
Developing and Testing Networked Software for Moving Robots

Ichiro Satoh
National Institute of Informatics, 2-1-2 Hitotsubashi Chiyoda-ku Tokyo, 101-8430, Japan

Keywords: Transport Robot, Software Testing, Networed Software, Live Migration.

Abstract: Autonomous transport robots have been widely used to carry products in manufacturing and warehousing
spaces. Such robots are smart and networked in the sense that they exchange information with stationary
servers and other robots in their visiting spaces through wireless local-area networks. Therefore, when soft-
ware running on such robots is executed with the services that the robots are connected to through networks,
including multicast protocols. To test such software, we need to execute it within the network domains of the
locations that the robots may move and connect to, because the correctness of the software depends on the
services. To solve this problem, we present a framework for emulating the physical mobility of autonomous
transport robots by the logical mobility of software designed for running on computers by using a mobile
agent technology. It enables such software to run within target network domains so that the software can lo-
cally access servers and receive multicast packets limited within the domains. It was evaluated with a practical
example in a real factory.

1 INTRODUCTION

Automated vehicles, called transport robots, have
been used to transport items in warehousing and man-
ufacturing spaces. Most of vehicles tend to be rigid
and static in the sense that they carry products among
certain locations. Therefore, it is difficult for such
robots to adapt demand-driven and dynamic environ-
ments. To solve this, modern transport robots become
smarter in the sense that they are adaptive to changes
in their environments and have the ability to exchange
information on dynamic demands and environmental
changes in their target spaces with stationary servers
and other robots. In such robotics, their software
plays a key role as it is the medium through which
their autonomy and adaptation are embodied, because
not only the hardware of such transport robots but also
their software tend to be complicated. For example,
these robots are networked with stationary servers to
exchange information with other robots via wireless
networking, e.g., Wi-Fi. Furthermore, networking for
transport robots in large warehousing and manufac-
turing spaces results in another serious problem in
testing software for transport robots in the sense that
these robots frequently connect or disconnect to mul-
tiple network domains, which may be smaller than
target warehousing and manufacturing spaces, while
they are moving in such spaces. Furthermore, such
smart transport robots often use service discovery

mechanisms to find servers available in their current
networks or notify their own presences or network ad-
dresses to servers or other robots through multicasts
UDP packets, which are limited within within the net-
work domain of the area to avoid congestion result
from multicasting packets.

The purpose of this paper is to present a frame-
work for testing software for designing to run on net-
worked transport robots. It is constructed based on
an early approach presented in our past paper (Satoh,
2015; Satoh, 2019). The goal of the previous ap-
proach enabled software designed to run on robots to
connect to or disconnect from networks, which the
robots may connect to or disconnect from as they
move. The approach deployed and executed software
at computers within the networks that target robots
may connect to like the framework proposed in this
paper. The framework presented in this paper is an
extended system of the approach with the ability for
its target software to receive and issue multicasting
packets.

We here describe the motivation of the frame-
work. A manufacturing company asked us about a
method to test software designed for running on trans-
port robots.1 As mentioned in Section 2, they are us-
ing transport robots to carry products in their facto-

1We cannot specify the name of company due to their
request.

Satoh, I.
Developing and Testing Networked Software for Moving Robots.
DOI: 10.5220/0007714503150321
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 315-321
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

315



ries. The approach aimed at testing client-side soft-
ware running on mobile computers but server-side
software are often running on transport robots. There-
fore, although the framework presented in this paper
is constructed based on the basic concept of the past
approach, it is extended with several abilities to test
software running on transport robots. Nevertheless,
we do not intend the framework to be general. The
framework aims at testing networked software, which
should be application-level in the sense that it does
not directly access low-level hardware. Conversely,
any lower-level software, e.g., OS and device drivers,
including software for directly monitoring and con-
trolling sensors and actuators are not the scope of the
framework.

The remainder of this paper is organized as fol-
lows. Section 2 describes an example scenario. Sec-
tion 3 presents a framework for emulating the phys-
ical mobility of autonomous transport robots by the
logical mobility of software designed for running on
computers. Section 4 shows demonstrates the usage
of the framework through an example and discuss
software testing with the framework. Section 5 sur-
veys related work and Section 6 provides a summary.

