
Mutating UML State Machine Behavior with Semantic Mutation
Operators

Anna Derezinska a and Łukasz Zaremba
Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, Warsaw, Poland

Keywords: Model-Driven Software Development, State Machine, Code Generation, Mutation Testing, Framework for
Executable UML (FXU), C#.

Abstract: In Model-Driven Software Development (MDSD), an application can be built using classes and their state
machines as source models. The final application can be tested as any source code. In this paper, we discuss
a specific approach to mutation testing in which modifications relate to different variants of behavioural
features modelled by UML state machines, while testing deals with standard executions of the final
application against its test cases. We have proposed several mutation operators aimed at mutating behaviour
of UML state machines. The operators take into account event processing, time management, behaviour of
complex states with orthogonal regions, and usage of history pseudostates. Different possible semantic
interpretations are associated with each operator. The operators have been implemented in the Framework for
eXecutable UML (FXU). The framework, that supports code generation from UML classes and state machines
and building target C# applications, has been extended to realize mutation testing with use of multiple libraries.
The semantic mutation operators have been verified in some MDSD experiments.

1 INTRODUCTION

Model-Driven Software Development (MDSD) can
be aimed at production of high quality software in a
reasonable time or at a rapid prototyping (Liddle,
2011). In both cases the target software should reflect
behavioral features introduced in source models. It
has been assumed that building an application based
on an automatically generated code gains benefits of
high-level modelling and analysis. Model to code
transformation uses mainly structural models, as
UML classes (Batouta et al., 2017).

However, behavioral models, e.g., state machines,
are also utilized (Dominguez et al., 2012). State
machines are widely used in the embedded system
domain, and other application areas (Liebel et al.,
2018); though code generation is still not very
common in the industrial practice. Moreover,
building of such applications impose requirements on
their consistency to the source models and
verification of the final code.

The latter can be supported by mutation testing.
Mutation testing is an approach primarily used for
assessment of test set quality and generation of tests

a https: //orcid.org/0000-0001-8792-203X

satisfying selected criteria (Jia and Harman, 2011). In
a standard mutation testing process, syntactic
changes, so-called mutations, are injected into a
source code and supposed to be detected by test cases.
Modified programs, mutants, are run against tests. An
evidence of an abnormal program behaviour, i.e.
killing of a mutant, admits ability of tests to detect
program faults. It could confirm quality of a test suite
in regard to the type of faults introduced by mutation
operators during generation of the mutant. The notion
of mutations used in this paper follow concepts from
mutation testing, and not from genetic algorithms.

Different variations of the standard mutation
testing process have been considered, including
various software artefacts to be mutated and tested.
Not only a program code, but also different kinds of
models and specifications have been used as a source
in a mutation testing process, (Belli et al., 2016).
Among models, mutating of state machines has also
been discussed (Trakhtenbrot, 2007).

Moreover, mutation testing operators can refer not
only to syntactical changes of an input artefact, i.e.
code, model, or specification, but also to its semantic
variations or other implementation features (Clark et

Derezinska, A. and Zaremba, Ł.
Mutating UML State Machine Behavior with Semantic Mutation Operators.
DOI: 10.5220/0007735003850393
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 385-393
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

385

al., 2013), (Trakhtenbrot, 2010), (Trakhtenbrot,
2017).

Mutation testing could be combined with MDSD
approach in various ways. We propose mutation of
semantic features of state machines that are source
models in the program development. However,
mutation testing results are interpreted not on a model
level but on the level of a final application; as in the
typical mutation testing of a program. Tests should be
capable to detect different kinds of software flaws.
Among others they should verify correctness of usage
of the state machine formalism to design the project
corresponding to given requirements.

Presentation of semantic operators to behavioural
features of UML state machines and their possible
interpretation variants consistent to the UML
specification, is the main contribution of the paper.
The proposed operators have been implemented in a
tool and verified in a case study. To the best of our
knowledge it is the first implementation of mutation
operators of such kind.

