
Service-oriented Mogramming with SML and SORCER 

Michael Sobolewski 
Air Force Research Laboratory, WPAFB, Ohio 45433 Polish Japanese Academy of IT, 02-008 Warsaw, Poland 

Keywords: Service Orientation, Service Consumers, Service Providers, Multifidelities, Multityping, Service 

Mogramming Language (SML), Emergent Systems, SORCER. 

Abstract: Service-oriented Mogramming Language (SML) is designed for service-orientation as UML was considered 

for object-orientation. SML is an executable language in the SORCER platform based on service abstraction 

(everything is a service) and three pillars of service-orientation: context awareness (contexting), 

multifidelity, and multityping. Context awareness is related to parametric polymorphism, multifidelity is 

related to ad hoc polymorphism, and multityping is a form of net-centric type polymorphism. SML allows 

for defining polymorphic service systems that can reconfigure and morph service federations at runtime. In 

this paper the basic concepts of SML are presented with three ted design patterns of service federations. Its 

runtime environment is introduced with the focus on the presented service abstractions.  

1 INTRODUCTION 

Service-oriented architecture (SOA) emerged as an 

approach to combat complexity and challenges of 

large monolithic applications by offering 

collaborations of replaceable functionalities by 

remote/local component services with one another at 

runtime, as long as the semantics of the component 

service is the same. However, despite many efforts, 

there is a lack of good consensus on semantics of a 

service and how to do true SOA well. The true SOA 

architecture should provide the clear answer to the 

question: How a service consumer can consume or 

compose some functionality from provider services, 

while it doesn’t know where service providers, 

implementing that functionality, are or even how to 

communicate with them.  

Many people think they are doing or talking about 

SOA, but most of the time they’re really doing point-

to-point integration projects with APIs, web services, 

or even just point-to-point XML (REST). The reason 

why this approach is deficient is because service 

consumers should never communicate directly to 

service providers. First, the main concept of SOA is 

that we want to deal with frequent and unpredictable 

change by constructing an architecture that loosely-

couples the providers of capability from the 

consumers of capability. It is not possible to have 

direct reliable communication if continuous 

variability exists in the network and provided service 

capabilities evolve over time. Second, if we are 

relying on a black-box middleware and often-

proprietary technology to manage service 

communication differences we will simply shift all 

the complexity to end-points of services and 

increasingly more complex, expensive, and brittle 

middle point. Reworked middleware, what often is 

done and named as SOA, isn’t the solution for a 

dynamic net-centric service communication.  

There are several trends that are forcing system 

architectures to evolve due to complexity of problems 

being solved presently (Sobolewski, 2015). Users 

expect a rich, interactive and dynamic experience on a 

wide variety of friendly user agents and highly 

modular and dynamic backend systems. Systems must 

be highly scalable, highly available and run locally or 

remotely, or both. Organizations often want to 

frequently roll out updates, even multiple times a day. 

Consequently, it’s no longer adequate to develop 

simple, monolithic applications. In a dynamic system 

when its backend is morphing constantly to emergent 

solution (Aziz-Alaoui and Bertelle, 2006), the user 

agent has to support emergent nature of its backend. 

Emergent system means net-centric to refer to 

participating in distributed problem solving as a part 

of a continuously evolving complex community of 

people, devices, information and services 

interconnected by a communication network to 

achieve optimal benefit of resources and better 

synchronization of flowback events and their 

consequences to the users. Emergent system means 

Sobolewski, M.
Service-oriented Mogramming with SML and SORCER.
DOI: 10.5220/0007717903310338
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 331-338
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

331



 

also service-oriented (SO) and scalable with multiple 

computational fidelities of services so your 

communication network can be scaled up and down 

dynamically, from a single computer to a large 

number of computers by adjusting fidelities of 

collaborating service (Sobolewski, 2017). 