2 REQUIREMENTS AND
EXAMPLE SCENARIO

As mentioned in the previous section, our framework
was inspired by practical problems in our research
collaboration with a manufacturing company. The
company’s factory is shared by the company itself and
its subsidiary companies. They use modern transport
robots to carry products between the areas managed
and operated by them, where each of the areas pro-
vides its own wireless local-area network for commu-
nicating with transport robots running within it and its
local services provided only in the network. Transport
robots moves from area to area in the factory along
their itineraries as shown in Fig. 1, where the cov-
erage area of each wireless network access point is
smaller than the target manufacturing spaces. Each
network area has one or more local servers available
in the area. A service discovery mechanism in each
area periodically multicasts UDP packets within the
network domain of the area to avoid congestion due
to multicasting packets.

• When a transport robot arrives at a new area in the
factory, it can receive UDP-multicasting packets
issued from a service discovery mechanism, e.g.,
UPnP, and then it knows the network address of
the mechanism’s directory server.

• The robot connects to the server and then inform
the addresses of its services to the server.

• When a robot leaves from an area, it can no longer
disconnect to the servers that it connected to in the
area and receive any UDP packets issued from the
area’s service discovery mechanism.

Transport robots run on only the routes that have
floor-mounted induction loops for navigation. Net-
worked software running on transport robots can be
classified into two kinds of software, i.e., client-side
and server-side software, independently of transmis-
sion protocols, e.g., TCP and UDP. To test client-side
software for the mechanism on the transport robot, it
needs to be executed within each of the network do-
mains of the areas that the target robot may visit be-
cause UDP multicast packets for the mechanism can
be reached within the individual domains. When a
transport robot discovers available services within its
current network domain as a server-side, its software
needs also to be executed and multicast packets for
discovery mechanisms within each of the network do-
mains of the areas that the target robot may visit.

Some readers may think that even when the tar-
get software runs outside the areas, the target software
can receive UDP multicast packets by via a tunneling
technique. That is, we forward these packets from
the target area to the computer that runs the software.
However, there are firewalls in networks for reasons
of security and the cost of forwarding often affects
time constraints in protocols, e.g., timeouts.

3 DESIGN

When testing networked software designed to run on
transport robots, developers need to run their target
software within each of the areas that their target
robots may visit. However, it is difficult for develop-
ers to actually move or carry robots between areas and
connect them networks in a running factory. We pro-
pose a testing framework for deploying and running
software, which is designed for running on transport
robots that change their current networks according to
their movement. This framework has two key ideas.

• The first is to provide the target software with
an software-level emulation of the execution en-
vironment that the software should run.

• The second is to provide the software with an
emulation of the physical mobility of a robot by
using the software’s logical mobility, which has
been designed to run on the robot over various net-
works.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

316



Wi-Fi coverage of 
network domain 2

Wi-Fi coverage of 
network domain 3

Wi-Fi coverage of 
network domain 4

Wi-Fi coverage of 
network domain 1

Directory server
(UDP multicasting)

Directory server
(UDP multicasting)

Directory server
(UDP multicasting)

Directory server
(UDP multicasting)

 Moving robot
disconnected

to Wi-Fi domain 2

Moving robot
connected to 

directory server
in domain 1

Moving robot

Route for robot

Figure 1: Transport robot with WiFi in a factory.

Physical mobility entails the movement and re-
connection of mobile computing devices between
sub-networks, while logical mobility involves soft-
ware that migrates between hosts on sub-networks.
The emulator enables the target software to be execute
within an emulation of the target robot and to directly
connect to the external environment, such as the re-
sources and servers provided in the networks that the
robot connects to.

The first is to use host-level virtual machines,
e.g., VMWare and Hyper-V, and migrate the target
software and operating systems from virtual machine
host to another host by using a technique, called live
migration, which was often used in enterprise data
centers. The technique enabled virtual machines to
migrate to other machines to emulate the discon-
nection/reconnection of transport robots to networks
within which multicast packets for service discov-
ery mechanisms, e.g., plug-and-play protocols, are
transmitted to servers, stationary embedded comput-
ers, and other transport robots.

The second is to introduce an emulator for test-
ing software with plug-and-play protocols running on
language-level virtual machines, e.g., Java virtual ma-
chine called JVM. The emulator can carry the tar-
get software between hosts by using a mobile agent
technology. It is useful to test application-level or
middleware-level software.