In this paper we assume an MDSD process in
which an executable application is created based on
UML classes and hierarchical state machine models
(Pilitowski and Derezinska, 2007). The final code
project is built with all necessary library notions, so
the target application can be run as any other general–
purpose application in a standard environment. The
variety of semantics is realised by a “multiple library”
approach, which has been selected after comparison
of four different architectural approaches (Derezinska
and Zaremba, 2018).

This mutation testing approach has been
implemented in FXU – a tool that supports code
generation from UML classes and their behavioral
state machines with the target to C# applications
(FXU, 2019).

The next Section is devoted to the background of
the work. Semantic mutation operators of state
machines are discussed in Section III. Section IV
describes implementation of the approach in FXU.
Section V informs about conducted experiments.
Section VI summarises related work and Section VII
concludes the paper.

2 SEMANTIC MUTATION IN
MDSD

Considering mutation testing in an MDSD process,
the following general mutation categories can be
recognised, which refer to elements that are mutated:

A) design or construction mutation,

B) semantic mutation,
C) semantic consequence-oriented mutation.

The first category has been mostly used in mutation
of source code and UML models, but is not a subject
of this paper.

2.1 Semantic Mutation

Introduction of semantic mutation is associated with
modification of realization of specific
transformations rather than modification of
transformation effects. In comparison to the A)
category, semantic mutation does not modify a source
form of a model or code. Semantic mutations rely on
other interpretations of an intermediate form.
Usually, transformation rules from a source to an
intermediate form have to be modified.

Semantic mutation can be applied to models,
therefore transformation of a model to a source code
or to another model notation results in another code-
model or another meaning-behavior in dependence on
an applied mutation. Semantic mutations referring to
UML state machines are important as there are many
semantic variants consistent with the UML
specification (UML, 2017).

Semantic mutation can also be used for a program
code. In the contrast to traditional mutation, in this
case a source code is not modified but its
interpretation is changed. For example, in different
programming languages, a scope and precision of
embedded types can be different (Clark, Dan and
Hierons, 2013).

2.2 Semantic Consequence-oriented
Mutation

This mutation category relates to realization of a
specific meaning of a programming concept that was
modelled. For example, a final system behavior could
be determined by one of system realizations, which is
consistent with a given semantics. However, behavior
of this system can be nondeterministic. Different
correct scenarios can follow realization of execution
of models from orthogonal regions of a state machine.
Execution order of operations in orthogonal regions
is undefined by the specification. Consequently,
many combinations of such operation execution can
encounter. Therefore, semantic consequence-oriented
mutation could imitate different behavioral
combinations in a situation of this kind.

This mutation category principally differs from
the previous ones. In this case, a generated mutant
corresponds to a correct system behavior, and should
not be killed by a test suite. Application of tests with

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

386

such mutants is based on the integration of the
mutated system with other parts.

This kind of mutation was treated as an
implementation-oriented mutation (Trakhtenbrot,
2010) specified in the context of the Harel statecharts
(Harel, 1987). However, the approach to realization
of such mutations proposed in this paper is different
to those from Trachtenbrot.

3 SEMANTIC MUTATION
OPERATORS FOR STATE
MACHINE BEHAVIORS

Different aspects of state machine behaviour have
been considered. Therefore, we have distinguished
several groups of semantic mutation operators:
I. Event processing.
II. Time management.
III. State behavior in regions belonging to the same

orthogonal complex state.
IV. Processing of history pseudostate.

It is assumed that all variants of the possible state
machine behavior are consistent with the UML
specification (UML, 2017). We discuss exemplary
selected operators belonging to all above groups, and
possible interpretation variants that might be
associated with the operators. The selection of
operators originates from the previous research
(Derezinska and Pilitowski, 2009), (Derezinska and
Szczykulski, 2012) and covers a wide range of
possible topics and their interpretations, but of course
is not exhaustive.

3.1 Operators of Event Processing

The semantics of UML requires processing of one
event per time according to the rule of run-to-
completion step. Encountering of events is stored in a
queue, so-called an event pool. A policy of the queue
is undefined, hence various queue policies could be
considered as interpretation variants.

