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Abstract: Terrain crack removal is an unavoidable problem that must be solved in real-time three-dimensional (3D) 

terrain rendering. Conventional elevation adjustment-based crack removal methods are plagued by a number 

of problems, including restrictions associated with level of detail (LoD) differences, computational 

inefficiency and lighting discontinuities. To address these issues, we propose a crack elimination method that 

is suited for large differences in boundary LoD. The first step in this method is the construction of terrain 

quadtrees that contain edge and angle adjacency information. These structures are then updated in real time. 

The second step is to modify the boundary mesh vertices using linear interpolation, which allows for LoD 

differences greater than 1 between adjacent tiles. Finally, the vertex normals of the mesh vertices of the terrain 

block are calculated and evaluated. Our method was experimentally validated using topographical data from 

a mountainous region in Sichuan Province, and the results provide evidence that supports the reliability and 

superiority of the proposed method compared to the conventional method. 

1 INTRODUCTION 

The occurrence of terrain cracks in the level of detail 

(LoD) rendering technique is caused by inherent 

differences in the LoD. When two adjacent terrain 

meshes have different LoDs, the elevations of their 

boundary grids will not be fully consistent, which 

causes the appearance of gaps in real-time terrain 

rendering processes (Yin et al, 2006). Currently, the 

most common method of terrain data simplification 

(both in China and abroad) is view-dependent 

continuous LoD rendering (Bulatov et al, 2013), 

which entails the use of view-dependent LoDs in 

terrain representations. Therefore, the elimination of 

terrain cracks is an unavoidable problem that must be 

solved in real-time three-dimensional (3D) rendering 

processes. 

The most common methods of terrain crack 

removal are the adjustment of mesh boundary vertices 

(Han et al, 2008), patching methods (Li et al, 2013. 

Wan et al, 2015) and template decomposition (Xu etal, 

2005. Wang et al, 2007). Since the adjustment of 

mesh boundary vertices does not require the creation 

of additional meshes, these methods are well suited 

for the representation of complex 3D terrain. Zhao et 

al. (2012) investigated a method for the seamless 

expression of global multiresolution digital elevation 

models (DEMs) based on spherical degenerate 

quadtree grids. They designed an adaptive algorithm 

that seamlessly stitches cracks within and between 

quadtree blocks. The underlying mechanism of this 

algorithm involves merging the nodes of terrain 

blocks that have low LoDs among adjacent terrain 

blocks (Zhao et al, 2012). However, the 

aforementioned methods require the terrain to be 

completely retraversed and the relevant nodes to be 

retriangulated, which eliminates the independence of 

these nodes (Liu et al, 2010). These methods may also 

disrupt the rules that are normally used to control the 

terrain LoD (Zhao et al, 2002). To address these 

issues, we have proposed a method of terrain crack 

removal that can handle large differences in boundary 

LoD based on analyses of quadtree data structures 

and the rules for controlling the LoD. 

The remaining sections of this paper are organized 

as follows. The second section describes the current 

method of adjusting mesh boundary vertices and the 

inadequacies of this method. The third section 

provides a detailed description of the improved crack 

removal method proposed in this paper. The 

experimental validation of this method is presented in 

Section 4. The fifth section provides a discussion of 

the method and the conclusions of the study. 
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2 RELATED WORK 

2.1 Current Method of Adjusting Mesh 

Boundary Vertices 

Methods for adjusting mesh boundary vertices are 

being continuously developed and refined by 

researchers around the world. Notably, Zhao et al. 

(2002) proposed a crack removal method based on the 

adjustment of elevation values. A basic description of 

this method is given as follows. 

The method of Zhao et al. uses a hierarchical 

segmentation algorithm that eliminates cracks by 

instituting dependencies between vertices. When this 

method is used, the addition of a vertex will affect the 

parent node and adjacent node. Hence, vertex 

selection/elimination and mesh generation must be 

performed separately, and the independent rendering 

of each terrain block is difficult in this method. Since 

triangulation is not used in this method, operations 

such as the splitting of high-LoD meshes or the 

merging of low-LoD meshes cannot be performed, 

and this limitation disrupts the structure of the terrain 

mesh and eliminates node independence. The 

seamless stitching of terrain blocks is achieved by 

altering the elevation values of the vertices that are 

responsible for inducing cracks. Fig. 1(a) is an 

example of terrain cracks. In this case, adjustments 

will be made to the boundary vertices that belong to 

the node that has a higher level of resolution. In Fig. 

