
Analyzing the Evolution of Javascript Applications

Angelos Chatzimparmpas1, Stamatia Bibi2, Ioannis Zozas2 and Andreas Kerren1
1Department of Computer Science and Media Technology, Linnaeus University, Växjö, Sweden

2Department of Informatics & Telecommunications Engineering, University of Western Macedonia, Kozani, Greece

Keywords: Software Evolution, Lehman’s Laws, JavaScript, Maintenance, Software Quality.

Abstract: Software evolution analysis can shed light on various aspects of software development and maintenance. Up

to date, there is little empirical evidence on the evolution of JavaScript (JS) applications in terms of

maintainability and changeability, even though JavaScript is among the most popular scripting languages

for front-end web applications, including IoT applications. In this study, we investigate JS applications’

quality and changeability trends over time by examining the relevant Laws of Lehman. We analyzed over

7,500 releases of JS applications and reached some interesting conclusions. The results show that JS

applications continuously change and grow, there are no clear signs of quality degradation while the

complexity remains the same over time, despite the fact that the understandability of the code deteriorates.

1 INTRODUCTION

In the past decade, the developers’ interest in

dynamic languages, such as JavaScript, Python, and

Ruby has resurged, a fact confirmed by the growth

and penetration of the languages (Amanatidis and

Chatzigeorgiou, 2016). Undoubtedly, JavaScript (JS)

is today among the most popular programming

languages as according to GitHub statistics1, it was

the most active language in 2017.

JS is a high-level dynamic, object-based, multi-

paradigm, interpreted, and weakly typed pro-

gramming language (Diakopoulos and Cass, 2017).

The majority of websites are written in JS, and all

current web browsers have a built-in JS engine to

support without needing plug-ins (Diakopoulos and

Cass, 2017). Additionally JS has already started to

support the emerging needs of new types of

applications for controlling elements in the physical

world within the context of IoT. Despite this, there is

little knowledge today regarding the maintenance

and evolution of JS applications in terms of quality

and changeability.

The objective of this study is to explore the

evolution of JS applications over time, in terms of

quality and changeability. Software evolution refers

1 https://madnight.GitHub.io/githut/#/pull_requests/2017/

[Accessed: 15 February 2019]

to maintaining both software performance and

usefulness across time and occurs through software

development and maintenance processes (Belady

and Lehman, 1976). The motivation behind the need

to analyze the evolution in terms of quality and

changeability of applications developed in JS is the

fact that this language is considered to be weakly

typed (Diakopoulos and Kass, 2017). This means

that it has looser type rules, which may generate

unpredictable results during an application’s life-

cycle. In this context, we want to explore (a)

whether this fact may cause problems to the quality

of projects through time and (b) the level to which

changes are performed during the evolution of JS

applications helping towards their maintenance.

In order to assess the evolution of JS applications,

we performed an empirical study on twenty (20)

popular Open Source Software (OSS) projects

downloaded from GitHub repository and examined

the five laws of evolution as introduced by Lehman

(1996) regarding the quality and the level of changes

performed in an application. We considered

Lehman’s Laws for assessing the evolution of JS

projects, as being representative for traditional

studies of software evolution (Belady and Lehman,

1976). We followed the analysis steps firstly

demonstrated in earlier similar studies, experi-

menting with different languages (Amanatidis and

Chatzigeorgiou, 2016), (Godfrey and Tu, 2000).

Thus, we also enable the comparison with other

Chatzimparmpas, A., Bibi, S., Zozas, I. and Kerren, A.
Analyzing the Evolution of Javascript Applications.
DOI: 10.5220/0007727603590366
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 359-366
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

359

popular programming languages such as C, C++,

Java, and PHP.

The rest of the paper is organized as follows:

Section 2 provides related work overview. In

Section 3, we describe the case study design. Section

4 presents the results on twenty JS project analysis.

In Sections 5 and 6, we discuss the results and

conclude the paper.

2 RELATED WORK

Over forty years ago, Lehman’s laws have been

considered as a reference to software evolution.