Computer-aided engineering is the broad usage of 

heterogeneous computer software for both standalone 

and distributed systems to aid in engineering complex 

analyses and optimization tasks. Multidisciplinary 

Analysis and Design Optimization (MADO) is a 

domain of research that studies the application of 

numerical analysis and optimization techniques for 

the design of dynamic systems of systems involving 

multiple coupled disciplines. The formulation of 

MADO problems has become increasingly complex 

as the number of disciplines and design variables 

included in typical studies has grown from a few 

dozen to thousands when applying high-fidelity 

physics-based modeling early in the design process 

(Kolonay, 2014). Therefore, the complex MADO 

domains have been used for studying the presented 

true service-orientation. First in the FIPER project 

funded by NIST ($21.5 million) at the beginning of 

this millennium (Sobolewski, 2002) then continued at 

the SORCER/TTU Laboratory (SORCER/TTU 

Projects, n.d.; Sobolewski, 2010), and maturing for 

real world aerospace applications at the 

Multidisciplinary Science and Technology Center, 

AFRL/WPAFB (Burton, Alyanak and Kolonay, 2012; 

Kolonay, 2014; Sobolewski, 2014, 2017).  

The remainder of this paper is organized as 

follows: Section 2 describes SML service semantics; 

Section 3 describes the basic syntax and semantics of 

SML; Section 4 relates SML to the OO 

implementation in SORCER; then we conclude with 

final remarks and comments. 

2 SERVICE SEMANTICS 

Service semantics can be either declarative, 

imperative, or OO. A blend of all programming 

paradigms should be supported by SO languages 

intended for solving complex problems and building 

heterogeneous SO systems. Therefore, component 

services should be expressed using adequate 

programming styles. Each programming paradigm 

introduces distinguishing principles of its 

programming model but also depends on its lower 

level-supporting paradigm. Therefore, the pillars of 

SO programming introduced in this paper are layered 

on pillars of OO, structured, and functional 

programming. The pillars of true SO programming 

are focused on contexting, multifidelity, and 

multityping for frontend and backend services. 

A service consumer is a composition of frontend 

request services and a service provider is an 

implementation of service types (interface types) 

using subroutines as shown in Fig. 1. A consumer is 

expressed in a SO language but a provider is 

actualized as the OO remote/local counterpart 

implementing multiple service types. Frontend 

services are references to backend services. Provider 

services are service specifications – contracts but 

service providers are implementations of contracts. A 

federated request service, called a federal mogram 

(Sobolewski, 2017), corresponds to a union of service 

mograms such that each component mogram 

(exertion or model) represents governance for own 

collaboration of service providers. A federated 

collection of cooperating collaborations defined by a 

federal mogram is called a service federation. Service 

federalism is a system of federal service governance 

in which constituent governances (component 

mograms) share governing power with the central 

governance (parent mogram) to utilize federated 

collaborations of service providers and subroutines as 

a service federation. The rules of federal governance 

are realized by a SO operating system (a kind of 

federal government). The main purpose of the SO 

operating system is to satisfy interests of service 

consumers and to fulfill their needs using capabilities 

of service federations. 

Mograms are structured from elementary request 

services (entries and tasks) and other mograms. 

Entries and tasks depend on operation services called 

evaluators and signatures, respectively. Entries use 

various types of subroutine services, called 

evaluators, to invoke subroutines. A signature is a 

reference to a remote/local operation of service 

provider. The unique signature-based architecture is 

about both request service configuration complexity 

and execution complexity that allows treating local 

and remote service providers implementing 

subroutines uniformly at various levels of granularity 

and fidelity. When dealing with both complexities, 

you have a case to distribute services, otherwise 

create a modular monolith with locally executable 

modules as local services. Later, when complexity of 

the system becomes unmanageable you can deploy 

almost instantly the existing local service providers as 

network services on as-needed basis, and then run 

changed services of the original monolith in the 

network. In SORCER that is done by changing the 

service type of signatures from class to interface, or 

just selecting the remote service fidelity. Service 

providers never communicate directly with each other  

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

332



 

 

Figure 1: The service semantics in SML. 

in SORCER. For executing mograms its operating 

system creates communication networks of service 

federations at runtime, as its dynamic net-centric 

processor. 