Moreover, there exists a possibility to defer an
event. An event could be deferred, if no transition
exists that could be traversed due to this event
consumption and in the same time this event is
denoted as deferred by at least one of states that
belong to the current active configuration. The
deferred event is kept in the event pool until it can
trigger a transition, or a configuration is reached in
which it is not deferred any more. Processing of
deferred events requires deciding of some

interpretation issues and resolving of conflicts about
an order of deferred event evaluation.

In result we have considered the five following
mutation operators of event processing and their
several interpretation variants:

I.1. Selection of Queue Policy of Events:
I.1.1) FIFO,
I.1.2) FIFO, except completion and time events,
I.1.3) priority queue – priorities are associated
with the different types of events,
I.1.4) priority queue – priorities are associated
with different events,
I.1.5) LIFO.

I.2. Detection Policy for a Change Event:
I.2.1) periodical checking of the expression value,
I.2.2) checking of the expression value once
during a completion step,
I.2.3) immediate reaction to detection of change
of the expression value (i.e. from False to True).

I.3. Removal of a Change Event from an Event Pool:
I.3.1) changing of the expression value to False
causes removal of an event associated with this
expression from the event pool,
I.3.2) the expression is assessed during evaluation
of the associated event. The event is removed if
the expression is False.
I.3.3) further changes in a value of the associated
expression have no impact on the event
processing.

I.4. Interpretation of an Event Deferment:
I.4.1) an event deferment is realized as a
placement of the event again in the event pool (as
if it has encountered again),
I.4.2) an event deferment causes adding the event
to a special pool of deferred events, which is
global for the whole state machine,
I.4.3) due to an event deferment the event is
placed in a special pool of deferred events, which
is defined locally for each state of the state
machine.

I.5. Processing of Events deferred by the Same State:
options I.5.1) - I.5.4) are the same as in I.1.

3.2 Operators of Time Management

The UML specification does not assume any specific
time delays between consecutive time events, or any
predefined event processing time (neither a minimal
time, nor a maximal one). Due to such universal
foundation, different semantic variants could be
applied to time processing in dependence to a selected
application domain. We have identified the following
operator and its three interpretation variants:

II.1 Selection of Time Processing Policy in a State
Machine:

Mutating UML State Machine Behavior with Semantic Mutation Operators

387

II.1.1) processing of consecutive events one after
another,
II.1.2) processing based on a logical clock for time
measurement,

II.1.3) processing based on a chronometric clock
for time measurement.

3.3 Operators of Orthogonal States

A complex orthogonal state consists of many regions.
An event processing in such a state may cause
execution of many transitions during a run-to-
completion step. Only one transition can be executed
in a region. Transitions in the orthogonal regions are
executed simultaneously, which could be differently
interpreted. In realization of a transition we consider
three actions: exiting a source state, transition
execution, and entering a target state. These actions
have been referred in the following three operators
dealing with transitions in orthogonal regions:

III.1. Execution Policy of Actions to exit from Source
States which are executed Simultaneously:

III.1.1) concurrent execution (physically true
concurrent – e.g. using different cores, or different
processors),
III.1.2) parallel execution (e.g. might be realized
by many threads on the same core),
III.1.3) sequential execution (might be given an
execution order).

III.2. Execution Policy of Transitions to be Executed
Simultaneously:

options III.2.1- 2.3) are the same as in III.1.

III.3. Execution Policy of Actions to enter Target
States which are Executed Simultaneously:

options III.3.1- 3.3) are the same as in III.1.

The next operator deals with orthogonal states were
not all initial states are directly defined, but no history
pseudostate is used.

III.4 Default Entering a Complex State including at
least One Region without an Initial Pseudostate:

III.4.1) the model is treated as ill-defined,
III.4.2) the ambiguous regions are omitted,
III.4.3) the ambiguous regions are counted as
successfully executed,
III.4.4) initial states are selected in the ambiguous
regions.

3.4 Operators of History Pseudostates

In this operator group we consider application of
history pseudostates, referring to both cases of a
shallow and deep history. There are various situations
that might be interpreted in different ways. One is
calling of a nonexistent default history pseudostate.