The current implementation is based on the sec-
ond, because our target software is Java-based soft-
ware to communicate with stationary servers and
other robots through TCP/IP or upper layer protocols.
Therefore, the software can be tested with the sec-
ond. The first also needs high-speed networked stor-
age, storage area network (SAN), which are expensive
and used in data-centers instead of warehousing and
manufacturing spaces.

3.1 Emulator for Transport Robots

Each emulator provides the target software with not
only the internal environment of its own target robot,
but also the external environment, such as the re-
sources and servers provided in the networks that the
robot connects to. Our final goal is to emulate the
reconnection of networked robots to networks man-
aged by multicast-based management protocols by
using virtual machine migration. This paper explains
our approach based on the second, i.e., mobile agent-
based emulators, because the first and second are
common and it is simpler to implement the second
than the first. Physical mobility entails the reconnec-
tion of a robot to a network, while logical mobility
involves a mobile agent-based emulator of the robot.

• Like virtual machines, this framework performs
an emulation of its target robot.

• Depending on the reconnection of its target robot,
the mobile agent-based emulator can carry soft-
ware that should run on the computer on behalf of
the robot to networks that the robot may be moved
into and connected to.

• The emulator allows us to test and debug software
with computational resources provided through its
current network as if the software were being ex-
ecuted on the target robot when dynamically at-
tached to the network.

• The software successfully tested in the emulator
can still be run in the same way without being
modified or recompiled.

Each mobile agent is just a logical entity and must
thus be executed on a computer. Therefore, this
framework assumes that each of the sub-networks to
which the device may be moved and attached to has

Developing and Testing Networked Software for Moving Robots

317



more than one special stationary host, called an ac-
cess point host, which offers a runtime system for
executing and migrating mobile agent-based emula-
tors. Each access point host is a runtime environment
for allowing applications running in a visiting emu-
lator to connect to local servers in its network. That
is, the physical movement of a mobile computing de-
vice from one network and attachment to another is
simulated by the logical mobility of a mobile agent-
based emulator with the target applications from an
access-point computer in the source network to an-
other access-point computer in the destination net-
work. As a result, each emulator is a mobile agent,
and can thus basically not only carry the codes but
also the states of its applications to the destination, so
the carried applications can basically continue their
processes after arriving at another host as if they had
been moved with its targeted device.

The emulator delegates instruction-level emula-
tion of target robots to Java VM. In fact, each emu-
lator permits its inner software to have access to the
standard classes commonly supported by the Java vir-
tual machine as long as the target robot offers them.
Figure 2 shows the physical mobility of robots and the
logical mobility of emulators.

In addition, each emulator offers its inner software
as typical resources of the target robots. It can main-
tain a database to store files. Each file can be stored
in the database as a pair consisting of its file/directory
path name pattern and its content and provides its
target software with basic primitives for file opera-
tion, e.g., file creation, reading, writing, and deletion.
The framework provides the target software with two
states in the lifecycle of the software running on the
target robot, Networked running state and Isolated
running state:. The former enables the target soft-
ware to run within the target network domains and
can link up with servers on the network through TCP
and UDP and can send/receive UDP multicast pack-
ets. This state emulates that the robot is within cov-
erage area of one of the network domains provided
through wireless networks. The latter runs the soft-
ware but prohibits the software from communicating
with any servers on the network. This state emulates
that the robot is out any coverage areas of the network
domains.

3.2 Emulation of Mobility

The framework provides its original runtime system
for emulators by extending our existing mobile agent
platform (Satoh, 2006). When an emulator with its
target software is transferred over a network, the run-
time system transforms the state and codes of the

agent, including its software, into a bitstream defined
by Java’s JAR file format, which can support digital
signatures for authentication and then transmit the bit-
stream to the destination host. Mobile agent-based
implementation of the framework assumes that the
target software is constructed as a set of Java byte-
code, although its virtual machine-based implementa-
tion can support other software. Each emulator allows
its target software to access most network resources
from the host, e.g., java.net package.