1(b), the elevations of the A and B vertices (which 

belong to the upper left node) have been recalculated 

and reevaluated according to the boundary vertices of 

the adjacent node. 

 

(a)                                        (b)  

Figure 1: Crack elimination via the adjustment of elevation 

values: (a)Crack generation and (b) T-joints. 

2.2 Inadequacies of the Current 
Method 

Elevation adjustment-based crack elimination 

algorithms can be used to remove cracks by adjusting 

the elevation of mesh boundary vertices without 

requiring triangulation. However, certain aspects of 

these algorithms remain problematic. 

(1) Cracks can be generated by adjacent nodes 

with LoDs that are different by more than 1, but this 

scenario is not accounted for in current elevation 

adjustment-based crack removal algorithms. 

Furthermore, this scenario is likely to occur in 

complex terrain areas during real-time 3D terrain 

rendering. 

(2) During crack removal, real-time CPU 

calculations are required to traverse the entirety of the 

terrain. This process is a highly time consuming when 

massive terrain data are involved. 

(3) After the vertex elevations around the cracks 

have been adjusted by these algorithms, certain 

discontinuities will become apparent in the lighting of 

the terrain. In Fig. 2, for instance, the right side of 

boundary vertex A (terrain block 1) is not included in 

any triangular mesh. The right side of vertex A will 

therefore be excluded during the calculation of vertex 

normals, which subsequently leads to discontinuities 

between the vertex normal of A and the adjacent 

vertices. This issue will subsequently affect the 

terrain lighting calculations in 3D scenes and lead to 

errors in illumination-based terrain analyses. 

 

Figure 2: Lighting calculation for a pair of terrain blocks. 

3 IMPROVED TERRAIN CRACK 

REMOVAL METHOD 

The crack removal method we have proposed is 

suitable for large boundary LoD differences and 

consists of three primary steps: (1) the construction of 

terrain quadtree structures that contain edge and angle 

adjacency information and an algorithm for real-time 

updates, (2) the elimination of cracks caused by large 

differences in LoD, and (3) the calculation and 

updating of the vertex normals of terrain blocks. 
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3.1 The Construction of a Quadtree 
Structure That Contains Adjacency 
Information and the Dynamic 
Updating of This Structure 

Differences in the rendering precision of adjacent 

terrain nodes are the root cause of terrain cracks (Fu 

et al, 2012.WIESEMANN et al, 2005). Therefore, the 

key to eliminating terrain cracks is the accurate 

recognition and determination of terrain node 

adjacencies when real-time LoD terrain rendering is 

implemented based on quadtree features. The 

following definitions have been provided to facilitate 

the description of the algorithm. 

(1) Terrain nodes, such as A1 and A2 in Fig. 3, are 

simply referred to as tiles. A unified code is used to 

describe the LoD, row and column of each tile, i.e., 

Tilecode = (LoD, TileX, TileY). Each tile contains 

M×M vertices, with M being a positive integer that 

represents the number of grid points on a given edge. 

(2) In a terrain quadtree, "parentless" nodes, such 

as C1 in Fig. 3, are referred to as root nodes, and 

"childless" nodes, such as C2, C6 and C7 in Fig. 3, 

are referred to as leaf nodes. 

(3) The tiles that surround each tile are 

categorized either as edge neighbors or corner 

neighbors based on their spatial relationships. Edge 

neighbors can be classified as left edge neighbors 

(LN), upper edge neighbors (UN), right edge 

neighbors (RN), and bottom edge neighbors (DN). 

Corner neighbors may be classified as left upper 

corner neighbors (LUN), right upper corner neighbors 

(RUN), right lower corner neighbors (RDN), and 

lower bottom edge neighbors (LDN). An example of 

these spatial relationships is illustrated in Fig. 4. 

(4) In a quadtree structure, "child" nodes on the 

upper left, upper right, bottom right and bottom left 

corners of a "parent" node are referred to as LUChild, 

RUChild, RDChild and LDChild, respectively. 

 

Figure 3: Terrain quadtree structure. 

 

Figure 4: Definitions of adjacency relationships. 