Another is entering a complex orthogonal state via
history. Hence, there are two operators:

IV.1. Selection of a History Pseudostate
Interpretation:

IV.1.1) a history pseudostate refers to all regions
of the complex orthogonal state in which it is
included,
IV.1.2) a history pseudostate only refers to the
region in which it is included,
IV.1.3) a history pseudostate refers to the region
in which it is included, and also to other regions
of its orthogonal state to which no concurrent
direct entry exists,
IV.1.4) a history pseudostate is accepted to be
valid only if there are concurrent direct entries to
all other regions of the orthogonal state, in which
it is included. Otherwise, the model is counted to
be ill-modelled.

IV.2. Default Entry to an Orthogonal State Via a
History Pseudostate:

IV.2.1) lack of a default history pseudostate
results in a default entering a region(s),
IV.2.2) regions that do not include default history
pseudostates are considered to be executed.

3.5 Operators for Semantic
Consequence-Oriented Mutation of
State Machines

Some operators from the third category have also
been considered. A mutant of the second category can
be regarded as a pair: a final code and its semantics.
In the case of the third category, a mutant could be
specified by a 3-tuple: a code, a semantics, and a
constraint of the semantics.

Introduction of a mutation operator results here
not in changing of a semantics, as in the second
category, but in applying some limits to a selected
semantics. Therefore, an operator is specified in
relation to a chosen semantic variant.

We have proposed the following mutation
operators of this kind:

V.1 Deterministic Order of Execution of Concurrent
Entries into Orthogonal Regions (it refers to the
III.1.1 semantic variant).

V.2 Deterministic Order of Execution of Concurrent
Transitions in Orthogonal Regions (it refers to the
III.2.1 semantic variant).

V.3 Deterministic Order of Execution of Concurrent
Exits from Orthogonal Regions (it refers to the III.3.1
semantic variant).

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

388

4 IMPLEMENTATION OF
SEMANTIC MUTATION
OPERATORS IN FXU

The discussed approach has been incorporated into an
MDSD process supported by the Framework for
eXecutable UML (FXU, 2019). The FXU tool has
been designed to transform UML models into
executable code of a general purpose language
(Pilitowski and Derezinska, 2007). It was focused on
code generation for all notions of behavioral state
machines, including complex states with orthogonal
regions, different pseudostates, also with history
pseudostate, etc. It was the first tool that supported
the C# language as a transformation target, and it has
still been treating state machines in the most
comprehensive way within this technology domain.
The framework was extended with different versions,
e.g. considering time concepts from the OMG
MARTE profile (Derezinska and Szczykulski, 2017).

The framework includes two main parts: FXU
Generator and FXU Run-Time Library. The
Generator transforms UML classes and their
behavioral state machines into the corresponding C#
code. The Library contains implementation of all
state machine concepts. After code transformation, a
final application is built as a project including the
generated code and the library. Consequently, it can
be run independently in the .NET environment as any
other general-purpose application.

UML models are statically verified during model
to code transformation (Pilitowski and Derezinska,
2007). Furthermore, FXU runtime library supports
dynamic verification completed during a program
execution. Apart from this, the mutation operators are
another means of model verification that have been
incorporated into the framework.

Four different architectural approaches to
realization of semantic mutation have been examined
(Derezinska and Zaremba, 2018). The basic
complexity metrics were analyzed and compared.
After this evaluation, a solution based on a
“configurable library” was selected and implemented
in FXU. In this case, semantics is expressed in a set
of configurable rules that is combined with a target
application. Each mutant refers to configurable
semantic rules and the target application can be
executed in accordance to its semantics. Moreover,
two strategies, i.e. all-state machines and one selected
state machine, that could be chosen by a user, were
implemented.

Realizations of all state machine details and
semantic variants are encapsulated in the run-time

library. Source code is generated from the class and
state machine models. The model-to-code
transformation is responsible only for correct
construction of state machines from the components
provided by the library. Compilation of the code is
performed only once, regardless of the applied
semantic mutation operators.

Different semantic variants are driven by selected
mutation operators providing, in result, appropriate
semantic configurations. Based on these
configurations, the desired library versions are used
during the application run-time. The application can
be executed for any semantic configuration and any
test suit, if necessary.