As mentioned in the first section, in an early ver-
sion of this framework the target software must be
client-side when communicating through TCP. The
current implementation of this framework dynami-
cally inserts a packet forwarding mechanism like Mo-
bile IP (Perkins, 2002) into java.net package by
using a bytecode level modification technique, when
classes for TCP servers, e.g., ServerSocket and
InetAddress, of java.net, are invoked from the tar-
get software. When wireless network domains are
overlapped, robots may have more than one IP ad-
dress. Our modified classes for IP address, e.g.,
InetAddress, can return the IP address explicitly
specified from developers.

To operate the framework easily, we provide a
control and monitor system. It has a graphical front-
end to the framework. It allows us to monitor and op-
erate the moving emulator and its target application
by remotely displaying its graphical user-interfaces
on its screen.

4 EXPERIMENT

Our experience presented in this section about testing
of typical software for networked transport robots to
illustrate the utility of the framework. In developing
next generation automated guided vehicles for trans-
port, i.e., transport robot, we need to test transport
robots with WiFi interfaces, which tend to be used
in factories or warehouses (Fig. 4). We had the five
requirements:

• Each networked transport robot has an embedded
computer (Intel Core i5 2.4GHz) with Linux and
a WiFi interface (Fig. 3).

• The factory has eight areas, where each area has
its wireless local area network through WiFi and
provides a directory servers available within the
coverage space of its WiFi.

• Each robot discovers directory servers by receiv-
ing advertisement messages with their network
addresses periodically issued from them through
a UDP multicast-based original service discovery

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

318



Network domain A

Local servers

Local servers

Local servers

Network domain B

Network domain C

Target

software

Target

software

Target

software

Logical migration

Logical migration

Local servers

Local servers

Local servers

Remote control

server

Control message

Access
point 
host

Control message

Control message

Mobile agent

based emulator

Access point host

Target

software

VM

Network domain A

Network domain B

Network domain C

Physical migration

Figure 2: Physical mobility of robot (left) and logical mobility of emulator (right).

protocol available within the WiFi area of its cur-
rent location.

• Each robot periodically updates its location to.
The server that it connects to the server issues the
locations of other robots within the servers’ area
to other robots through a TCP/IP-based original
protocol.

• The coverage areas of the WiFi access points of
areas may overlap and there are some spaces be-
yond the coverage areas of the WiFi access points.

Figure 3: Networked transport robot.

We tested two protocols stacks for the service dis-
covery protocol through UDP multicast and TCP ses-
sion protocols between robots and directory servers
by using the proposed framework. These protocols
were constructed in Java programs so that we could
directly use a mobile agent-based emulator based
on Java VM. To test the protocol stacks running on
the client-side, i.e., robots, we customized a mobile
agent-based emulator for the target robots. The em-
ulator provided virtual I/O to control the movement

Robot

WiFi interface

Sub-network area 
(WiFi area)

Directory
server

Advertisement messags
(UDP multicast packets)

Moving

Figure 4: Communication between transport robot and di-
rectory server through WiFi.

of a robot for its target software, but carried the soft-
ware to a host within the target areas and enabled
the software to receive UDP multicast packets, which
reached within the area, and directly connected to the
servers.

The developer could instruct the emulator to mi-
grate to access-point hosts on the sub-networks of
other areas. Also, since the emulator could define
its own itinerary in areas, it could precisely trace the
movement of each robot. The emulator could carry
the target software, including the protocol stacks, to
access-point hosts in the areas. It could continue to
run the software in the local area network and per-
mitted the software to directly receive UDP multicast
packets, which servers only transmitted within the do-
mains of the local area networks.

We measured the processing overhead of the emu-
lator. The cost of migrating the emulator with its tar-
get software between two access point hosts, which
were connected through a 1 Gbps Ethernet, was 80
msec, where the access point hosts have Intel Xeon
2.8 GHz with 16 GB memory. The performance of
software running in an emulator on an access-point
host was not inferior to that of the same software run-
ning on the target robot, as long as the processing ca-

Developing and Testing Networked Software for Moving Robots

319



pability of the host was equivalent to that of the robot.

5 RELATED WORK

Testing network protocols for non-robots is typically
a manual process in which developers test the proto-
col behavior against various network conditions and
configurations so that several researchers have stud-
ied approaches to test network protocols with fo-
cus on specific aspects of protocol behavior. To
reason about the correctness of network protocols,
prior work has employed a variety of program anal-
ysis techniques, such as model checking (Musuvathi
and Engler, 2004; Sistla et al., 2000), static analysis
(Feamster, 2004; Udrea et al., 2008), theorem prov-
ing (Wang et al., 2009) and refinement checking (Alur
and Wang, 2001). However, they have not been de-
signed for moving robots.

