g. the
lecturer as it might happen if examples and test cases
that are provided.

While a certain degree of similarity (like the same
task and same file processing scheme in GCJ solu-
tions) between the samples is useful for the classi-
fiers to find subtle differences in the source code files,
greater differences are harmful for classification. It is
best if the samples contain the same task for all the
students.

If the same tasks lead to the training examples this
is not a problem: the classifiers will concentrate more
on the subtle differences between the authors than on
e.g. the naturally occurring differences between front
end and a back end code.

The data used comes from very formalized tasks.
A new course design should focus on giving students
more choice in the naming and structure of their code
and more focus on functionality. At the same time,
the number of training instances can be increased by
ending the practice of group homework or requiring
stating the author for each file.

Regarding the research questions it can be con-
cluded that code from all parts of a programming
course can be used for cheating detection as long as it
can be reasonably assumed that it is indeed authored
by one particular student. The code must compile and
be free of testing snippets that are used by all students,
i.e. testing needs to be done in separate files that can
easily be removed from the training set. A minimum
number of ten reference files are required but the ac-
curacy increases with more training material.

To obtain usable results the source code does not
need to be particularly complex as long as it is long
enough. If all programmers work on a similar task or
all tasks have the same structure (as it is the case in the
GCJ contest) this is even beneficial because the classi-

CSEDU 2019 - 11th International Conference on Computer Supported Education

438

fication is focused on the differences in coding instead
of the structure of the task. Still, a certain complexity
is needed in the sense that it must be possible to ex-
press one’s own coding style. Simple output of data
and pure ’data container’ classes should be avoided.

The usefulness of the features depends on the data
set and it is not possible to construct a reduced feature
set that is useful for all data sets. But it is possible and
useful to reduce the features after computation for the
whole training by removing features with low vari-
ance and zero mutual information. Mutual informa-
tion describes the relation between two data sets, in
this case between each column (feature) in the train-
ing set and the label vector y (Ross, 2014).

Finally, it should be noted that all students must
agree that their tasks will be used for fraud detection.
This agreement can be obtained when students upload
their work.

Further research is necessary to rule out that pro-
grammers are assumed to be the authors of files al-
though they are not, i.e. a case of cheating is not de-
tected by the application. If the training set is big, it
is unlikely that this happens if it is assumed that in
case the real author is not in the training set, the file
will be randomly attributed to one of the classes. But
this will most likely not be the case, especially if the
students have knowledge about the cheating detection
process. This might cause them to obtain code from
a person which they think has a coding style that re-
sembles theirs.

The next step is the integration of the cheating de-
tection into an e-assessment framework. This also in-
cludes taking into account measurements that prevent
a cheating attempt while the exam takes place. Since
the first electronic examinations took place attempts
have been made to secure the computers on which the
exam is taken and prevent the use of forbidden soft-
ware and the internet. This is relatively easy for work-
stations that are under the control of the examiners
and whose configuration is known and homogenous
(Wyer and Eisenbach, 2001).

REFERENCES

Aleksić, V. and Ivanović, M. (2016). Introductory program-
ming subject in european higher education. INFOR-
MATICS IN EDUCATION, 15(2):163–182.

Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A.,
Voss, C., Yamaguchi, F., and Greenstadt, R. (2015).
De-anonymizing programmers via code stylometry. In
24th USENIX Security Symposium (USENIX Security
15), pages 255–270, Washington, D.C. USENIX As-
sociation.

Heintz, A. (2017). Cheating at Digital Exams. Master’s the-
sis, Norwegian University of Science and Technology,
Norway.

Malpohl, G., Prechelt, L., and Philippsen, M. (2002).
Finding plagiarisms among a set of programs with
jplag. JUCS - Journal of Universal Computer Science,
8(11).

Noguera, I., Guerrero-Roldán, A.-E., and Rodrı́guez, M. E.
(2017). Assuring authorship and authentication across
the e-assessment process. In Technology Enhanced
Assessment, pages 86–92. Springer International Pub-
lishing.

Opgen-Rhein, J., Küppers, B., and Schroeder, U. (2018).
An application to discover cheating in digital exams.
In Proceedings of the 18th Koli Calling International
Conference on Computing Education Research, Koli
Calling ’18, pages 20:1–20:5, New York, NY, USA.
ACM.

Peltola, P., Kangas, V., Pirttinen, N., Nygren, H., and
Leinonen, J. (2017). Identification based on typing
patterns between programming and free text. In Pro-
ceedings of the 17th Koli Calling International Con-
ference on Computing Education Research, Koli Call-
ing ’17, pages 163–167, New York, NY, USA. ACM.

Ross, B. C. (2014). Mutual information between discrete
and continuous data sets. PLoS ONE, 9(2):e87357.

Schleimer, S., Wilkerson, D. S., and Aiken, A. (2003). Win-
nowing: Local algorithms for document fingerprint-
ing. In Proceedings of the 2003 ACM SIGMOD Inter-
national Conference on Management of Data, SIG-
MOD ’03, pages 76–85, New York, NY, USA. ACM.

Sheard, J. and Dick, M. (2012). Directions and dimen-
sions in managing cheating and plagiarism of it stu-
dents. In Proceedings of the Fourteenth Australasian
Computing Education Conference - Volume 123, ACE
’12, pages 177–186, Darlinghurst, Australia, Aus-
tralia. Australian Computer Society, Inc.

Siegfried, R. M., Siegfried, J. P., and Alexandro, G. (2016).
A longitudinal analysis of the reid list of first program-
ming languages. Information Systems Education Jour-
nal, 14(6):47–54.

Williams, K. M., Nathanson, C., and Paulhus, D. L. (2010).
Identifying and profiling scholastic cheaters: Their
personality, cognitive ability, and motivation. Jour-
nal of Experimental Psychology: Applied, 16(3):293–
307.

Wyer, M. and Eisenbach, S. (2001). Lexis: an exam invig-
ilation system. In Proceedings of the Fiftteenth Sys-
tems Administration Conference (LISA XV) (USENIX
Association: Berkeley, CA, p199, 2001. International
Conference on Engineering Education August 18–21,
2002.

Zobel, J. (2004). ”uni cheats racket”: A case study in pla-
giarism investigation. In Proceedings of the Sixth Aus-
tralasian Conference on Computing Education - Vol-
ume 30, ACE ’04, pages 357–365, Darlinghurst, Aus-
tralia, Australia. Australian Computer Society, Inc.

Requirements for Author Verification in Electronic Computer Science Exams

439

