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Abstract: Georeferenced information of road infrastructure is crucial for road safety analysis. Unfortunately, for 

essential structures, such as fences and crash barriers, exact location information and extent is often not 

available hindering any kind of spatial analysis. For a GIS-based study on wildlife-vehicle collisions 

(WVCs) and, therein, the impact of these structures, we developed a method to derive this data from video-

based road inspections. A deep learning approach was applied to identify fences and barriers in photos and 

to estimate the extent and location, based on the photos’ metadata and perspective. We used GIS-based 

analysis and geometric functions to convert this data into georeferenced line segments. For a road network 

of 113 km, we were able to identify over 88% of all barrier lines. The main problems for the application of 

this method are infrastructure invisible from the road or hidden behind vegetation, and the small sections 

along the streets covered by photos not depicting the tops of higher dams or slopes. 

 

1 INTRODUCTION 

Road safety analysis, such as accident analysis of 

wildlife-vehicle collisions (WVCs), strongly relies 

on the availability of road infrastructure 

documentation such as fences or crash barriers. For 

the majority of German roads, this information is not 

available to be processed automatically by GIS or 

other software applications. Documentations are 

usually based on individual construction plans or in 

table format and often lack georeferences. For over 

230,000 km of public roads in Germany, a classical 

manual georeferencing would be costly. Hence, we 

propose in this paper a deep learning and computer 

vision driven approach to automatically 

georeference crash barriers and fences using photos 

from official road inspections. While this material is 

either available or can be easily produced for 

projects, this form of digital material might provide 

a data basis for automatic processing, in contrast to 

the digitisation and analysis of lists or reports. 

Then, the geolocation of the photos is used to apply 

basic geometric analysis to estimate position and 

extent of fences and crash barriers as linear road 

accompanying structures in GIS. The objective is to 

produce a line geometry representing extent and 

location of crash barriers and fences that can be used 

for later spatial analysis of WVCs. The automatic 

detection or analysis of the design, quality or status 

of these structures is not in the scope of this work. 

The paper is structured as follows: After an 

introduction of the GIS and road safety based 

motivation of this research, we present different 

computer vision applications used in other 

disciplines, suitable to be applied to this problem. 

Further, we introduce the available photo material 

from video road inspections used in a test region. 

After the description of the algorithmic approach 

and the system components used for the automatic 

analysis and data extraction, results of the analysis 

are presented and discussed. Finally, we draw 

conclusions with regard to the general purpose of the 

approach from a geomatics' and infrastructure 

documentation's perspective, and regarding the 

specific advantages for the application in WVC 

research. 
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2 LITERATURE AND STATE OF 

THE ART 

2.1 Infrastructure Analysis 

Using computer vision to extract road and 

infrastructure information from aerial photos, road 

inspection photos, videos or car cams has a long 

tradition. Also the combination of feature extraction 

from photographs and georeferencing of 

infrastructure, as a combination of computer vision 

and GIS, was already tested, e.g. for the 

identification of pavement distress (Obaidat and Al-

kheder, 2006) and automated building and control of 

road inventories, with regard to road marking as one 

example (Šegvic et al., 2010). A main application of 

computer vision for the identification of road 

inventory are traffic signs (de la Escalera et al., 

1997; Fang et al., 2003; Greenhalgh and Mirmehdi, 

2012). Therefor also deep learning neural networks 

were applied (Vitabile et al., 2002; Wu et al., 2013). 

Georeferenced information about WVC relevant 

road infrastructure, such as crash barriers and fences, 

are a limiting factor for diverse studies. Most studies 

dealing with fences only include small areas or a 

limited number of test sites (Villalva et al., 2013). 

Several publications relating on WVCs focus on 

other parameters, such as traffic data, and the 

spatiotemporal analysis of WVCs (Garriga et al., 

2017; Hothorn et al., 2015; Huijser et al., 2016; 

Kruuse et al., 2016), which may indicate that a lack 

of infrastructure data restricts the type of studies.  