A federated request service – federal mogram – is 

an expression of a service federation by one of the 

three service governance patterns: 

1. Entry Model – is a declarative expression of 

interrelated multiple higher-order entries 

(responses) composed functionally of dependent 

service entries in the model. 

2. Exertion Block – is an expression of concatenated 

mograms with branching and looping exertions as 

block-structured contexting.  

3. Exertion Job – is a hieratically organized 

workflow of mograms with a control strategy for 

each federal service activity to be executed 

sequentially or in parallel, synchronously or 

asynchronously with context pipes between 

service activities. 

The presented service abstractions reduce 

representational complexity at each layer, so it makes 

easer to comprehend federalism of service-orientation 

at all three layers: service mogram (governance), SO 

operating system (federal government), and 

actualization of federal mogram (service federation). 

Therefore, the presented service abstractions expose 

the details which really matter from the user 

perspective (frontend services) and hide the other 

details regarding development and deployment of 

backend services (service types, service providers, 

and subroutines) implemented with lower level 

programming abstractions. 

The three service-oriented pillars can be summarized 

as follows: 

Contexting allows for a mogram to be specified 

generically, so it can handle encapsulated data 

uniformly with subtypes of contexts and data types of 

entries to be specified by service providers. 

Contexting as the form of parametric polymorphism 

is a way to make a language more expressive with one 

primary type for inputs and outputs.  

Morphing a service federation for a given mogram 

is affected by the initial fidelities selected by the user, 

input service contexts, and subsequent intermediate 

results obtained from service providers. Morphers 

associated with the mogram update fidelities using 

heuristics provided by the end user, usually closures 

dependent on the current mogram context. 

Multifidelity management is a dispatch mechanism, a 

kind of ad hoc polymorphism, in which component 

fidelities of the mogram are selectable at runtime. 

Service multityping as applied to service providers 

is a form of subtype polymorphism with the goal to 

find a remote instance of the service provider by the 

range of service types that a service provider may 

implement and register for lookup. It also allows a 

request service to call on any implemented service 

type. With respect to a service federation to be 

provisioned, multi-multityping specifies which 

service providers have to be actualized to complement 

existing service providers in the network.  

3 INTRODUCTION TO SML 

The presented approach to service-orientation is based 

on two abstract service categories (see Fig. 1): 

frontend services (operation services and request 

services) and backend services (subroutines, 

providers, and service federations) with three pillars 

of service-orientation: contexting, multifidelity, and 

multityping that all together constitute the Meta-

Service Facility (MSF) by analogy to MOF used to 

specify UML (The Meta-Object Facility 

Specification, n.d.). Therefore MSF for SML, like 

MOF for UML, is a metamodel that specifies how the 

SML model should conform to the MSF service  

Service-oriented Mogramming with SML and SORCER

333



 

 

Figure 2: The metamodel hierarchy of MOF/MSF. 

semantics. The SML metamodeling hierarchy along 

with the UML metamodeling hierarchy is depicted in 

Fig. 2 to explain the relationship of SML (M2) to the 

object-oriented SORCER runtime (M0). 

A service model SM in SML conceptually 

corresponds to a multifidelity functional system. 

Multifidelity from the computing perspective refers to 

a computing environment with multiple fidelity levels 

for a given computing process, meaning there are 

different implementations of computing process to 

choose from. Fidelity and cost (or similarly accuracy 

and time) are positively correlated; this represents a 

fundamental trade in design.  

