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Abstract: In connection with anomaly detection in cyber-physical systems, we suggest in this paper a new way of 

modelling large systems consisting of a huge number of sensors, actuators and controllers. We base the 

approach on analytical methods usually used in kinetic gas theory, where one tries to describe the overall 

behaviour of a gas without looking at each molecule separately. We model the system as a multi-agent 

network and derive predictions on the behaviour of the network as a whole. These predictions can then be 

used to monitor the operation of the system. If the deviation between the predictions and the measured 

attributes of the operational cyber-physical system is sufficiently large, the monitoring system can raise an 

alarm. This way of modelling the normal behaviour of a cyber-physical system has the advantage over 

machine learning methods mainly used for this purpose, that it is not based on the effective operation of the 

system during a training phase, but rather on the specification of the system and its intended use. It will detect 

anomalies in the system’s operation independent of its source – may it be an attack, a malfunction or a faulty 

implementation. 

1 INTRODUCTION 

Cyber-physical systems (CPS) are integrations of 

physical processes with networks and computation 

(Adepu et al., 2015). Embedded computing devices 

sense, monitor, and control the physical processes 

through networks, usually with feedback loops in 

which physical processes affect computations and 

vice versa (Lee, 2008).  Cyber-physical systems are 

used in various areas including industrial and 

production systems, public infrastructure (Stouffer et 

al., 2015) such as for electricity (Sridhar et al., 2012), 

water, purification and transportation (Zhao et al., 

2013), as well as health care (Haque et al., 2014). 

These systems often represent critical infrastructures, 

which play an essential and critical role in our 

interdependent society and economy.  

Dependencies on cyber infrastructure in industrial 

systems and open communication make them more 

vulnerable to cyber-attacks and hence represent a 

considerable amount of risk for our society. Most 

CPSs in use today were developed to meet 

availability and reliability requirements but not 

security requirements, as security was not considered 

an important aspect in a secluded IT infrastructure 

strictly separated from other systems. This has 

changed dramatically in the last years: the 

introduction of IP-based technology and standard 

computing devices into operational environments 

made an end to this separation and opened points of 

exposure and increased the attack surface of CPSs in 

a way that cannot be neglected any more. Moreover, 

the complexity of the systems is increasing rapidly as 

they become smarter and use advanced technologies 

as well as the number of devices incorporated in such 

systems is growing rapidly. This is reflected by the 

concerns about attacks on industrial control systems 

that were recognized at the latest with the detection of 

incidents  such as Stuxnet (Falliere et al., 2011), 

Dragonfly (Symantec, 2017), or the BlackEnergy-

borne power outage in 2015 (Lee et al., 2016). The 

possibility of such advanced attacks on industrial 

systems show the urgent need for counter-measures. 

Traditional intrusion defense strategies for 

common IT systems are often not applicable in smart 

CPS environments. To ensure the protection of these 

environments, certain security controls that monitor 

the systems communications and operation in real-

time, or at least close-to-real-time, are needed. One 

possibility for such defense systems is the 

implementation of an anomaly detection system. 
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Anomaly detection systems consist of a formal model 

of normal system behavior and a monitoring system 

that compares in real time the actual behavior of the 

system with this model. Too large deviations of the 

system’s behavior from the model are distinguished 

as anomalies and will raise an alarm. As of today the 

formal systems used in connection with anomaly 

detection systems are mostly of statistical nature: 

outlier detection, cluster analysis, hidden Markov 

models; few are of structural nature: neural networks, 

association rules, syntactic pattern matching 

(Chandola et al., 2009). 

This paper suggests a new method for describing 

the behavior model of a CPS. The idea is to model a 

CPS in a way known from physics and similar to 

equations used in kinetic theory. The macroscopic 

behavior of a gas (or a liquid) is derived from the 

behavior – the interactions – of the molecules it 

consists of. For reason of the vast number of 

molecules, it is not feasible to look at each molecule 

individually. Kinetic theory overcomes that difficulty 

by analytically deriving the macroscopic behavior of 

the gas or liquid. The analogy used here is the fact 

that a large CPS consists of a huge number of sensors, 

actuators and PLCs, and can be modelled as a multi-

agent system. The components interact by 

exchanging data over the network. An interaction is 

the exchange of data between two agents. We want to 

model the behavior of such multi-agent systems 

without looking at each component individually.  