3.2 The Construction and Dynamic 
Updating of Quadtree Structures 

During the rendering of a 3D terrain scene, terrain 

quadtrees will be constructed and dynamically 

updated according to the rules of view-dependent 

LoD control (Feng et al, 2010. Lindstrom et al, 2001). 

A change in view will therefore affect the merging 

and splitting of leaf nodes in a quadtree. For instance, 

Fig. 5(a) describes a terrain quadtree that corresponds 

to the view being close to the upper-left part of the 

terrain, and Fig. 5(b) illustrates the changes in the 

quadtree when the view shifts from the upper-left part 

of the terrain to the bottom-left part. When the 

quadtree changes from Fig. 5(a) to Fig. 5(b), the 

LDChild1 tile in Fig. 5(b) will split into four 

"children" tiles, and the LUChild2, RUChild2, 

RDChild2 and LDChild2 tiles in Fig. 5(a) will be 

merged. This process corresponds to the rendering of 

the "parent" tile (LUChild1).  

The dynamic updating of adjacency information 

associated with the generation of "children" tiles or 

the merging of "parent" tiles (when the "parent" tile 

is being rendered) is a crucial step in crack removal. 

This adjacency processing algorithm can be divided 

into two modules according to the intrinsic 

characteristics of each leaf node: an algorithm that 

processes the adjacency information of split leaf 

nodes, and an algorithm that processes the adjacency 

information of merged leaf nodes. 

Since terrain cracks only occur at inter-tile 

boundaries, the ultimate purpose of crack removal is 

to ensure that the four edges and corners of a tile are 

consistent with those of adjacent tiles. The 

assessment of adjacency information is based on the 

spatial and positional relationships of the tiles. To 

facilitate the computations of the crack removal 

algorithm, we define a marker called "Dirty" for the 

adjacency information of each edge and corner of 

every tile. Dirty has two possible states: active or 
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sleeping. The specific procedure is given in the 

following subsection. 

 
(a)  

 

(b) 

Figure 5: An illustration of a terrain quadtree being 

updated: (a) View located at the upper-left part of the terrain 

and (b) View located at the bottom-left part of the terrain. 

3.2.1 The Processing of Adjacency 
Information for Split Leaf Nodes 

The location of a split leaf node relative to its "parent" 

tile is determined, and the adjacency information of 

the former is then acquired using its location and 

spatial/positional relationships. The determination of 

the corner and edge neighbors of a "child" tile located 

at the upper-left corner of a "parent" tile (LUChild) is 

described below. 

(1) The determination of edge neighbors and their 

states 

Since the split leaf node is an upper left "child" 

tile, the tiles that neighbor the split leaf node on its 

right and bottom edges must belong to the same 

"parent" and have the same level of resolution. Hence, 

the "Dirty" crack removal markers of the following 

edges are set to the sleeping state: the right and 

bottom edges of the current tile, the left edge of the 

right-edge neighbor, and the upper edge of the 

bottom-edge neighbor. As the left and upper-edge 

neighbors have different "parents" than the current 

tile, the next step is to find the "parents" of the left 

and upper edge neighbors of the current and to 

subsequently perform calculations for the left and 

upper-edge neighbors of the current tile. The "Dirty" 

crack removal markers of the edges associated with 

all the previously mentioned tiles are then set to the 

active state. 

(2) Determination of corner neighbors and their 

states 

As before (i.e., during the determination of edge 

neighbors and their states), the bottom-right corner 

neighbor of the upper-left corner "child" tile has the 

same parent as the current tile and therefore the same 

level of resolution. Thus, the "Dirty" crack removal 

markers of the bottom-right corner of the current tile 

and the upper-right corner of the bottom-right corner 

neighbor are set to the sleeping state. Since the upper 

left, upper right, and bottom left corner neighbors 

belong to different "parents" than the current tile, the 

next step is to search for the parents of the upper-left, 

upper-right and bottom-left corner neighbors of the 

current tile. The corner neighbors of the current node 

are then identified, and the "Dirty" crack removal 

markers of the corners associated with the current tile 

are set to the active state. 

3.2.2 The Processing of Adjacency 
Information for Merged Leaf Nodes 

Since four "children" are merged to form a "parent", 

it is necessary to update the adjacency information of 

the neighbors of these "children" in sequential 

fashion. Again, the "child" tile in the upper-left corner 

(LUChild) is used as an example to explain this 

process. 