Belady and Lehman (1976) were the first that on an

empirical basis studied the changes in both

complexity and size of several large programs. They

conducted a quantitative study over release versions

that summarized their three initial qualitative laws of

program evolution dynamics. This initiated a large

number of research efforts, which were introduced

by adopting a variety of metrics to test the validity

of each law.
Lawrence (1982) tested statistically the first five

of Lehman's laws before law revisions twenty years

later that included the role of process feedback

(Lehman, 1996). Gall et al. (1997) were the first to

provide a confirmation based on software release

data. Other researchers proposed different metrics

and frameworks over software evolution. Kemerer

and Slaughter (1999) conducted a longitudinal

empirical business case study, while Godfrey and Tu

(2000) analyzed data from the growth of the Linux

kernel finding linear growth in evolution. Paulson et

al. (2004) analyzed empirical data for various

systems to confirm previous software evolution

assumptions.

To this time, a growing interest in whether the

laws apply to OSS emerged (Oliveira and Almeida,

2016). Wu and Holt (2004) measured the size

evolution of two large systems confirming the first

four laws. German (2004) analyzed software trails

over a single system, demonstrating a methodology

to recover software evolution information. Neamtiu,

Foster, and Hicks (2005) mined software re-

positories of popular C systems focusing on code

function names and revealed trends, present

semantic differences, and software evolution traces.

Later Neamtiu, Xie, and Chen (2013) analyzed

official software releases to confirm Lehman's first

five laws and indicated violations. Gyimothy,

Ferenc, and Siket (2005) already proposed and

applied metrics on one project to detect fault-

proneness as a software evolution derivation and

Kim, Whitehead, and Bevan (2006) investigated

signature changes in seven projects to detect

evolution patterns using statistical correlations.

The growing interest over OSS projects

continued to emerge through a growing number of

research efforts. Herraiz et al. (2007) studied the

evolution in size of a project over time by applying

time series analysis. Fernandez-Ramil (2008)

studied the growth trend on popular libre operating

systems to contradict three of Lehman's laws,

confirming the latter five. Antoniol et al. (2007)

focused more on the role of the identifier lexicon on

overall software evolution, while Businge et al.

(2010) investigate 5 out of 8 laws confirming the

results of previous research. Grechanik et al. (2010)

investigated Java applications and expanded the law

validity by practice-at-large on Java development.

Kaur et al. (2014) researched the law applicability

on two prominent OSS C++ applications.

Amanatidis and Chatzigeorgiou (2016) analyzed

data acquired from successive versions of PHP

projects to evaluate the validity of each law by

applying primarily trend tests.

In this paper, our goal is to extend current

research efforts to evaluate the validity of Lehman’s

laws concerning JS applications.

3 CASE STUDY

The case study performed was designed following

Runeson and Höst’s (2008) guidelines. We

examined JS applications evolution from the

perspective of Lehman’s laws, which characterize

trends in quality and changes of the evolving

software systems.
Concerning the Research questions of this study,

the main goal is to explore the trends in changes and

quality of JS applications, over time, from the

perspective of Lehman’s laws of evolution. Since

our main focus is on the changes performed between

successive versions and their impact on quality, the

remaining three laws relevant to size remained out

of our scope. Therefore, we examined the following

research questions:

RQ1: Is Law I: “Continuous Change” confirmed

by JavaScript applications, as an indicator of a

trend in changes?

In this research question, we aim to see whether

JS applications actually support continuous change

and if this change is more intense or loose over the

successive releases.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

360

RQ2: Is Law II: “Increasing complexity”

confirmed by JavaScript applications, as an

indicator of a trend in quality?

In this question, we will explore whether the

complexity of JS applications is constantly

increasing or whether the maintenance actions

performed are sufficient to keep complexity levels

stable.

RQ3: Is Law IV regarding “Conservation of

Organizational Stability” confirmed by JavaScript

applications, as an indicator of a trend in changes?

In this question, we will explore whether the

work produced between successive releases of JS

applications is constant.

RQ4: Is Law V regarding “Conservation of

Familiarity” confirmed by JavaScript applications,

as an indicator of a trend in changes?

In this question, we will explore whether the new

content added between successive releases of JS is

stable or present large deviations.

RQ5: Is Law VII regarding “Declining Quality”

confirmed by JavaScript applications, as an

indicator of a trend in quality?

In this research question, we aim to check if the

quality of a software system deteriorates during the

lifecycle of a software system.

Table 1: JS projects examined in the study.

Concerning the Case Study Design to explore the

evolution of JS applications, several criteria were

employed to select the JS applications, which were

included in the analysis. Initially, all JS applications

hosted in GitHub were ranked according to their

popularity. Then, we filtered the applications and

selected the ones with at least 95% of JS code, two

or more years of lifespan, and more than thirty

releases. Afterward, we chose small, medium, and

large-sized applications depending on the lines of

code (LoC) for their last release.