A reconfigured architecture of the FXU Library
supports different approaches to state machine
behavior, including semantic mutation operators and
semantic consequence-oriented mutations. The
refactored Run-Time Library consists of the
following main components:

StateMachineLogic – implements concepts
from the state machine domain,

Interfaces - includes interfaces for classes of
the state machine elements used by generated code,
and interfaces for internal communication,

Infrastructure – implements an
intermediate layer used by generated code,

Marte - implements selected time concepts from
the OMG MARTE profile.

5 EXPERIMENTS

The MDSD experiments have been conducted
combined with mutation testing using semantic
mutation. The subject of experiments was a case
study that had been used in some previous research
on model-driven development (Derezinska and
Szczykulski, 2013). The case study concerned
modelling of a presence server in a social network. It
covered processing user statuses; in particular, user’s
presence, location, communication possibilities,
activities, etc.

The presence server model consisted of three
main layers dealing with communication with a
client, controlling of presence statuses, and
communication with other systems. Each layer was
modelled by packages comprising its classes and
additional subpackages. Behaviour of the classes was
specified by their state machines. The whole model
included about twenty classes and interfaces as well
as about seventeen state machines.

The model of presence server was processed by
the FXU generator, i.e. class and state machine
models were transformed into C# source code, and a

Mutating UML State Machine Behavior with Semantic Mutation Operators

389

code project and appropriate semantic configuration
files were created. The selected server functionality
was implemented or simulated by refinement of
appropriate methods.

The aim of current experiments was not only
evaluation of an MDSD process, but also verification
of the final application. Different variants of the
application and their behaviour could have been
compared. The variants corresponded to different
semantic variants of UML state machines. In result,
behavioural correspondence of an application variant
to an interpretation of a related model could have
been examined.

A set of unit tests for the application was
developed and placed into a test project that belonged
to the same VS solution. The test project included
also a configuration file of a state machine semantics.
Each test class was extended with a method
initializing the FXU run-time environment.

There were tests developed to check correctness
of only one class and its behavior specified by its state
machine. Other kinds of tests were devoted to
verification of a whole subsystem, for example
servicing of a data publishing request. A test started
with an initialization of an object of the presence
server. Next, a request for status publishing was
created and delivered to the server via TCP. Then, it
was verified whether an expected status was set in
places of concern.

In order to perform semantic mutation testing,
configurations of semantic mutants were used.
Configurations mutated semantics for the whole
execution of a single test, if a test checked only one
class and its state machine. If a test referred to a whole
subsystem, two types of mutants were configured,
namely:
1) All state machines of the involved classes

behaved according to the same semantic variant
within the same test run.

2) Different state machines of the involved classes
used various semantic variants within the same
test run.

The mutated applications were run against all test
cases. The mutation testing process was supported by
an add-in to VS that managed execution of mutants
with tests.

The created tests have finished with correct results
in the created environment. We have not observed
any discrepancies between requirements expressed in
the input models and behaviour of the final
applications, assuming given semantic variants.
However, it should be noted, that this model was
formerly evaluated with its basic semantics and
thoughtfully verified (Derezinska and Szczykulski,

2013). The main goal of the experiment was to verify
the semantic mutation testing process combined with
MDSD and the tool support, and not to find model
errors or semantic flaws in the case study.

6 RELATED WORK

There are different areas of research that have
contributed to the presented work: model-to-code
transformation (in particular from state machines),
variation points in behaviour of state machines, and
processes of mutation testing.

6.1 Code Generation from State
Machines

A straightforward transformation from UML models
to code is based on class models. However, while
dealing with behavioral specification, a
transformation can be extended with state machine
models. There are many approaches to reproduce
these models in a code, such as replicating states by
attributes, using state design patterns, and others
(Dominguez et al., 2012), (Sunitha and Samuel,
2016), (Samek, 2002), (Badreddin et al., 2014),
(Pilitowski and Derezinska, 2007). A special
attention has been devoted to transformation of
advanced modelling features of state machines,
including composite states (Sunitha and Samuel,
2016), (Badreddin et al., 2014), or states with history
pseudostates (Derezinska and Pilitowski, 2009).