There have been many commercial and academic
frameworks to simulate the target robots in virtual en-
vironments and to test software for the robots in the
environments. As long as our knowledge, there is no
paper on enabling the software to be tested with the
networked environments that the target robots may
connect to.

Nevertheless, we discuss on several existing ap-
proaches to test software for robots. SITAF (Park
and Seok Kang, 2012) is a framework to test robot
components by simulating environment. It generates
test cases based on a specification given by the de-
veloper. This test generation combined with simula-
tions allows repeatability of tests. It also discards the
need of test reuse, since they are generated. Biggs
(Biggs, 2010) presented on testing software for by us-
ing a repeatable regression testing method for soft-
ware components that interact with its hardware, but
his approach focused on only individual components
rather than the whole robot. Among them, Chung
et al.(Chung and Hwang, 2007) shows their experi-
ments in their applying ISO standard for software test-
ing (ISO 9126) to components for academic robotics.
Laval et al. (Laval et al., 2013) proposed an approach
to enabling to test not only isolated components, but
also the whole robot. Their approach assumed stan-
dalone robots so that they did not support software
for networked robots. Chen et al. (Chen et al., 2011)
and Petters et al. (Petters et al., 2008) presented to
insert an extra step for hybrid tests between simu-
lation and tests based on three levels: component-
level tests, online-level test with humans, and offline
test (based on logs). Son et al. () proposed another
three levels of tests: unit testing, state testing and API
testing. However, their approaches did not support

networked software running on robots. Laval et al.
(Laval et al., 2013) proposed a safe-by-construction
architecture based on a formal method instead of any
testing approaches.

The reconnection and disconnection result from
the movement of robots are similar to those from the
carrying of portable computers, e.g., notebook PCs,
tablets, and smartphones. There have been several at-
tempts to test software designed to run on portable
computers. (Beck, 2002; Gelperin and Hetzel, 1988;
Whittaker, 2000). A typical problem in physical mo-
bility is that the environment of a mobile entity can
vary dynamically as it moves from one network to
another. A lot of research has been proposed to ei-
ther transparently mask variations in mobility at the
network or system level or adapt this to the current en-
vironment at the application level (Noble et al., 1997;
Perkins, 2002). Nevertheless, current work on these
approaches has focused on a location-transparent in-
frastructure for the applications and location-aware
applications themselves. As a result, the task of build-
ing and testing software has attracted only limited at-
tention.

There have been a few attempts to test software
designed to run on portable computers instead of
robots. Several researchers have explored approaches
to enabling software to run on local computers and
link up with remote servers through networks to ac-
cess particular resources and services provided by re-
mote networks; e.g., the InfoPad project at Berkeley
(Le et al., 1994) and the network emulator of Lan-
caster University (Davies et al., 1995). However, ac-
complishing this in responsively and reliably is diffi-
cult, and the emulators cannot remotely access all the
services and resources that are only available within
the network domains because of security, such as fire-
walls. Moreover, the approach is inappropriate for
testing software using service discovery protocols.

6 CONCLUSION

This paper presented a framework for developing
and testing software running on autonomous trans-
port robots, which were often used in warehousing
and manufacturing spaces. Its goal was to enable us
to test networked software that reconnects and discon-
nects to the networks of their destinations according
the movement of transport robots. It could emulate
the physical mobility of the target robots and enabled
the software to directly connect to the networks of
their destinations in addition to the internal execu-
tion environment of the robots by using the logical
mobility of emulators corresponding to the the target

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

320



robots. We designed and implemented an emulator
based on mobile agents and a virtual machine. Each
emulator could emulate its target robot. Since they
were provided as mobile agents, which can travel be-
tween computers, they could carry and test software
designed to run on their target robots in the same way
as if they had been moved with the robots executed
them, and connected to services within their current
local area networks. Our early experience with the
prototype implementation of this framework strongly
suggested that the framework could greatly reduce
the time needed to develop and test software for net-
worked industrial computers.