(1) The determination of edge neighbors and their 

states 

The adjacency information of the right-edge and 

bottom-edge neighbors does not require further 

processing because these neighbors have the same 

parent as the current LUChild tile and because these 

three tiles are also simultaneously merged. If the left-

edge (LN) and upper-edge (UN) neighbors have the 

same LoD as the LUChild tile, the adjacency 

information of the LN and UN tiles will change after 

the 4 "children" tiles have been merged. The right-

edge neighbor of LN and the upper-edge neighbor of 

UN are set as the parent of LUChild. If LN and UN 

have "children" tiles, the adjacency information of 

their associated edges will then need to be recursively 

updated. The "Dirty" markers of the corresponding 

edges are also simultaneously set to the active state. 

(2) The determination of corner neighbors and 

their states 
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As before, the adjacency information of the 

bottom-right corner neighbor is not processed since it 

has the same "parent" as the current tile (LUChild). If 

the upper-left corner neighbor (LUN) has the same 

LoD as LUChild, the bottom-right corner neighbor of 

LUN is then designated the "parent" of LUChild. If 

LUN has any "children", the adjacency information 

of the relevant corners then needs to be recursively 

updated. If an upper-right corner neighbor (RUN) or 

bottom-left corner neighbor (LDN) exists and has the 

same LoD as LUChild, the corner adjacencies related 

to these tiles must be set to null since they are not 

spatially adjacent to the corners of the "parent" of 

LUChild (like the O and UN2 tiles in Fig. 4). 

Similarly, if RUN and LDN have children, their 

corner adjacencies also need to be recursively 

updated. 

3.3 The Removal of Cracks with Large 
Differences in Lod 

To satisfy the requirements for the real-time 

rendering of massive terrain data, terrain frustum 

culling is used to perform a preliminary investigation 

of the range of tiles that require crack removal when 

the terrain renders and quadtrees of each frame are 

being constructed. The adjacent tiles and “Dirty” 

state of the newly added leaf nodes are determined; 

the nodes that have an active “Dirty” state may 

contain cracks, and these are stored in the crack repair 

set (CrackTileVector). After the preliminary 

investigation is complete, crack removal without LoD 

difference constraints is performed on the tiles of 

CrackTileVector. 

Our crack removal algorithm without LoD 

difference constraints can be summarized as follows. 

Since terrain cracks can only occur at tile boundaries, 

the (four) edges and corners of some given tile are 

sequentially processed, and linear interpolation is 

used to ensure that the node elevations of the tile that 

is being processed are consistent with the node 

elevations of the adjacent tiles (which may have 

different LoDs). The steps in processing the left edge 

of a tile are used as an example to explain the specific 

processes of the proposed algorithm. 

Step 1: Investigate the left-edge neighbor (a leaf 

node) of the current tile using dynamically updated 

tile adjacency information. 

If the current node is N, the adjacency array of the 

left neighbor of N is Lvec() (the left-edge neighbor 

can exist in various configurations, as shown in Figs. 

6(a), 6(b) and 6(c); nevertheless, the processing 

procedure is the same in each case). To find the left-

edge neighbor of N in a 3D terrain scene, each 

member of the Lvec(array) is checked for “children”. 

If a member has “children”, the upper-right and 

bottom-right “children” of this member (LChild1 

and LChild2, respectively) are assigned to the current 

node (N) and treated as the left-edge neighbor of N. 

LChild1 and LChild2 are then recursively processed 

using these steps until a leaf node is reached and 

recorded in the neighbor array, LYvec[]. After the 

left-edge neighbor of N has been configured, the 

right-edge neighbor of the left-edge neighbor is 

simultaneously designated N. 

Node of the current tile
The left neighbor node of the currently 

displayed scene

 
(a)  

Node of the current tile
The left neighbor node of the 

currently displayed scene

 
(b) 

Node of the current tile
 The left neighbor node of the currently 

displayed scene

 
(c)  

Figure 6: Possible configurations for the left-edge neighbor 

of a tile: (a) N and L have the same LoD, (b) N has a greater 

LoD than L and (c)N has a lower LoD than L. 