Table 1 presents the application complete lifespan

until August 2017, their number of releases, the

scope of each, as well as certain metrics referring to

the first and last release of each. Moreover, Table 2

presents the metrics adopted to assess the validity of

each law.

Table 2: Metrics used for each law.

The final set of metrics was collected with the

following process (a) by initially mining the

webpage of GitHub projects to get general project

information using a parser tool developed by the

first author and (b) downloading all successive

releases from git for each project in order to derive

source code metrics with the help of JSClassFinder

or SonarQube.

Concerning the Data Analysis, we employed

statistical hypothesis testing to check whether the

five laws of Lehman are confirmed or not. We

applied the Mann-Kendall (M-K test) trend test,

which is a nonparametric test used to identify a trend

2 https://blog.sonarsource.com/cognitive-complexity-because-

testability-understandability [Accessed: 15 February 2019]

Name Releases First Release Last Release

Date Size Date Size

Lodash 380 2012 78,559 2017 3,541
Material-UI 161 2014 2,649 2017 3,627

Dropzone 97 2012 947 2017 3,751

Bower 102 2012 5,663 2017 4,559
WebTorrent 257 2013 592 2017 4,639

Yarn 110 2016 1,455 2017 5,372

Q 65 2010 568 2014 6,768

Cropper 52 2013 7,076 2017 19,477
Video.js 327 2014 5,791 2017 19,552

Jasmine 58 2009 9,940 2017 20,045

Medium-Editor 150 2013 2,116 2017 20,709
Hexo 120 2012 55,186 2017 24,826

Webpack 253 2013 15,300 2017 42,404
Chart.js 37 2013 4,787 2017 44,925

JSHint 66 2011 199,130 2017 66,579

PDF.js 44 2011 40,996 2017 76,238

Vue 207 2013 12,840 2017 89,095
Hyper 42 2016 5,222 2017 92,988

OpenLayers 161 2006 7,354 2017 102,097

ESLint 171 2013 15,264 2017 234,324

Law Property Metric Description

I Changes

Days Between

Releases

Recent release date –

Previous release date.

Lines of Code
Lines of Code of the release
(excluding comments).

II Quality

Cyclomatic

Complexity

Cyclomatic Complexity

Number (total code paths or

splits in flow)/Lines of Code.

Cognitive

Complexity

A measure of the relative

understandability of methods,

calculated by SonarQube2.

IV Changes

Maintenance

Effort

Incremental Changes/Days

Between Releases.

of Commits Project commits/releases.

V Changes

Incremental

Changes

Number of functions added/
/modified/removed.

Number of

new Functions

Number of new

functions/releases.

VII

Quality

Comment Rate
Comments/(Lines of Code +

Comments) %.

Maintainability

The ratio between the cost to

develop and cost to fix

potential bugs found in a
release. It is calculated by

SonarQube based on the

Lehman’s (1996) technical
debt concept.

Analyzing the Evolution of Javascript Applications

361

in a time series. The Mann-Kendall test explores the

following hypotheses in the context of this study:

H0: The null hypothesis H0 is that there is no

trend supported by the software data analyzed, so the

relevant law cannot either be confirmed or

contradicted.

H1: The non-null hypothesis Η1 refers to the

alternative hypotheses that there is a negative, non-

null, or positive trend regarding the relevant Law.

The "p-value" is automatically generated to

distinguish the two hypotheses. A value less than

0.05 indicates that there is a trend exhibiting the

dependent variable and vice versa for a value greater

than 0.05. The threshold of 0.05 is common practice

(Garg et al., 1998) when deciding upon a hypothesis

(Sen, 1968).

In the case where the null hypothesis is rejected,

we calculated the Sen’s estimator (Sen, 1968) value

to assess the slope of the fitted trendline. Based upon

Sen’s slope estimator, we can draw a conclusion

related to the trend that a variable exhibits and

statistically confirm or not the relevant law. In the

case where the null hypothesis is not rejected for the

majority of projects, we plotted the relevant metrics

in subsequent releases of projects that do not present

a trend, so as to allow the visual inspection of their

evolution through time.