REFERENCES

Alur, R. and Wang, B.-Y. (2001). Verifying network pro-
tocol implementations by symbolic refinement check-
ing. In Proceedings of the 13th International Confer-
ence on Computer Aided Verification, CAV ’01, pages
169–181. Springer-Verlag.

Beck, K. (2002). Test Driven Development. By Example
(Addison-Wesley Signature). Addison-Wesley.

Biggs, G. (2010). Applying regression testing to software
for robot hardware interaction. In ICRA, pages 4621–
4626. IEEE.

Chen, I. Y.-H., MacDonald, B. A., and Wunsche, B. C.
(2011). A flexible mixed reality simulation framework
for software development in robotics. Journal of Soft-
ware Engineering for Robotics, 2(1):40–54.

Chung, Y. K. and Hwang, S.-M. (2007). Software testing
for intelligent robots. In 2007 International Confer-
ence on Control, Automation and Systems, pages 40–
54. IEEE.

Davies, N., Blair, G. S., Cheverst, K., and Friday, A.
(1995). A network emulator to support the develop-
ment of adaptive applications. In Proceedings of the
2nd Symposium on Mobile and Location-Independent
Computing, MLICS ’95, pages 47–56, Berkeley, CA,
USA. USENIX Association.

Feamster, N. (2004). Practical verification techniques for
wide-area routing. SIGCOMM Comput. Commun.
Rev., 34(1):87–92.

Gelperin, D. and Hetzel, B. (1988). The growth of software
testing. Commun. ACM, 31(6):687–695.

Laval, J., Fabresse, L., and Bouraqadi, N. (2013). A
methodology for testing mobile autonomous robots.
In 2013 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 1842–1847.

Le, T., Seshan, S., and Burghardt, F. (1994). Software archi-
tecture of the infopad system. In In Mobidata Work-
shop, page 93.

Musuvathi, M. and Engler, D. R. (2004). Model check-
ing large network protocol implementations. In Pro-
ceedings of the 1st Conference on Symposium on Net-
worked Systems Design and Implementation - Volume
1, NSDI’04, pages 12–12. USENIX Association.

Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton,
J. E., Flinn, J., and Walker, K. R. (1997). Agile
application-aware adaptation for mobility. In Proceed-
ings of the Sixteenth ACM Symposium on Operating
Systems Principles, SOSP ’97, pages 276–287. ACM.

Park, H. and Seok Kang, J. (2012). Sitaf: Simulation-based
interface testing automation framework for robot soft-
ware component.

Perkins, C. (2002). Ip mobility support for ipv4. Technical
report, RFC, United States.

Petters, S., Thomas, D., Friedmann, M., and von Stryk,
O. (2008). Multilevel testing of control software for
teams of autonomous mobile robots. In Carpin, S.,
Noda, I., Pagello, E., Reggiani, M., and von Stryk, O.,
editors, Simulation, Modeling, and Programming for
Autonomous Robots, pages 183–194, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Satoh, I. (2006). Mobile Agents, pages 231–254. Springer
US, Boston, MA.

Satoh, I. (2015). An approach for developing software on
robots (short paper). In International Workshop on
Factory Control Systems, 2015, pages 1–2.

Satoh, I. (2019). An approach to testing software on net-
worked transport robots. In 5th International Confer-
ence on Advances and Trends in Software Engineering
(SOFTENG 2019), to appear.

Sistla, A. P., Gyuris, V., and Emerson, E. A. (2000). Smc:
A symmetry-based model checker for verification of
safety and liveness properties. ACM Trans. Softw. Eng.
Methodol., 9(2):133–166.

Udrea, O., Lumezanu, C., and Foster, J. S. (2008). Rule-
based static analysis of network protocol implemen-
tations. Information and Computation, 206(2):130 –
157. Joint Workshop on Foundations of Computer Se-
curity and Automated Reasoning for Security Protocol
Analysis (FCS-ARSPA ’06).

Wang, A., Basu, P., Loo, B. T., and Sokolsky, O. (2009).
Declarative network verification. In Proceedings of
the 11th International Symposium on Practical As-
pects of Declarative Languages, PADL ’09, pages 61–
75. Springer-Verlag.

Whittaker, J. A. (2000). What is software testing? and why
is it so hard? IEEE Software, 17(1):70–79.

Developing and Testing Networked Software for Moving Robots

321