Step 2: For the array of left-edge neighbors 

(LYvec[]),perform the crack removal operation. 
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If there is only one node in LYvec[], the left-edge 

neighbor and N then have the same LoD, and the 

vertex relations between the tiles have a strict one-to-

one correspondence, as shown in Fig. 7(a). In this 

case, every vertex on the inter-tile boundary can be 

directly traversed to determine whether the vertices 

have the same elevation. If the elevations are not 

equal, the elevation of N is used as a reference, and 

the elevation values of the vertices are assigned to the 

corresponding vertices of the corresponding 

neighbors. If LYvec[] only has 2 nodes and the LoDs 

of N and its neighbor are different by 1, the relation-

ship between the boundary vertices of these tiles is 

then described by Fig. 7(b). Additionally, in this case, 

the length of two neighboring grids is exactly the 

length of a single N grid. Equidistant linear interpola- 

 
(a) 

 
(b) 

 
(c) 

Figure 7: Possible configurations for the left-edge neighbor 

of a tile: (a)Same LoD, (b)Difference of 1 in LoD and 

(c)Difference of 2 in LoD. 

ion is then performed on the vertices of N to obtain 

the midpoint elevations between each pair of vertices 

on the boundary of N; these elevation values are then 

assigned to the neighboring vertices. If LYvec has 4 

nodes and the difference between the LODs of N and 

the neighbor node is n (n > 1), the relationship 

between vertices of these tiles is as shown in Fig. 7(c) 

(n = 2). This figure illustrates that the length of two 

grids in the adjacent tile is 1/n the length of a grid in 

N. The grid points of N that are closest to the 

neighboring tile are then calculated, and the grid 

edges of N are divided in half to form 2n nodes. The 

linear interpolation algorithm is used to calculate the 

elevations of every node, which are then assigned to 

the neighboring vertices.  

Since the vertex normals of the boundary mesh 

vertices must be recalculated, the “Dirty” markers 

of vector normals corresponding to vertices that still 

require crack removal are set to the active state. 

The proposed crack removal algorithm can be 

used without any constraints regarding the difference 

in boundary LoD between adjacent nodes. In 

addition, our method does not require the rendering 

of additional terrain patches, which helps to preserve 

actual changes in terrain elevation. 

3.4 The Updating of Vertex Normals in 
Boundary Areas 

Lighting discontinuities may occur at mesh 

boundaries after the elevations of vertices at terrain 

cracks have been adjusted (Han et al, 2012). After the 

terrain cracks have been removed, the vertex normals 

of the boundary vertices that participated in the crack 

removal operation must be recalculated and re-

evaluated. This process can be described as follows. 

Step 1: CrackTileVector is sequentially traversed, 

and all the vertices on the four edges of each tile are 

processed to determine whether the “Dirty” marker 

of the vertex normal is set to the active state. If the “

Dirty ”  marker is active, proceed to Step 2; 

otherwise, continue to the next vertex. 

Step 2: Investigate the 8 vertices that are 

connected to this vertex by a triangular mesh, e.g., the 

8 vertices around A in Fig. 8. If any of these vertices 

are missing, proceed to Step 3 to pad the vertices; 

otherwise, proceed directly to Step 4. 

Step 3: Vertex padding. Like the crack removal 

algorithm, the first step in the padding process is to 

determine the LoD difference between the current tile 

and an adjacent tile. An analogous subdivision is 

performed via linear interpolation of the grids of the 
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tile with the lower LoD to generate a corresponding 

set of vertices in the former tile. Fig. 9 shows that the 

grids around the boundary of terrain block 1 should 

be subdivided, so that a vertex (b) can be identified 

on the right side of boundary point A to participate in 

the construction of a triangular mesh. 

Step 4: Using the current vertex as the center, the 

normal components of each of the 8 directions from 

the current vertex are sequentially calculated. These 

components are then summed and normalized. 

Finally, the vertex normals of the current vertex are 

evaluated according to the results of these 

calculations. 

 

Figure 8: The vertices associated with point A. 

 

Figure 9: Analogous subdivision of boundary grids. 