4 RESULTS

In this section, we present the results of the trend

analysis performed to confirm or contradict the

Lehman's law hypothesis on software evolution. The

results are presented in Tables 3 to 7. For each

examined metric, we can see the results of Mann

Kendall trend test in the form of the p-value and also

the slope value (in the case of a trend), which is

accompanied by a trend arrow sign that indicates

either a positive trend (meaning increase over time)

or a negative trend (indicates decrease over time).

4.1 Law I: Continuing Change

To obtain insights on the 1st law of Lehman, we have

statistically tested two metrics the Lines of Code

(LoC) and the Days Between Releases (DBR).

LoC is an indicator of the changes performed

between successive releases. In Table 3, we observe

that LoC presents a positive trend in almost every

application, which leads to the confirmation of the

law. Also, the positive trend implies that the changes

performed in successive releases are increased over

time may be due to the need to add new

functionalities. The second metric we tested is DBR.

A positive trend in DBR implies that the number of

days elapsed between successive releases tends to

increase as time passes by, leading to the conclusion

that new software releases are published more

rarely. As we can observe in Table 3, in most of the

applications there is no statistical evidence for the

presence or the absence of a distinct trend. To

visually investigate the evolution of DBR, we

plotted a chart for the projects with the p-value

greater than 0.05 (Figure 1) that presents the DBR

metric in successive releases. The chart has lots of

fluctuations, a fact that strengthens the assumptions

that almost all JS projects change over time,

presenting though, an unknown rate of change. In

conclusion, Law I is confirmed statistically and

visually confirmed, by taking into consideration the

LoC metric results and the DBR metric plots. We

can say that JS applications continuously change,

but the rate of change is unknown.

Table 3: RQ1 - trend analysis results.

Figure 1: DBR for successive releases of JS applications

with no trend.

Law I Continuing Change

Program LoC DBR
 p Slope p Slope

Lodash 0.116 <10-4 -

Material-UI < 10-4 28.27↑ <10-4 -0.03↓
Dropzone < 10-4 7.397↑ 0.001 0.05↑

Bower < 10-4 7.824↑ 0.051

WebTorrent < 10-4 2.169↑ 0.105
Yarn < 10-4 2.268↑ 0.141

Q < 10-4 31.72↑ 0.001 0.7↑

Cropper < 10-4 6.417↑ 0.074
Video.js < 10-4 22.97↑ 0.377

Jasmine < 10-4 31.72↑ 0.375

Medium-Editor < 10-4 20.63↑ 0.088
Hexo < 10-4 12.88↑ <10-4 0.09↑

Webpack < 10-4 13.33↑ 0.001 0.01↑
Chart.js < 10-4 38.63↑ 0.990

JSHint < 10-4 6.000↑ 0.022 0.4↑

PDF.js < 10-4 12.09↑ 0.328
Vue < 10-4 31.72↑ 0.848

Hyper < 10-4 104.9↑ 0.297

OpenLayers < 10-4 21.49↑ 0.246
ESLint < 10-4 122.4↑ 0.665

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

362

4.2 Law II: Increasing Complexity

To check the 2nd law, we statistically test two

metrics the Cyclomatic Complexity metric and the

Cognitive Complexity metric. The Cyclomatic

Complexity is an indicator of the source code

complexity and is mainly used for measuring the

testability of a software method. As we can observe

in Table 4, no statistical trend is found in seventeen

applications. The absence of a trend is a strong

indicator that Cyclomatic Complexity remains at the

same levels as time passes by, a fact that weakens

the validity of Law II. The Cognitive Complexity is

an indicator of the effort required to understand a

method and is a measure of the understandability of

a software method. As we can observe in Table 5, in

the majority of applications there is a positive trend.

That means Cognitive Complexity increases as time

passes by, a fact that strengthens the validity of Law

II.

Table 4: RQ2 - trend analysis results.

In conclusion, we can say that the Complexity

metric of JS applications remains the same in terms

of testability, but it increases in terms of under-

standability. Maybe this could be explained due to

the maintenance effort from the developers to keep

low the complexity level of the JS software from the

perspective of code control flow, a fact that on the

other hand reduces the understandability of the code.

Therefore, Law II is statistically confirmed with

respect to the understandability of the appli-

cation but not confirmed in terms of testability.