Contemporarily, several tools support code
generation from UML state machines (IBM RSA,
2018). They usually respect only a subset of state
machine concepts, while more advanced notions,
such as complex states, in particular orthogonal
regions in states, deep and shallow history
pseudostates, deferred events, entry/do/exit actions or
internal transitions might be omitted (Samek, 2002).

There are some solutions that apply more
comprehensive set of state machine concepts, as IBM
Raphsody (IBM RRD, 2018), Umple (Badreddin et
al., 2014), FXU (FXU, 2019), although most of them
do not support the C# language.

In this paper we discuss an approach based on the
full UML state machine specification. The target is an
application built in a general-purpose programming
language. Concerning implementation issues we used
C# and Visual Studio environment.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

390

6.2 Interpretation Issues of State
Machines

Models of UML state machines have been originated
from the concepts proposed by Harel (1987). The
official UML specification (UML, 2017) has always
been imprecise, and included some unspecified
places, previously called semantic variation points
(Beeck, 1994). All in all, they should be resolved in
different ways when a model has to be interpreted or
a model-based application has to be built and
executed.

There are various ways to handle these problems.
In (Chauvel and Jezequel, 2005) authors stipulate
different variants to be decided by a user. Selected
decisions, about event handling and queuing policies,
can be also taken by a user in the Umple tool
(Badreddin et al., 2014). Another generic approach to
creation of a code generator parametrized with
semantic variants has been discussed in (Prout et al.,
2012). However, in most of implemented solutions,
there are different resolutions of behavioral
interpretation problems, but often without precise
statements about selections taken.

During development of the FXU tool, different
problems of state machine interpretation have been
faced and decided (Derezinska and Pilitowski, 2009),
(Derezinska and Szczykulski, 2012). Moreover, it
could be possible to incorporate different variants of
state machine behaviour into solutions offered to a
user, and they could be treated as possible
modifications in mutation testing.

6.3 Mutation Testing

Mutation testing approach has been employed to
applications written in different programming
languages (Jia and Harman, 2011), also including C#
(Derezinska and Szustek, 2012), (Derezinska and
Trzpil, 2015). This methodology was also used to
mutate UML models (Belli et al., 2016).

Some research was also devoted to mutation of
automata-based models. Many of these works were
dealing with syntactical changes of diagrams
(Trakhtenbrot, 2007).

Behavioral models, mainly state machines, have
been also studied as an object of semantic mutation
(Clark et al., 2013), in some variants called also an
implementation mutation (Trakhtenbrot, 2007),
(Trakhtenbrot, 2010). In this kind of mutation there
are no changes introduced into a model graph
structure, but different semantic interpretations are
considered (Trakhtenbrot, 2017), (Bartolini, 2017).

7 CONCLUSIONS

Different operators to semantic mutation of state
machines have been introduced. The operators and
their selected possible interpretations have been
implemented in the FXU, the framework that
supports building C# applications from class and state
machine models. The semantic mutations were
applied in mutation testing experiments. Their
behaviour was consisted with the expectations.

There are many possibilities of the future
enhancement of the approach. Basing on the mutation
facility developed in the framework, other mutation
operators corresponding to different behavioral
variants of state machines can be added. These
variants could deal with other interpretations of UML
state machines, or solutions consistent with other
semantics than derived from the UML specification.

Moreover, structural mutations of state machine
models could also be incorporated into the
framework. Such mutations deal with other flaws of
models than the ones covered in this paper.

While using the current FXU add-in for the Visual
Studio, unit tests can be automatically executed for
any number of mutants. However, defining of tests
and their configuration requires a manual work,
which could be automated.

Finally, the concerned applications were
developed in the C# language. The model-driven
development of a program could be combined with
the mutation testing performed at the source code
level with standard and object-oriented operators of
C# (Derezinska and Szustek, 2012) or with operators
applied at the intermediate code (CIL - Common
Intermediate Language of .NET) (Derezinska and
Trzpil, 2015).