2.2 Artificial Intelligence 

In the ImageNet competition, images are classified 

with a DNN and exceeded the accuracy of 

conventional algorithms for the first time. The 

Inception V3 and V4 networks deliver currently the 

best results and significantly higher recognition rates 

than conventional image classification algorithms 

(Canziani et al., 2016). 

By using transfer learning, a net with a large number 

of images is pre-trained, usually with the ImageNet 

dataset. This includes more than 15 million images 

trained on about 22,000 classes that can be used 

freely. This is the basis for a stable classification of 

new data. (Krizhevsky et al., 2017; Lagunas and 

Garces, 2018) 

For the application on specific new categories, only 

hundreds of additional photos are needed for transfer 

learning to achieve almost identical results. This 

approach is interesting in the presented case because 

a small training dataset must be classified manually, 

in contrast to build an individual DNN from the 

scratch. The dataset with the own categories can be 

used for retraining the pre-trained DNN. 

3 MATERIAL 

Due to the focus of the underlying project on WVCs, 

we selected the Bavarian Forest as a test site. 

Nonetheless, results should be transferable to other 

regions or states. The district Freyung-Grafenau is a 

WVC prone area. In this district, we have three 

federal highways (B 12, 85 and 533) with a total 

length of 113 km. While the majority of WVCs 

takes place at roads of second (federal highways) 

and third order (district roads) and there, the 

majority of fences and barriers are located, we 

decided to focus on these road classes and not to 

consider smaller rural roads. 

For these roads, photos from road inspections of the 

Bavarian Ministry of Living, Building and 

Transportation from 2015 were available for all parts 

of the federal road network. The data set consists of 

a front and rear view, plus two side views (front to 

the left and front to the right) for each position 

(Figure 1). The resolution of the photos was 1,280 to 

1,024 pixels with a colour depth of 24 bit. The 

inspection was recorded with a quite constant speed 

of around 80 km per hour to get similar distances 

between two inspection points, which are close 

enough together (around 20 meters) for deriving a 

complete road picture on the federal highways. In 

total, 5,596 inspection positions with two photos 

each (right and left for each position) were used for 

the analysis (front and rear sides were ignored). 

 

Figure 1: Road inspection photos from one position taken 

in four directions a) front, b) rear, c) front right, and d) 

front left. 
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4 PROPOSED METHOD 

DNNs depend on a set of pre-classified data to train 

the network. The set of classified photographs was 

too small to be split into a training, validation and a 

test data set and to apply machine learning. Transfer 

learning was used to train the data set with a larger 

set of thematically unspecific photos. As a DNN 

Framework, we used TensorFlow (TF) in the version 

1.8.0.  

The ImageNet data set with 1.2 million images 

(Lagunas and Garces, 2018) was used for the pre-

training. The network was trained to about 1,000 

categories and forms, the basis for own classes 

during transfer learning. This provides the pre-

trained model Inception V3, and can be used for 

transfer learning.  

Afterwards the last part of the net was re-trained 

with an own dataset. The initial weights of the 

neurons are taken from the pre-trained net. The 

parallelization from TensorFlow is used to further 

reduce the training duration. A high degree of 

automation in training and validation is achieved by 

using Python scripts.  

The underlying training material stems from road 

inspections and consists of four images taken every 

20 m. Images are automatically georeferenced, using 

the camera position. The lateral images are used, as 

these are the best for the detection of the structures. 

The Inception V3 model requires images with a size 

of 299 x 299 pixels as input, whereby automatic 

scaling is applied to the input data from TensorFlow. 

The investigations and behaviour monitoring of the 

training have shown that 6,000 training steps are 

sufficient, since an increase of training steps no 

longer results in an increase of the recognition rate. 

The detection of crash barriers and fences was split 

up to two separate DNNs, as this produced better 

results than the distinction of crash barriers, fences 

or neither of them in a single DNN.  