4 EXPERIMENTS AND 

ANALYSIS OF RESULTS 

4.1 Experimental Data and 

Environment 

The proposed terrain crack removal algorithm was 

embedded in the NewMap software platform 

developed by the Chinese Academy of Surveying and 

Mapping. The effectiveness of the method was then 

tested using the terrain data from a typical 

mountainous region in Sichuan Province. The 

elevation data were obtained from the Shuttle Radar 

Topography Mission (SRTM), with a coordinate 

range of (97.5°～108.5°E, 26.2°～34.1°N); the 

horizontal and vertical resolutions of the data were 90 

m and 0.1 m, respectively. The image data were 

derived from the terrestrial remote sensing data from 

Landsat. The multiresolution elevation and image 

quadtree pyramids were constructed using NewMap 

TerrainPublish software, and the sizes of these 

pyramids were 15.76 GB and 63.34 GB, respectively. 

The hardware environment of this experiment was a 

PC equipped with a 2.60 GHz Pentium Dual Core 

E5300 CPU, 1.96 GB of internal storage, and a 

Nvidia GeForce 6800 graphics card. 

4.2 Results and Analysis 

4.2.1 Validating the Reliability of the 

Proposed Method 

The proposed method was compared to the elevation 

adjustment-based crack removal method (i.e., the 

conventional method) to validate the reliability of our 

method. A random region was selected from the 

experimental data to compare the effectiveness of 

these methods in removing terrain cracks. The results 

of this experiment are shown in Table 1. 

Table 1: Comparison of crack removal effectiveness. 

 
Total number 

of tiles 

Number of terrain cracks 

Rate of 

terrain crack 

removal 

LoD 

difference 

of 1 

LoD 

difference 

of 2 

LoD 

difference 

of 3 

LoD 

difference 

of 4 

Total 

number of 

cracks 

2057 1080 384 64 3585 

Conventiona

l method 17072 
2057 - - - 2057 57.38% 

Our method 2057 1080 384 64 3585 100% 
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Table 1 shows that there are large differences in 

LoD around the boundaries where terrain cracks 

occur. Terrain cracks with an LoD difference of 1 

account for 57.38% of the total number of terrain 

cracks in the experimental area. The conventional 

method successfully eliminates all terrain cracks 

with an LoD difference of 1 but is unable to process 

terrain cracks with LoD differences greater than 1. 

Our method is able to completely eliminate all 

terrain cracks with LoD differences of 1 and terrain 

cracks with LoD differences greater than 1. 

Specifically, a terrain crack removal rate of 100% 

was achieved in this area using the proposed method. 

Figs. 10, 11 and 12 illustrate the effectiveness of the 

aforementioned methods in removing terrain cracks 

with LoD differences of 1, 2 and greater than 2, 

respectively. 

  

(a)                                           (b) 

  

(c)                                           (d) 

  

(e)                                            (f) 

Figure 10: Comparison of our method and the conventional 

method for the removal of terrain cracks with an LoD 

difference of 1:(a)Terrain crack with an LoD difference of 

1, (b)Visualization of the terrain crack, (c)Results of crack 

removal using the conventional method, (d)Results of crack 

removal using the conventional method, (e)Results of crack 

removal using our method and (f)Visualized result of crack 

removal using our method. 

 

  

(a)                                             (b) 

  

(c)                                            (d) 

Figure 11: The effectiveness of our method in removing 

terrain cracks with an LoD difference of 2 : (a)Terrain 

cracks with an LoD difference of 2, (b)Visualization of 

terrain cracks, (c)Results of terrain crack removal using our 

method and (d)Visualized result of terrain crack removal 

using our method. 

Figs. 10 and 11 clearly show that both the 

aforementioned methods can effectively eliminate 

terrain cracks that have an LoD difference of 1, and 

the proposed method is also suitable for removing 

terrain cracks that have LoD differences of 2, the 

complex terrain in the studied region is accurately 

reproduced by the processed terrain structures. 

4.2.2 Validation of Lighting Continuity 

By changing the rules applied for tile splitting, the 

tiles that are rendered in a scene will have the same 

LoD, which ensures that cracks cannot occur 

throughout the entirety of the terrain scene. In this 

case, the lighting of the meshes around tile boundaries 

is continuous, and this is referred to as the theoretical 

reference value. However, under normal tile splitting 

rules, the tiles that are rendered in a scene can have 

different LoDs, and these are the actual values of the 

vertex normals (lighting) after the crack removal 

process has been implemented. A comparison was 

made between the vertex normals calculated by our 

method and the conventional method for the tile 

boundaries of a terrain block to inspect the continuity 

of the lighting values in each case. The theoretical 

values and actual (post-crack removal) values of the 

vertex normals are shown in Table 2. 
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Table 2: Comparison of vertex normal at tile boundaries. 