A multifidelity function f = (X, Y, fi(f), mFif) (see 

definition in Section 3) is declared in SM as follows: 

func f  = ent(“f”, mFif, args(“f1”, “f2”, …, “fk”)) 

where “f” is a name of the function f declared by the 

operator ent; “f1”, “f2”, …, “fk” are argument 

identifiers of f , and mFif is the multifidelity of f. By 

default a fidelity of f, fi(f), is the first realization in the 

ordered set mFif . The identifiers “f1”, “f2”, … , “fk” 

refer to other functional entries in SM. The entry f 

binds the free identifiers “f1”, “f2”, …, “fk”  to the 

corresponding entries in SM. 

The ent operator defines a generic functional 

expression declared in a service model SM. A service 

model is a collection of functional entries that form 

higher-order functional compositions – responses of 

the model. If ent declares a constant function then a 

model with all such entries is called a data context. In 

SML an entry is a higher-order function . 

A service signature in SML is an operation 

service referencing an operation of a service provider. 

It declares a type of provider tp and its operation op, 

to be invoked in the scope of a current service 

context. An association <op, tp> is called a service 

signature and is denoted in SML by sig(op, tp). A 

return value of an operation op executed by a service 

provider implementing a type tp is declared as 

follows:  

func f = ent(“f”, sig(op, tp))  

or a multifidelity service entry  

func f = ent(“f”, entFi(sig(op1, tp1), …, sig(opn, tpn)) 

where the operator entFi  declares a multifidelity of 

entry f.  

A service provider may implement multiple 

service types used to classify its instances in the 

network by its multitype. In that case a service 

provider multitype, as a list of implemented service 

types tp1, …, tps, specified in a signature is the service 

provider’s net-centric identity. Optionally a service 

provider name with additional attributes can be used 

as well. Thus, a signature s with a multitype (tp1, tp2, 

…, tps), an operation op1 of type tp1, and service name 

myService takes the following expanded form: 

 sig s = sig(op1, tp1, tp2, …, tps, 

   srvName(“myService”)) 

Note that a signature s does not refer to a 

particular instance of a service provider; its multitype 

is used for binding to an available instance at runtime. 

Multityping is used to manage complexity and 

unpredictability of the network comprised of 

replaceable remote service providers with one another 

at runtime, as long as the multitype semantics of the 

service providers is the same.  

The network-centric semantics of SML is based on 

the concept of multitype subtyping. If the type tp1 is 

of class type then the signature works as a service 

provider constructor – creates an instance at runtime 

when the service provider needs to be executed, 

otherwise SOS finds in the network a remote proxy of 

the service provider implementing the required 

multitype.  

A value entry x (constant function) in SM is 

declared by a value entry (variable) x as follows: 

 val x = val(“x”, y),  y ∊ Y 

or a multifidelity value entry 

 val x = val(“x”, entFi(val(“x1”, y1), …,  

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

334



 

 val(“xk”, yk))). 

A data context dc (of cxt type) is an unordered 

collection of val entries defined as follows: 

 cxt dc = context(val(…), …, val(…)) 

and valuation of the entry x in dc as follows: 

 Object y = value(dc, “x”)  

where “x” is a name of variable in a data context dc. 

A value of an entry x in cxt can be set to v as follows: 

 setValue(dc, “x”, v) 

A mogram mdl (of mog type) as an unordered 

collection of value entries val and multivariable 

functional entries ent is called a context model and is 

declared as follows: 

 mog mdl = model(val(…), …, ent(…), …) 

Note that multivariable functional entries of a 

model may take other functional entries as arguments 

to create higher-order functions. 

Evaluation of an entry f in a model mdl is 

declared as follows: 

 Object y = exec(mdl, “f”)  

or 

 Object y = exec(mdl, “f”, cin) 

where y ∊ Y is an output value and cin is a context 

used for substitution of value entries in mdl.  

Evaluation of a model mdl for its responses is 

declared as follows: 

 cxt cout = eval(mdl)  

or  

 cxt cout = eval(mdl, cin) 

where cout is a data context - the result of evaluation of 

response entries for an input data context cin. Model 

evaluations are defined by functional compositions of 

response entries with no explicit strategy for altering 

the functional compositions of the model. However, 

execution dependencies can be specified for entries 

that require other entries to be executed beforehand at 

runtime. 