4.3 Law IV: Conservation of
Organizational Stability

To check the 4th law, the Maintenance Effort and

the Number of Commits (NoC) metrics are

statistically tested. In Table 5 for the Maintenance

Effort, we can observe that in seventeen applications

we have not any slope, so there is no evidence of a

statistical trend. Figure 2 presents the Maintenance

Effort metric evolution in subsequent releases for the

applications with p-values greater than 0.05.

Table 5: RQ3 - trend analysis results.

Law IV Conservation of Organizational Stability

Program Maintenance Effort Number of Commits

 p Slope p Slope

Lodash 0.669 <10-4 -0.03↓

Material-UI 0.401 0.790

Dropzone 0.775 <10-4 -8.86↓
Bower 0.173 <10-4 -21.91↓

WebTorrent 0.076 <10-4 -0.2↓

Yarn 0.925 <10-4 -15.14↓
Q 0.020 -0.07↓ <10-4 -12.7↓

Cropper 0.825 <10-4 -18.9↓

Video.js 1.000 0.015 -4.2↓
Jasmine 0.035 0.14↑ <10-4 -4.6↓

Medium-Editor 0.594 <10-4 -0.54↓

Hexo 0.379 0.935
Webpack 0.018 -0.05↓ <10-4 -8.03↓

Chart.js 0.958 0.564

JSHint 0.108 < 10-4 -3.5↓
PDF.js 0.476 <10-4 -94.61

Vue 0.163 <10-4 -

Hyper 0.634 <10-4 -5.25↓
OpenLayers 0.268 <10-4 -69.36↓

ESLint 0.384 <10-4 -38.0↓

In Figure 2, we can observe that the Maintenance

Effort is stable apart from a few exceptions that

present extreme effort values during their evolution

that deviate from the usual values. Regarding the

NoC variable, we observe that the majority of

applications present a negative slope, indicating that

the number of commits is decreased as developers

publish new releases. This law combines the activity

and the work rate in a fraction (activity/work rate).

Figure 2: Maintenance effort for successive releases of JS

applications with no trend.

-3000

-1000

1000

3000

5000

7000

9000

373533312927252321191715131197531

M
A

IN
T

E
N

A
N

C
E

 E
F

F
O

R
T

P-VALUE > 0.05

Lodash

Material-UI

Dropzone

Bower

WebTorrent

Yarn

Cropper

Video.js

Medium-Editor

Hexo

Chart.js

JSHint

PDF.js

Vue

Hyper

OpenLayers

ESLint

Law II Increasing Complexity

Program Cyclomatic

Complexity

Cognitive Complexity

 p Slope p Slope

Lodash < 10-4 0.941
Material-UI 0.0 0.107

Dropzone < 10-4 <10-4 3.957↑

Bower < 10-4 0.01↑ <10-4 0.681↑
Web Torrent 0.621 0.426

Yarn 0.034 -0.01↓ <10-4 0.268↑

Q < 10-4 <10-4 1.233↑
Cropper 0.008 <10-4 2.724↑

Video.js 0.724 <10-4 6.712↑

Jasmine < 10-4 <10-4 0.270↑
Medium-

Editor

< 10-4 <10-4 3.548↑

Hexo < 10-4 < 10-4 5.109↑
Webpack < 10-4 < 10-4 2.603↑

Chart.js 0.002 < 10-4 7.096↑

JSHint 0.048 < 10-4 3.292↑
PDF.js < 10-4 0.01↑ < 10-4 4.123↑

Vue < 10-4 < 10-4 11.62↑

Hyper 0.174 < 10-4 7.727↑
OpenLayers < 10-4 < 10-4 2.488↑

ESLint 0.021 < 10-4 6.500↑

Analyzing the Evolution of Javascript Applications

363

As a proxy for an activity, we consider the

Number of Commits metric and as a proxy for work

rate, we consider the maintenance effort metric.

Maintenance effort metric shows the amount of

effort contributed to a particular release. In JS

applications, we observe that in the majority of cases

the activity declines while the work rate remains

stable. This causes the decrease of the entire

fraction, a fact that is in contrast to what the law

proposes. So, the maintenance effort remains the

same in general despite the fact that the commits are

reduced over time. In conclusion, Law IV can be

confirmed with respect to the work rate but not

concerning the global activity.