Fence detection was performed using 398 images 

with fences, 211 from recordings of the left roadside 

and 187 images from the right roadside, and 418 

without fences on the picture.  

For the detection of crash barriers, 455 images with 

crash barriers and 380 without crash barriers were 

manually classified and used for transfer learning.  

The images were divided into 80% training data, 

10% validation data and 10% test data. The training 

data was shuffled so that left and right images were 

used alternately.  

The determination of whether the barrier is on the 

left or right side of the street is determined by the 

recording direction of the input image. The detection 

accuracy between left and right fences differs due to 

the distance from the fence to the camera. The 

shortest distance to fences on the right side is about 

2.5 m, and on the left side about 6.5 m, depending 

on the width of the road and the distance from the 

fence to the road. Crash barriers are almost always 

closer to the camera and more visible because of the 

structure. For this reason, the classification accuracy 

does not differ significantly on right to left images 

for crash barrier detection. 

After the image classification, the data was imported 

into a GIS system for georeferencing and building of 

the line segments, and for further spatial analysis on 

the impact of the barrier structures on wildlife-

vehicle collisions. Image points with identified 

barrier information are connected to polylines to 

derive closed barrier lines. The labelling from both 

pictures at one site are connected to get an explicit 

information of an existing crash barrier (true or 

false) and fence (true or false). To eliminate single 

false classified images, a distance of smaller than 

10 m between two inspection points is set as 

minimum threshold impeding a barrier line creation. 

Line lengths large than 80 m are also deleted. The 

probability is very high in such a case that the 

barriers in between the inspection points are 

disconnected or two points, which are not directly in 

a row, are connected falsely. This is done to get a 

documentation of barriers as realistic as possible. 

Although the inspection coordinates are not 

necessarily identical with the visible barriers on the 

image, the approach approximates the position of the 

barrier to the real geolocation with a minor 

inaccuracy of the barriers’ beginnings and endings. 

The whole image data set with all its 5,596 images 

from road inspections was classified manually to 

gather training data for the DNN, and test data, to 

analyse the classification quality. 

5 RESULTS AND DISCUSSION 

Over 92% of the images were classified correctly by 

the DNN to recognize crash barriers. Fences were 

identified with a rate of nearly 63% (Table 1). The 

reason for the lower classification rate of fences may 

be caused by invisible parts of fences, hidden by 

vegetation and also because of the fragile and 

different structure of fences, in contrast to the 

massive crash barriers. The detection rate of fences 

for the validation data is much higher (95%) than for 

the test area (63%). A possible cause could be 

overfitting, whereby the neuronal network does not 

react generally enough to fences, but to special 
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features of the training data. Nevertheless, the 

training of the neuronal net with 1000 instead of 

6000 training steps resulted in a recognition of 

41.9% in the test region, indicating that overfitting 

does not take an effect, but the net cannot detect 

fences accurately. 

One reason could be differences between the images 

from the training and the images from the test 

region. In order to keep this aspect as low as 

possible, the training data was already selected 

spatially and temporally randomly. 

Normally, crash barriers are in a near distance to the 

road and they are very similar structured, in 

comparison to fences (different types like game 

fences, pasture fences etc.). Furthermore, the 

resolution of the images and especially the number 

of input neurons of the DNN limits the recognition 

rate. The spatial resolution, i.e. the distance between 

the images, limits the improvement of the DNN 

results by GIS solutions. 

Table 1: Quality of auto-classification of images for Bar = 

Crash Barrier and Fen = Fence in %. 

In 

% 

Bar 

left 

Bar 

right 

Bar 

total 

Fen 

left 

Fen 

right 

Fen 

total 

False 7.7 7.7 7.7 55.2 19.5 37.4 

True 92.3 92.3 92.3 44.8 80.5 62.6 

Table 2 shows the comparison of actual crash 

barriers and fences, in contrast to the detected ones, 

based on the GIS line segments (see also Figure 2). 