Responses of a model (names of response entries) can 

be part of the model declaration by inlining responses 

“f1”, “f2”, … , “fk” as follows: 

response(“f1”, “f2”, …, “fk”) 

Alternatively, responses can be updated as 

required. To increase responses: 

 responseUp(mdl, “f1”, “f2”,…, “fk”) 

and to decrease responses: 

 responseDown(mdl, “f1”, “f2”,…, “fk”) 

When names of entries are absent then responseDown 

removes all responses and responseUp makes given 

output entries as additional responses of the model. 

So far, we have defined in SML, operational 

services of sig type, elementary services of ent and 

val types, and request services of context and model 

types. The following statement executes any service 

sr: 

 Object out = exec(sr, arg1,…, argn) 

where argi is an SML argument of the Arg type. For 

example, signatures, contexts, fidelities, and mograms 

are of Arg type.  

The statement executing the operation add of 

service type Adder takes the form: 

exec(sig(“add”, Adder.class), context( 

 val(“x1”, 3.0), val(“x2”, 1.0), val(“x3”, 7.0)) 

and returns 11.0 by an instance of a service provider 

found in the network that implements the interface 

Adder. Here, the signature sig(“add”, Adder.class) 

binds to an instance of service provider  - remote 

object - implementing the service type Adder. If the 

class AdderImpl implements the interface Adder then 

the execution: 

 exec(sig(“add”, AdderImpl.class), context( 

 val(“x1”, 3.0), val(“x2”, 1.0), val(“x3”, 7.0)) 

creates an instance of AdderImpl at runtime and calls 

the method add with a given context on the locally 

created instance. 

A service task is an elementary request service 

defined by a signature with a data context as follows: 

mog y = task(“y”,  sig(op, tp), context(…)) 

where “y” is a name of the task y with a given 

signature and data context.  

A multifidelity task is declared in SML as follows: 

 task(“y”, sigFi(sig(op, tp),…), context(…)) 

where the operator sigFi declares multifidelity of task 

y with the first signature as a default fidelity. A 

selected fidelity can be preselected or declared as an 

argument when executing a task or set by the fidelity 

manager of its containing mogram at runtime.  

At its heart, service-orientation is the act of 

uniform decomposition into self-contained local 

and/or remote subroutines implementations 

interconnected and replaceable at runtime. In SML 

interconnections of entries and service tasks (see Fig. 

1) are declared by a mogram that binds multifidelity 

signatures to remote/local subroutines of service 

providers/evaluators at runtime.  

In SML an exertion is a request for a 

procedural/workflow service type (Sobolewski, 

2010). A service task is an elementary service 

exertion used in composite exertions. A composite 

exertion is a collection of exertions and/or mograms 

grouped together within the scope of either block or 

job SML operators. An exertion block (service 

procedure) is a concatenation of component mograms 

along with flow-control exertions: conditional (opt, 

alt) and loop (loop) task. The SML semantics of opt, 

alt, and loop is the same as the UML operators used 

with interaction frames (combined fragments) in 

sequence diagrams. An exertion job (service 

workflow) is an object composite of component 

Service-oriented Mogramming with SML and SORCER

335



 

exertions and/or mograms, optionally with an explicit 

control strategy and service pipes for interprocess 

communication between components of the 

workflow.  

Exertions can be used as functionalities of entries 

in models and evaluated models can be used as data 

contexts in exertions. That way, either an exertion 

blended with models, or a model blended with 

exertions creates a service aggregation of models 

and/or exertions – a service mogram (model and/or 

program). The SML ent operator, in most obvious 

cases, declares a service entry of the corresponding 

subtype according to given arguments to ent. 

However, specialized SML entry operators: val, call, 

lambda, neu, srv, and svr that correspond to entry 

subtypes: value, call unit, lambda, neuron, service, 

and service; can be used as well along with new 

introduced subtypes. 