4.4 Law V: Conservation of Familiarity

To check the 5th law, the Number of Functions

(NoF) and the Incremental Changes (IC) metrics

are statistically tested. NoF represents the number of

new functions added in a release and is an indicator

of the cumulative changes performed between

successive releases. In Table 6, we observe that NoF

presents a positive trend in almost every application,

which leads to the conclusion that during the

evolution of a JS application the rate in which new

functions are inserted tend to increase. Taking into

consideration this fact, we cannot confirm the law.

Regarding IC metric we see in Table 6, that for

eighteen applications we have not any slope, so no

clue that proves the existence of a statistical trend.

To visually examine the evolution of IC metric we

plotted the projects with the p-value greater than

0.05 for further investigation in Figure 3.

Table 6: RQ4 - trend analysis results.

The fluctuations of the plot indicate that some

projects have a positive trend which implies that the

number of functions added/modified/removed

increases and for the others, this is not the case. It

seems that there are breaking points in the lifecycle

of JS applications were a great amount of

functionality is added, or the existing code base is

refactored as we can observe from various releases

that present large deviations in terms of changes. In

conclusion, Law V is not confirmed.

Figure 3: Incremental changes for successive releases of

JS projects with no trend.

4.5 Law VII: Declining Quality

To check the 7th law, the Comment Rate (CR) and

Maintainability metrics are statistically tested. For

the CR variable, as we observe in Table 7,

approximately half of the projects have a negative

trend. The CR metric seems to gradually decrease in

new releases but still based on the slope values the

level of decrease is too small.

Table 7: RQ5 - trend analysis results.

Law VII Declining Quality

Program Comment Rate Maintainability

 p Slope p Slope

Lodash 0.003 -0.04↓ 0.0 -0.03↓

Material-UI <10-4 0.01↑ <10-4 -0.01↓

Dropzone <10-4 -0.12↓ 0.623
Bower 0.024 0.02↑ <10-4 -0.01↓

WebTorrent <10-4 0.09↑ <10-4 0.02↑

Yarn <10-4 -0.02↓ <10-4 0.01↑
Q 0.385 0.001 -0.11↓

Cropper 0.121 0.071

Video.js 0.186 0.724
Jasmine 0.003 0.05↑ 0.571

MediumEditor <10-4 -0.02↓ 0.0

Hexo <10-4 0.02↑ <10-4 -0.01↓

Webpack <10-4 -0.04↓ 0.118

Chart.js 0.012 -0.08↓ <10-4 -0.01↓

Jhint 0.531 0.249
PDF.js 0.513 0.368

Vue <10-4 -0.05↓ <10-4 0.01↑

Hyper 0.001 -0.07↓ 0.252
OpenLayers <10-4 -0.06↓ 0.583

ESLint 0.602 0.196

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

373533312927252321191715131197531

IN
C

R
E

M
E

N
T

A
L

 C
H

A
N

G
E

S

P-VALUE > 0.05

Lodash

Dropzone

Bower

WebTorrent

Yarn

Cropper

Video.js

Jasmine

Medium-Editor

Hexo

Webpack

Chart.js

JSHint

PDF.js

Vue

Hyper

OpenLayers

ESLint

Law V Conservation of Familiarity

Program NoF Incremental Changes

 p Slope p Slope

Lodash < 10-4 -2.01↓ 0.114

Material-UI < 10-4 17.96↑ 0.041 0.16↑
Dropzone < 10-4 7.98↑ 0.677

Bower < 10-4 15.96↑ 0.774

WebTorrent < 10-4 2.65↑ 0.067
Yarn < 10-4 0.95↑ 0.867

Q < 10-4 24.21↑ 0.042 -0.94↓

Cropper < 10-4 7.28↑ 0.705
Video.js < 10-4 12.42↑ 0.390

Jasmine < 10-4 30.0↑ 0.872

Medium-Editor < 10-4 12.46↑ 0.978

Hexo < 10-4 30.33↑ 0.184

Webpack < 10-4 8.2↑ 0.185

Chart.js < 10-4 74.44↑ 0.340
Jhint < 10-4 11.58↑ 0.438

PDF.js < 10-4 55.45↑ 0.085

Vue < 10-4 15.83↑ 0.577
Hyper < 10-4 6.43↑ 0.392

OpenLayers < 10-4 61.96↑ 0.287

ESLint < 10-4 34.77↑ 0.729

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

364

For the Maintainability variable in eleven samples,

we have not any slope which means that there is no

indication of a statistical trend. By examining each

project separately, we can identify a small decrease

in Maintainability and CR metrics, but it is

important to note that the actual slopes are pretty

low. In other words, the quality remains stable in

most of the cases. In conclusion, the results cannot

support the confirmation or not of Law VII.