In the area of information processing the idea of 

modeling multi-agent systems analytically by 

drawing analogies to physics has so far mainly been 

used to study opinion dynamics in social networks 

(Monica and Bergenti, 2018; Monica and Bergenti, 

2016). Only for very specific problems in mobile 

wireless networks, analytical models have been used 

so far as in (Keung et al., 2010). The main difference 

to applications in physics is contained in the rules that 

guide the interactions of the components: while 

molecules behave according to the laws of physics, 

the interactions of components of a CPS are mainly 

driven by the program logic of the PLC software. An 

overview of kinetic theory can be found e.g. in 

(Pareschi and Toscani, 2013), more advanced topics 

are covered in (Bellouquid and Delitala, 2006). 

2 MODELLING OUTLINE 

We assume that every component of the CPS is an 

agent in a multi-agent system. There is a set of 

attributes (a vector) associated with each agent 

representing its current state. Usually statements 

about multi-agent systems are calculated by means of 

simulations. In this paper, however, we introduce an 

analytic point of view. This has the advantage that it 

is independent of the simulation setup and will lead 

to a more general model – provided that the 

hypotheses used to derive them are valid. 

We have: 

 A set of components (agents) C 

 Each component is associated with a state 

vector q that changes dynamically. 

 Components interact by exchanging 

messages. 

 Interactions are determined by interaction 

protocols that define the reactions on input 

(either as a message from another component 

or as an input from the outside). 

 Interactions occur when a component receives 

a message from another component or from an 

external source (input). 

As we have three main different kinds of components, 

we group them statically into three disjoint classes  

C = S  A  PLC: 

 The class of sensors S 

 The class of actuators A 

 The class of programmed logic controllers 

PLC 

The interaction between the components can only 

occur according to the topology of the network 

interconnecting the components. This network is 

modelled by a directed graph NW = (C,E); the 

vertexes of the graph are the components and we 

define the set of edges E between a sender vertex ci 

and a receiver vertex cj if ci can send a message to ci. 

Usually the receiver changes its state upon receiving 

a message. External inputs may induce state changes, 

too. As a rule, the components of class S receive 

external inputs and send messages to components of 

class PLC; components of class PLC receive 

messages from components of classes S  and PLC and 

send messages to components of class A and class 

PLC; components of class A receive messages from 

components of class PLC and may send messages to 

external devices (like e.g. motors, or human 

interfaces). 

Furthermore, we assume that the system is large 

(consists of many components), so it is not feasible to 

look at the state of each component individually, but 

the analysis of the system as a whole is interesting. 

The goal is the study of the dynamics of specific 

features of the system that characterize its normal 

behaviour. The first step towards this goal is 
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formulate functions that will predict the behaviour of 

the system. This means to find a function that would 

relate the state of a component of a class to its 

changing over time. Time being a continuous variable 

we have to define a density function of a class x: 

 fx(q,t)d’q (1) 

Representing the number of agents of class x whose 

states are in (q, q+dq) at time t >= 0. 

The density function of the CPS as a whole can be 

computed as: 

 f(q,t)d’q  =   fx(q,t)d’q (2) 

for each of the three classes x. 

The average state of the components of class x at 

time t >= 0 can then be computed as 

 ux(t)  =  
1

𝑛𝑥
∫ 𝐪 fx(𝐪, t)d’𝐪

𝑄
 (3) 

where nx is the number of elements of class x and Q 

is the set of all states. Moreover, we could compute a 

weighted standard deviation.  

The next step would be to define a balance 

equation for the system. Such an equation must define 

a collisional operator Ix that accounts for all possible 

interactions between the components of class x with 

components of any other class s. 

ℐx   =   Qs,x[fx, fr]  =    
∂fr

∂t
 (qr, t) (4) 

by summing over all classes s. The term Qs,x[fx, fr] 
depends on the interaction rules.  

The definition of Qs,x[fx, fr] is the most 

complicated part of the modelling. We assume that an 

interaction consists of a component c1 sending a 

message to another component c2 containing the 

current state of c1 and component c2 replying with 

another message (and may or may not send other 

messages to other components). Both components 

may update their state in the course of an interaction. 

The interaction rules must account for external inputs 

by containing flow terms that influence the 

interaction. Interactions change the states of the two 

neighbouring components that interact; more 

precisely, they link pre-interaction states with post-

interaction states. 

The interaction of components from classes S and 

A are rather simple and do not need special attention. 

Interactions from components of class S to 

components of class PLC just change one (or more) 

values in the state vector of the receiver. Interactions 

from components of class PLC to components of 

class A change a value in the state vector of the 

receiver and may induce an external output. 

Interactions of the components of class PLC are more 

complex as they represent the computational logic of 

the CPS, which is realised by the software running at 

the component. 