A mogram min to be executed – exerting its 

corresponding service federation is declared as 

follows: 

 mog mout = exert(min) 

An exerted mogram mout contains the result of 

execution and all net-centric information regarding 

the execution. The result operator returns the output 

context of the exerted mogram mogout as follows: 

 cxt cout = result(mout) 

The value y of variable x in cout is specified by the 

operator value as follows: 

 Object y = value(cout , “x”) 

or from the mogram directly: 

 Object y = exec(mogout, “x”) 

An evaluation result cout of a mogram min is a data 

context declared as follows: 

 cxt cout = eval(min)   

Note, that the eval operator returns an output context 

cout  but the exert operator an executed mogram mout.  

A federal mogram is a collection of interacting 

request services (entries, tasks, models, and exertions) 

that bind at runtime to a federation of subroutine 

collaborations via mogram signatures and evaluators. 

Multifidelity federations can morph during execution 

under control of the mogram morphers and theirs 

fidelity managers with the goal to return the best 

result of the evolving net-centric configuration - a 

morphing system (mogram) of systems (fidelity 

projections of mogram).  

To illustrate SML in action we refer the reader to 

the examples, in the core of the open source SORCER 

project, its multiFi branch, as described at: 

http://sorcersoft.org/project/site/ 

in the module examples, in particular a multifidelity 

test case: sml/src/test/main/java/mograms/ 

ModelMultiFidelities 

4 THE SORCER PLATFORM 

The relationship of the main SORCER types required 

to implement multifidelity services is depicted in the 

diagram in Fig. 1. Services of the Request type are 

instances of two elementary subtypes: Entry and Task, 

and the federated request type Mogram. All frontend 

entities are instances of the common Service type with 

uniform execution of local and remote services at 

runtime. Top-level types of the SORCER system refer 

to the architectural OO view of key SO concepts 

(Fi<T>, Signature, Evaluator, Request, Entry, Task, 

Mogram, and Provider) all of the common Service 

type. 

In general, a mogram is an expression of 

collaboration of remote and/or local subroutines. A 

service model is a declarative representation of 

interrelated functional entries but a service exertion is 

an imperative aggregation of component services. 

Both entries and tasks bind to subroutines via service 

evaluators and signatures, correspondingly. Therefore 

a federal mogram is a request service for a federation 

of provider and subroutine collaborations managed by 

SOS. Signatures by using service multitypes provide 

for indirect referencing of local/remote service 

providers but evaluators are called directly. A service 

consumer runs an aggregation of request services that 

bind to the hierarchically organized service 

collaborations. 

We distinguish three main categories of frontend 

services: operation, elementary, and federated 

services. From the SO point of view creation of user-

centric request services – mogramming – is the 

primary objective assuming that service providers 

implement multitypes and can be incorporated into 

service federations as subroutines bound via operation 

services at runtime. Note, that multifidelities are used 

in request services only. A mogram is a frontend 

service that hierarchically aggregates elementary 

requests (entries and tasks) that bind dynamically to 

executable subroutines of evaluators and service 

providers, correspondingly. 

Each service provider implements a multitype of 

service types. Each service type may have multiple 

implementations (provider services) in the network. 

We do not know location of service provider 

instances in the network; we require only their service 

types to be implemented. The question is, how to find 

a required implementation in the network. The answer 

is, by matching a multitype of the signature to the 

multitype of an implementation available in the 

network. To differentiae from each other, service 

providers may implement complementary service 

types, for example, tag interfaces corresponding to 

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

336



 

implementation details. Complementary types can be 

registered with primary service types, then both used 

in signatures when looking up a service provider. 

Multityping of a signature is the concept of finding a 

provider of the same multitype from redundant 

instances available in the network.  

Morph-fidelities are observables and observed by 

a fidelity manager. Therefore, the positive or negative 

feedback received from executing fidelities can be 

used to update fidelities, upstream of already executed 

services and downstream for new looked up services. 