Individual outliers were filtered out with the aid of 

spatial models. For example, a detected barrier 

surrounded by images without detected barriers is 

very unlikely, since crash barriers and fences usually 

have a certain minimum length. Conversely, gaps in 

recognition can be closed based on the same 

principle. 

Table 2: Comparison between automatic classified and 

manual checked barrier lines in GIS. 

Road sections 

(in km) with: 

Correct  

classified 

Reality 

(manual 

checked) 

Correct 

in % 

Crash barriers 67 72.5 92.4% 

Fences 7 11.4 61.4% 

Total 74 83,9 88.2% 

Figure 2 also shows the crash barriers of federal 

highways detected in the test area and the actual 

crash barriers. The detection rate was 92% from the 

detected in comparison to the actual crash barriers. 

 

Figure 2: Maps of classified fences (green, above) and 

crash barriers (red, below) in comparison to reality (black 

lines). 

For the reasons mentioned, the detection rate of 

fences is only 61.4% (Figure 3). This leads to an 

overall detection rate of over 88% of real barrier 

lines. Finally, the results show that barriers along 

streets can be classified using DNN. The results can 

be used for georeferenced documentation of road 

barriers in GIS and can be partially improved using 

GIS techniques. 

The combined approach of DNN and GIS ensures an 

overall good quality of the results by filtering and by 

transferring the DNN results into geodata. While the 

example of crash barriers shows already the 
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potential of the approach, the results for fences fall 

short with regard to overall quality and completeness 

(coverage of real fence segments). While camera 

inspections are normally performed during daylight 

and good weather conditions, the quality of the 

recording does not show any potential for 

improvement. One significant shortcoming for 

identifying fences is the low resolution of images 

used by ImageNet. Second, the classification scheme 

of fence, while searching for animal protection 

fence, might influence the results, because fences 

can differ strongly in their visual appearance. Also 

an increase in the amount of training material might 

contribute to improve classification accuracy. 

 

Figure 3: Map of a road section with image point 

information (Crash barrier true or false); (a) images (left, 

middle, and right) of one inspection point; (b) aerial 

photograph and converted barrier line information in GI; 

(c) the same section with classified and manual checked 

barrier information in comparison. 

6 CONCLUSIONS AND 

RECOMMENDATIONS 

This research intended to test a methodology to 

automatically derive a georeferenced inventory of 

road side infrastructure such as crash barriers and 

fences. Using a DNN and applying it, based on 

transfer learning, on road inspection photos, we were 

able to detect the structures in the images. Based on 

the coordinates of the photo and using GIS, we 

derived barrier lines as a georeferenced inventory. 

Although the detection quality should be further 

improved and, hence, the quality of the overall 

inventory, the results are promising due to an 

automatized documentation of road inventory on a 

large scale. 

Potentials for improvement are in the quality of 

images as input material, the quantity of data used 

for training, and a more differentiated training 

strategy. Currently, we did not consider differences 

in the resolution of images from the left and from 

the right hand side of the car, and we did not 

distinguish between different fence types. Images 

from different sides have different resolutions for the 

same type of object. With regard to fences, this 

might be already an issue because the differences in 

distance between object and camera result in 50-60 

pixel resolution for the breadth of a fencepost at the 

right hand side of the street and the right camera. A 

fencepost at the left hand side with the same distance 

to the street, and depicted in the left camera image, 

shows a resolution between 10-18 pixels only. 

Further on, types of fences, acting as barriers to 

animals, show slightly different patterns. As a 

consequence, training material for each fence type is 

significantly smaller than expected. Nonetheless, the 

methodology provided the relevant material to 

analyse WVCs, where in the beginning no data 

about these roadside infrastructures was available. It 

should be possible to transfer results also to other 

countries. It needs to be tested, what the impact of 

different design concepts for fences and barriers 

means for the automatic detection. Maybe a transfer 

would require an additional learning phase with 

specific images for the countries’ infrastructure and 

its design. 
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