To define the interactions of the components from 

class PLC, we must look at the pre- and post-

interaction states of these components; these 

relationships define the interactions. We assume that 

PLC software for CPS is developed in a rigorous way, 

which means that the functions of the program are 

designed by use of an at least semi-formal design 

language (such as SysML or other UML derivatives) 

or even a formal language (like TLA+ or PROMELA 

or Uppaal) that allow for the definition of pre- and 

post-conditions. These definitions can then be used to 

define the interaction matrix Qs,x[fx, fr]. The pre- and 

post-conditions define logical expressions on the state 

attributes of the PLC-component. There are two 

different kinds of conditions or constraints: those that 

are given by the logic of the program (and are defined 

by the afore-mentioned pre- and post-conditions) and 

those given by the physical constraints on the external 

inputs. The latter ones may define for example 

restrictions on the development in time of the 

function describing the external input (changes in 

temperature for example cannot happen at arbitrary 

speed). 

Having defined the model, we can use it to predict 

the normal behaviour of the CPS during operation and 

compare the current state of the CPS with this 

prediction. Deviations of the current state of the 

system from the prediction are hints to anomalous 

operations. Anomalous operation of the CPS can have 

various reasons: wrong programming logic, 

malfunction, erroneous user input, or cyber-attacks. 

A classification of the reasons based on the 

differences between predictions and actual behaviour 

of the system, is difficult and not in the scope of this 

paper. 

3 APPLICATION TO CPS 

We will present a very simple and (too) small 

example to show the main idea of this modelling 

approach: a conveyor belt where work pieces are 

transported by the conveyor to and from a heating 

chamber where they are heated to a predefined 

temperature. The system consists of four optical 

sensors, one temperature sensor, two actuators (one 

for starting and stopping the belt, one for turning on 

and off the heating chamber), and a PLC controlling  
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Figure 1: Experimental setup. 

the setup. A more detailed description of the setup can 

be found in (Eigner et al., 2018).  

We have: 

S  =  {so1, so2, so3, so4, stemp} is the set of sensors, 

A  =  {am, ah} is the set of actuators, and 

PLC  =  {plc} is the PLC controlling the system. 

The connections between these components are 

shown in the interaction graph in figure 2.  

 

Figure 2: Interaction graph. 

The respective states are: for each optical sensor soi it 

is a binary value {0,1}, for the temperature sensor 

stemp it is the last measured temperature value (a 

positive decimal number within a predefined range). 

For both actuators it is a binary value {0,1} meaning 

on/off. For the plc it is a vector with the last received 

measurements of the sensors and the states of the two 

actuators together with an additional value referring 

to the current state of the plc (idle, sending, receiving, 

calculating). 

An example of an interaction rule is: 

Interaction: stemp is sending a measured temperature 

value x to the plc 

Pre-condition: the state of stemp is x 

Post-conditions: the temperature attribute in the 

state of the plc is x 

 if x is greater or equal than a fixed 

threshold, the heating attribute is 

0 (off) 

 if x is less than a fixed threshold 

and so2 is 1 (a work piece is in the 

heating chamber) the heating 

attribute is 1 (on) 

Other constraints concerning the input values can be 

defined, too. For example, the temperature changes in 

time cannot happen at an arbitrary speed. This is 

captured by defining the maximum (and maybe 

minimum) gradient of the temperature curve. By 

applying the analytical model to this situation, we get 

a description of the progression in time of the state of 

the CPS as a whole. 

4 DISCUSSION 

The ideas described in this paper are still in a very 

preliminary state and need further elaboration and 

application to real large cyber-physical systems. This 

is more a position paper that is supposed to present 

some interesting ideas and to foster further 

discussion. 

So far, models of normal behaviour of a system 

have been created by methods of machine learning: 

Data is collected during assumed normal operation 

and a machine-learning algorithm selects features and 

“learns” the valid range of these features. The 

advantage of our model over machine-learning 

models is that it does not depend on a training phase 

that might not cover all possible situations and were 

one cannot really guarantee that the software works 

properly in all situations or that there is no attack (or 

effects of an attack) present during the training phase. 

The analytical model, on the other side, starts with the 

specification of the CPS and therefore encompasses 

all situations defined by the software. This model 

could even detect implementation errors. 
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The main difficulty of the modelling process itself 

lies within the construction of the interaction matrix. 

In this paper, we assume that a rigorous specification 

of the control programs containing pre- and post-

conditions is available (which in practice will not 

always be the case). However, if such specifications 

do exist in a formal notation, even an automatic or at 

least semi-automatic generation of the interaction 

matrix is possible. One can conclude this from the 

code generation features present in specification and 

design tools for software, which take the pre- and 

post-conditions as input and transforms them into 

another formal description (code). The maintenance 

of the model, which is necessary if changes in the 

configuration or the control programs occur, depends 

on the formal specifications of the changes, too. 

As mentioned above a lot of work is still to be 

done to transfer the model to real practical 

applications with a large number of components.  
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