5 DISCUSSION

5.1 Implications to Researchers and
Practitioners

The results of this study can be used both by

researchers and practitioners to invest their efforts in

the following areas:
Since the JS applications participating in this study

do not increase their cyclomatic complexity over

time or present signs of quality degradation, it will

be interesting for researchers to study which coding

conventions (e.g., writing small methods, using

design patterns or using micro-templates) help to

reserve or decrease complexity over time. A

comparison between applications that show signs of

increased complexity with more stable ones may

lead to some conclusions. For example, bad smells

or anti-patterns might be found to the later ones.
Additionally, researchers can also work on cost

and quality models for estimating the effort required

to maintain JS applications and assessing the quality

level of subsequent releases. In that context, certain

language-specific quality metrics (e.g., null pointer

dereferences, deprecated functions) along with usage

metrics (e.g., number of users of the application,

types of browsers, types of devices) can help

towards quantifying maintenance activities and

effectively managing subsequent releases.

The results show to practitioners that even

though JS applications continuously change their

complexity remains constant. JS applications present

several points during their lifecycle at which a

severe amount of new functionality is introduced.

This fact demonstrates that software managers

should often take large-scale maintenance actions.

At the moment in most cases, we observed the big-

bang approach, where releases are offering many

new requirements at once, an approach that can be

risky. Instead of this, the appropriate flexible

software development model should be selected to

allow the introduction of new, small scale

functionalities in short development lifecycles

launched as many small releases. Also, continuous

end-user involvement could help in that direction.

5.2 Threats to Validity

In this section, we discuss the threats to validity for

this study, based on the categorization of Runeson

and Höst (2008). Regarding Construct Validity, we

should mention that the set of metrics used to assess

the evolution of JS applications may affect the

findings. Our rationale behind selecting these

metrics was based on content and scope similarities

with other studies adopting them (Amanatidis and

Chatzigeorgiou, 2016) without denying the

evaluation of non-selected alternative metrics as

future work. Regarding Internal Validity we do not

claim that the produced results form a causality

between the metrics and the various evolution

aspects, but we argue that our results indicate current

trends. Concerning reliability, we believe that the

replication of our research is safe and the overall

reliability is ensured. The process that has been

followed in this study has been thoroughly

documented in the relevant section, so as to be easily

reproduced by any interested researcher. The

structural metrics calculation and the overall

extraction of the defined data set were performed

with the use of a widely used research tool

(SonarQube). Concerning the external validity and

in particular the generalizability supposition,

changes in the findings might occur if we altered

samples of OSS projects or closed source JS projects

were studied. A future replication of this study, on

larger JS project data sets and closed source projects,

would be valuable to verify these findings.

6 CONCLUSIONS

In this study, we have explored the evolution of

twenty popular OSS JS applications in terms of

changes and quality by examining whether the

relevant laws of Lehman can be confirmed. In total,

we have recorded evolution metrics of more than

7,500 releases of JS projects and performed trend

tests to verify the applicability of the laws. The

results show that JS applications continuously

change and grow, there are no clear signs of quality

degradation, while the complexity remains the same

over time, despite the fact that the understandability

of the code deteriorates.

Analyzing the Evolution of Javascript Applications

365

ACKNOWLEDGEMENTS

This research was co-funded by the European Union

and Greek national funds through the Operational

Program Competitiveness, Entrepreneurship, and

Innovation, grant number T1EDK-04873, project

"Drone innovation in Saffron Agriculture," DIAS.

REFERENCES

Amanatidis, T., Chatzigeorgiou, A., 2016. Studying the

evolution of PHP web applications. In Information

and Software Technology, 72, 48-67.

Antoniol, G., Gueheneuc, Y. G., Merlo, E., Tonella, P.,

2007. Mining the lexicon used by programmers during

software evolution. In IEEE International Conference

on Software Maintenance, Paris, 14-23. IEEE.

Belady, L. A., Lehman, M. M., 1976. A model of large

program development. IBM Systems journal, 15(3),

225-252.

Businge, J., Serebrenik, A., van den Brand, M., 2010. An

empirical study of the evolution of Eclipse third-party

plug-ins. In Proceedings of the Joint ERCIM

Workshop on Software Evolution (EVOL) and

International Workshop on Principles of Software

Evolution (IWPSE), 63-72. ACM.