The fidelity manager, as the observer of morph-

fidelities, updates associated morphers to reconfigure 

a mogram’s fidelity projection. Morphers associated 

with morphed fidelities form emergent properties in 

the morphing multifidelity system.  

An emergent modeling platform requires the 

ability to express a service system with a given 

fidelity projection as the instance of the multifidelity 

metasystem with multiple fidelity projections. Also, 

the computing platform requires the ability to execute 

and morph the evolving system with updated 

projections managed by the metasystem. A 

multifidelity metasystem defined in SML enables 

quick and effective communication with other team 

members and allows for evolving updates such that 

each new instance of the system is a new multifidelity 

projection of the metasystem.  

SML defines two types of multifidelities in 

mograms: select-fidelities and morph-fidelities. 

Select-fidelities allow for system reconfiguration but 

morph-fidelities allow for self-morphing the structure 

of the mogram. A system mogram, that defines the 

service federation actualized and managed by the 

SORCER operating system, is an instance of a 

metasystem – multifidelity mogram. To reconfigure 

and morph a mogram its fidelity manager uses 

projection functions and morphers. Both 

reconfiguration and morphing allow for adaptivity of 

system and system-of-systems correspondingly, when 

updates of fidelities and metafidelities are under 

control of the fidelity manager at runtime. Adaptive 

federated SO systems with morph-fidelities are SO 

emergent systems. This type of systems exhibits three 

types of adaptivities called system-of-system, system, 

and service agility (Sobolewski, 2017). Metasystem 

agility refers to system reinstantiation, system agility 

refers to updating system projections, and service 

agility refers to updating fidelities of elementary 

request services at runtime. 

 

 

 

 

5 CONCLUSIONS 

From experience in the past decades it becomes 

obvious that in computing science the common thread 

in all computing disciplines is process expression; that 

is not limited to algorithm or actualization of process 

expression by a single computer. In this paper, 

service-orientation is proposed as a class of 

distributed emergent processes with federated 

multifidelity and multityped services.  

The “everything is a service” semantics is 

introduced with federated multifidelity services – 

mograms – as SO process expressions, to be 

actualized by dynamic federations of service 

collaborations in the network. A multifidelity mogram 

is considered as a dynamic representation of a net-

centric emergent adaptive process defined by the end 

user. In SORCER, a rectified mogram, embedded into 

a service provider container, becomes a service 

provider – a frontend request becomes a backend 

provider.  

To express emergent processes consistently and 

flexibly, the actualization of SML by the SORCER 

platform is based on three pillars of services 

orientation that incorporate pillars of functional, 

structured, and object-orient programming. Request 

services are multifidelity services but provider 

services are multitype services. By multitypes of 

signatures used in mograms a multi-multitype of 

service federation is determined. Therefore, multitype 

of a signature and multi-multitype of mograms are 

classifiers of instances of service providers and 

service federations in the network, correspondingly. 

To the best of our knowledge there is no comparable 

true service-oriented system and programming 

language based the three pillars of federated service-

orientation as defined in this paper.  

Emergent systems exhibit three types of 

adaptivities called system-of-systems (metasystem), 

system, and service agilities. Metasystem agility 

refers to updating metafidelities (system 

reinstantiation), system agility refers to updating 

fidelities of a mogram (system projection), and 

service agility refers to selecting fidelity of 

elementary request services (Sobolewski 2017).  

The first rule of service-orientation: do not morph 

and do not distribute your system until you have an 

observable reason to do so. First develop the system 

with no fidelities and no remote services. Later 

introduce must-have distribution and multifidelities. 

Doing so step-by-step you will avoid the complexity 

of modeling with multifidelities and distribution all at 

the same time.  