REFERENCES

Badreddin, O. et al., 2014. Enhanced code generation from
UML composite state machines. In: Proceedings of the
2nd International Conference on Model-Driven
Engineering and Software Development
(MODELSWARD). SCITEPRESS - Science and
Technology Publications. pp. 235-245. doi:
10.5220/0004699602350245.

Bartolini, C., 2017. Software testing techniques revisited
for OWL ontologies. In: Hammoudi S., Pires L., Selic
B., Desfray P., eds., Model-Driven Engineering and
Software Development. MODELSWARD, 2016. CCIS,
vol 692. Springer, Cham, pp. 132-153. doi:
10.1007/978-3-319-66302-9_7.

Batouta, Z. I. et al., 2017. Automation in code generation:
tertiary and systematic mapping review. In: 4th IEEE

Mutating UML State Machine Behavior with Semantic Mutation Operators

391

International Colloquium on Information Science and
Technology (CIST), IEEE. art. no. 7805042, pp. 200-
205. doi: 10.1109/cist.2016.7805042.

Beeck von der, M., 1994. A comparison of statecharts
variants. In: Proc. of the 3rd International Symposium
Organized Jointly with the Working Group Provably
Correct Systems on Formal Techniques in Real-Time
and Fault-Tolerant Systems, London, LNCS 863, pp.
128-148.

Belli, F. et al., 2016. Model-based mutation testing—
approach and case studies. Science of Computer
Programming. Elsevier BV, 120(1), pp. 25–48. doi:
10.1016/j.scico.2016.01.003.

Chauvel, F. and Jézéquel, J.-M., 2005. Code generation
from UML models with semantic variation points. In:
Proceedings of 8th International Conference Model
Driven Engineering Languages and Systems. LNCS
vol. 3713 Springer Berlin Heidelberg, pp. 54–68. doi:
10.1007/11557432_5.

Clark, J. A., Dan, H. and Hierons, R. M., 2013. Semantic
mutation testing. Science of Computer Programming.
Elsevier BV, 78(4), pp. 345–363. doi:
10.1016/j.scico.2011.03.011.

Derezinska, A. and Pilitowski, R., 2009. Interpretation of
history pseudostates in orthogonal states of UML state
machines. In: Next Generation Information
Technologies and Systems. LNCS vol. 5831, Springer
Berlin Heidelberg, pp. 26–37. doi: 10.1007/978-3-642-
04941-5_5.

Derezinska, A. and Szczykulski, M., 2012. Interpretation
problems in code generation from UML state machines
- a comparative study. In: T. Kwater, Ed Computing in
Science and Technology 2011: Monographs in Applied
Informatics, Department of Applied Informatics
Faculty of Applied Informatics and Mathematics,
Warsaw University of Life Sciences, pp. 36-50.

Derezinska, A. and Szczykulski, M., 2013. Towards C#
application development using UML state machines: a
case study. In: T. Sobh, K. Elleithy, eds., Emerging
Trends in Computing, Informatics, System Sciences,
and Engineering. LNEE. vol. 151 Springer New York,
pp. 793–803. doi: 10.1007/978-1-4614-3558-7_68.

Derezinska, A. and Szczykulski, M., 2017. Advances in
transformation of MARTE profile time concepts in
Model-Driven Software Development. In: Software
Engineering Trends and Techniques in Intelligent
Systems (CSOC 2017), AISC. Vol. 575 Springer
International Publishing, pp. 385–395. doi:
10.1007/978-3-319-57141-6_42.

Derezinska, A. and Szustek, A., 2012. Object-oriented
testing capabilities and performance evaluation of the
C# mutation system. In: Advances in Software
Engineering Techniques. LNCS, vol. 7054, Springer
Berlin Heidelberg, pp. 229–242. doi: 10.1007/978-3-
642-28038-2_18.

Derezinska, A. and Trzpil, P., 2015 Mutation testing
process combined with Test-Driven Development in
.NET environment. In: Proceedings of the 10th
International Conference DepCoS-RELCOMEX,
Advances in Intelligent Systems and Computing. Vol.