Diakopoulos N., Cass S., 2017. IEEE Spectrum

Interactive: the top programming languages 2017.

https://bit.ly/2wWgUaB [Accessed: 15 February 2019]

Fernandez-Ramil, J., Lozano, A., Wermelinger, M., and

Capiluppi, A., 2008. Empirical studies of open source

evolution. In Software evolution, Berlin, 263-288.

SPRINGER.

 Gall, H., Jazayeri, M., Klosch, R. R., Trausmuth, G.,

1997, October. Software evolution observations based

on product release history. In Proceedings

International Conference on Software Maintenance,

160-166. IEEE.

Garg, S., Van Moorsel, A., Vaidyanathan, K., Trivedi, K.

S., 1998. A methodology for detection and estimation

of software aging. In Proceedings of the Ninth

International Symposium on Software Reliability

Engineering, 283-292. IEEE.

German, D. M., 2004. Using software trails to reconstruct

the evolution of software. In Journal of Software

Maintenance and Evolution: Research and

Practice, 16(6), 367-384.
Godfrey M. W., Tu Q., 2000. Evolution in open source

software: a case study. In Proceedings of the

International Conference on Software Maintenance,

San Jose, 131-142.

Grechanik, M., McMillan, C., DeFerrari, L., Comi, M.,

Crespi, S., Poshyvanyk, D., Fu, C., Xie, Qing, Ghezzi,

C., 2010. An empirical investigation into a large-scale

Java open source code repository. In Proceedings of

the 2010 International Symposium on Empirical

Software Engineering and Measurement, 11. ACM.

Gyimothy, T., Ferenc, R., Siket, I., 2005. Empirical

validation of object-oriented metrics on open source

software for fault prediction. IEEE Transactions on

Software Engineering, 31(10), 897-910.

Herraiz, I., Gonzalez-Barahona, J. M., Robles, G.,

German, D. M., 2007. On the prediction of the

evolution of libre software projects. In IEEE

International Conference on Software Maintenance,

405-414. IEEE.

Kaur, T., Ratti, N., Kaur, P., 2014. Applicability of

Lehman laws on open source evolution: a case

study. In International Journal of Computer

Applications, 93(18), 0975-8887.

Kemerer, C. F., Slaughter, S., 1999. An empirical

approach to studying software evolution. In IEEE

Transactions on Software Engineering, 25(4), 493-

509.

Kim, S., Whitehead, E. J., 2006. Properties of signature

change patterns. In IEEE International Conference

on Software Maintenance, 4-13. IEEE.

Lawrence, M. J., 1982. An examination of evolution

dynamics. In Proceedings of the 6th International

Conference on Software Engineering, 188-196. IEEE

Computer Society Press.

Lehman, M. M., 1996. Laws of software evolution

revisited. In European Workshop on Software Process

Technology (pp. 108-124), Berlin. SPRINGER.

Neamtiu, I., Foster, J. S., Hicks, M., 2005. Understanding

source code evolution using abstract syntax tree

matching. In ACM SIGSOFT Software Engineering

Notes, 30(4), 1-5. ACM.

Neamtiu, I., Xie, G., Chen, J., 2013. Towards a better

understanding of software evolution: an empirical

study on open source software. In Journal of Software:

Evolution and Process, 25(3), 193-218.

Oliveira R. P., Almeida E. S., 2016. Evaluating Lehman's

laws of software evolution for software product Lines.

In IEEE Software, 33(3), 90-93.

Paulson, J. W., Succi, G., Eberlein, A., 2004. An empirical

study of open-source and closed-source software

products. In IEEE Transactions on Software

Engineering, (4), 246-256.

Runeson, P., Höst, M., 2009. Guidelines for conducting

and reporting case study research in software

engineering. 8th International Workshop on Principles

of Software Evolution (IWPSE'05), Lisbon, 14(2), 131.

Sen, P. K., 1968. Estimates of the regression coefficient

based on Kendall's tau. In Journal of the American

Statistical Association, 63(324), 1379-1389.

Wu, J., Holt, R. C., 2004. Linker-based program extraction

and its uses in studying software evolution.

In Proceedings of the International Workshop on

Foundations of Unanticipated Software Evolution, 1-

15.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

366