Service-oriented Mogramming with SML and SORCER

337



 

The SORCER architectural style represents a 

federal governance of net-centric multifidelity service 

consumers expressed by mograms created by the end 

users and service providers by software developers. It 

elevates governance of federated mograms into the 

first-class elements of the SO federated process 

expression. The essence of the approach is that by 

making specific SML choices, we can obtain 

desirable dynamic properties from the SO frontend 

system we create. The SORCER platform has been 

successfully deployed and tested for design space 

exploration, parametric, and optimization 

mogramming in multiple projects at the 

Multidisciplinary Science and Technology Center 

AFRL/WPAFB (Sobolewski, 2014, 2017). 

ACKNOWLEDGEMENTS 

This effort was sponsored by the Air Force Research 

Laboratory's Multidisciplinary Science and 

Technology Center (MSTC), under the 

Collaborative Research and Development for 

Innovative Aerospace Leadership (CRDInAL) - 

Thrust 2 prime contract (FA8650-16-C-2641) to the 

University of Dayton Research Institute (UDRI). 

This paper has been approved for public release, 

case number: 88ABW-2018-4737. The effort is also 

partially supported by the Polish-Japanese Academy 

of Information Technology.  

REFERENCES 

Aziz-Alaoui, M. and Cyrille Bertelle, C. (eds) (2006) 

Emergent Properties in Natural and Artificial 

Dynamical Systems (Understanding Complex 

Systems), ISBN-13: 978-3540348221, Springer 

Burton, S.A., Alyanak, E.J., and Kolonay, R.M. (2012) 

Efficient Supersonic Air Vehicle Analysis and 

Optimization Implementation using SORCER, 12th 

AIAA Aviation Technology, Integration, and 

Operations (ATIO) Conference and 14th AIAA/ISSM 

AIAA 2012-5520  

Kleppe A. (2009) Software Language Engineering, 

Pearson Education, ISBN: 978–0–321– 55345–4 

Kolonay, R. M. and Sobolewski M. (2011) Service 

ORiented Computing EnviRonment (SORCER) for 

Large Scale, Distributed, Dynamic Fidelity 

Aeroelastic Analysis and Optimization, International 

Forum on Aeroelasticity and Structural Dynamics, 

IFASD2011, 26–30 June, Paris, France 

Kolonay, R. M. (2014) A physics-based distributed 

collaborative design process for military aerospace 

vehicle development and technology assessment, 

International Journal on Agile Systems and 

Management, Vol. 7, Nos. 3/4 

Sobolewski, M. (2002) Federated P2P Services in CE 

Environments. In Advances in Concurrent En- 

gineering, (pp. 13-22). A.A. Balkema Publishers.  

Sobolewski, M. (2010) Object-Oriented Meta- computing 

with Exertions. In A. Gunasekaran, and M. Sandhu 

(Eds.), Handbook on Busi- ness Information Systems. 

World Scientific. doi:10.1142/9789812836069_0035  

Sobolewski, M. (2014) Service oriented computing 

platform: an architectural case study. In: Ramanathan 

R, Raja K (eds) Handbook of research on architectural 

trends in service-driven computing, IGI Global, 

Hershey, pp 220-255 

Sobolewski, M. (2015) Technology Foundations. In: J. 

Stjepandić et al. (eds.) Concurrent Engineering in the 

21st Century, ISBN 978-3-319-13775-9, Springer 

International Publishing Switzerland, pp 67-99 

Sobolewski, M. (2017) Amorphous transdisciplinary 

service systems. Int. J. Agile Systems and 

Management, Vol. 10, No. 2, 2017, Int. J. Agile 

Systems and Management, Vol. 10, No. 2, 2017, pp. 

93-114  

SORCER/TTU Projects, (n.d.) Available at 

http://sorcersoft.org/theses/index.html 

(Accessed: January 3, 2019) 

SORCER Project, (n.d.) Available at 

http://sorcersoft.org/project/site/ (Accessed: January 3, 

2019) 

The MetaObject Facility Specification (n.d.) Available at 

https://www.omg.org/mof/ (Accessed: January 3, 2019) 

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

338