365. Springer International Publishing, pp. 131–140.
doi: 10.1007/978-3-319-19216-1_13.

Derezinska, A. and Zaremba, Ł., 2018. Approaches to
semantic mutation of behavioral state machines in
Model-Driven Software Development. In: Proceedings
of the 2018 Federated Conference on Computer
Science and Information Systems. ACSIS, vol. 15, pp
863–866, IEEE. doi: 10.15439/2018f313.

Dominguez, E. et al., 2012. A systematic review of code
generation proposals from state machine specifications.
Information and Software Technology. Elsevier BV,
54(10), pp. 1045–1066. doi:
10.1016/j.infsof.2012.04.008.

FXU (Framework for eXecutable UML). [Online]
Available from: http://galera.ii.pw.edu.pl/~adr/FXU/
[Accessed: 2nd Jan 2019].

Harel, D., 1987. A visual formalism for complex systems.
In: Science of Computer Programming, Amsterdam,
pp. 231-274.

IBM RSA (Rational Software Architect). [Online]
Available from:
https://www.ibm.com/developerworks/downloads/r/ar
chitect [Accessed: 7th Dec 2018]

IBM RRD (Rational Rhapsody Developer). [Online]
Available from:
https://www.ibm.com/developerworks/downloads/r/rh
apsodydeveloper/ [Accessed: 7th Dec 2018]

Jia, Y. and Harman, M., 2011. An analysis and survey of
the development of mutation testing. IEEE
Transactions on Software Engineering, Institute of
Electrical and Electronics Engineers (IEEE), 37(5), pp.
649–678. doi: 10.1109/tse.2010.62.

Liddle, S. W., 2011. Model-Driven Software Development.
In: D.W. Embley, B. Thalheim, eds., Handbook of
Conceptual Modeling, Springer, pp. 17-54.

Liebel, G. et al., 2018. Model-based engineering in the
embedded systems domain: an industrial survey on the
state-of-practice. Software & Systems Modeling.
Springer Nature, 17(1), pp. 91–113. doi:
10.1007/s10270-016-0523-3.

Pilitowski, R. and Derezinska, A., 2007. Code generation
and execution framework for UML 2.0 classes and state
machines. In: T. Sobh, ed., Innovations and Advanced
Techniques in Computer and Information Sciences and
Engineering. Springer Netherlands, pp. 421–427. doi:
10.1007/978-1-4020-6268-1_75.

Prout, A. et al., 2012. Code generation for a family of
executable modelling notations. Software & Systems
Modeling. 11(2), Springer Nature, pp. 251–272. doi:
10.1007/s10270-010-0176-6.

Samek, M., 2002. Practical statecharts in C/C++: quantum
programming for embedded systems. CMP Books.

Sunitha, E. V. and Samuel, P., 2016. Object Oriented
method to implement the hierarchical and concurrent
states in UML State Chart Diagrams. In: Software
Engineering Research, Management and Applications.
Vol.654, Springer International Publishing, pp. 133–
149. doi: 10.1007/978-3-319-33903-0_10.

Trakhtenbrot, M., 2007. New mutations for evaluation of
specification and implementation levels of adequacy in

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

392

testing of Statecharts models. In: Proceedings of
Testing: Academic and Industrial Conference Practice
and Research Techniques - MUTATION (TAICPART-
MUTATION 2007). IEEE. pp. 151-160. doi:
10.1109/taic.part.2007.23.

Trakhtenbrot, M., 2010. Implementation-oriented mutation
testing of Statechart models. In: IEEE International
Conference on Software Testing Verification and
Validation Workshops (ICSTW), pp.120-125. IEEE.
doi: 10.1109/icstw.2010.55.

Trakhtenbrot, M., 2017. Mutation patterns for temporal
requirements of reactive systems. In: IEEE
International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). pp.
116- 121. IEEE. doi: 10.1109/icstw.2017.27.

UML (Unified Modelling Language), 2017. [Online]
Available from: http://www.omg.org/spec/UML,
[Accessed: 7th Dec 2018].

Mutating UML State Machine Behavior with Semantic Mutation Operators

393