Vertex 

number 
Theoretical value (X, Y, Z) 

Vertex normals of the 

conventional method (X, Y, Z) 

Vertex normals of our method 

(X, Y, Z) 

1 (0.630410,0.279561,0.724174) (0.630410,0.279561,0.724174) (0.630410,0.279561,0.724174) 

2 (0.623360,0.294948,0.724174) (0.724351,0.134632,0.676158) (0.623450,0.294758,0.724174) 

3 (0.615934,0.310157,0.724174) (0.615934,0.310157,0.724174) (0.615934,0.310157,0.724174) 

4 (0.608136,0.325179,0.724174) (0.649363,0.623852,0.434898) (0.608129,0.325194,0.724174) 

5 (0.599973,0.340006,0.724174) (0.599973,0.340006,0.724174) (0.599973,0.340006,0.724174) 

6 (0.591448,0.354628,0.724174) (0.639341,0.398756,0.657447) (0.591449,0.354630,0.724172) 

7 (0.582567,0.369035,0.724174) (0.582567,0.369035,0.724174) (0.582567,0.369035,0.724174) 

8 (0.563758,0.397176,0.724174) (0.737288,0.423349,0.526481) (0.563761,0.397176,0.724172) 

9 (0.573335,0.383221,0.724174) (0.573335,0.383221,0.724174) (0.573335,0.383221,0.724174) 

10 (0.543590,0.424360,0.724174) (0.415249,0.628213,0.657964) (0.543588,0.424363,0.724174) 

11 (0.553841,0.410892,0.724174) (0.553841,0.410892,0.724174) (0.553841,0.410892,0.724174) 

12 (0.533012,0.437573,0.724174) (0.743681,0.577819,0.336250) (0.533012,0.437573,0.724174) 

13 (0.522113,0.450522,0.724174) (0.522113,0.450522,0.724174) (0.522113,0.450522,0.724174) 

14 (0.499378,0.475598,0.724174) (0.657243,0.261486,0.706864) (0.499381,0.475595,0.724174) 

15 (0.510899,0.463199,0.724174) (0.510899,0.463199,0.724174) (0.510899,0.463199,0.724174) 

 

Figure 12: Comparison between the boundary vertex normals calculated by our method and the conventional method. 

The red underlines in Table 2 serve to highlight 

differences between the theoretical and actual values 

of the vertex normals. The X, Y and Z components of 

the vertex normals that were calculated by the 

conventional method and our method were subtracted 

from the reference values, and the absolute values of 

these results were then summed to produce the bar 

chart shown in Fig. 12. This figure shows that the 

vertex normals calculated by our method for all 15 

vertices (which are tile boundary vertices) are 

essentially identical to the theoretical values. Notably, 

only minor differences were observed at the 5th 

decimal place and beyond, which are negligible in the 

calculation of terrain tile lighting. However, there are 

significant differences between the vertex normals 

calculated by the conventional method and the 

theoretical values, particularly for vertices 2, 4, 6, 8, 

10, 12 and 14. These differences will lead to 

discontinuities in the lighting of tile boundaries. 

4.2.3 Efficiency Validation 

The efficiency of our method was validated by setting 

the view to roam around the experimental area for 20 

minutes. During this time, the total number of tiles, 

number of cracks and time consumed by crack 

removal in every frame of the terrain rendering 

process was randomly sampled at 12 instants. The 

results are shown in Table 3. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
u
m

 o
f 

ab
so

lu
te

 v
er

te
x
 n

o
rm

al
 

d
if

fe
re

n
ce

s

Vertex number

 Sum of absolute differences between the reference values and those of the conventional

method

Sum of absolute differences between the reference values and those of our method

GISTAM 2019 - 5th International Conference on Geographical Information Systems Theory, Applications and Management

68



Table 3: Crack removal statistics. 

Time point (s) Frames rendered 
Total number of 

tiles 

Total number of 

cracked tiles 

Proportion of 

cracked tiles 

Time 

consumption of 

our method (ms) 

Time 

consumption of 

the conventional 

method (ms) 

8.13 1025 244 30 12.30% 0.670 7.425 

24.70 3458 273 8 2.93% 0.104 8.105 

50.35 6643 396 16 4.04% 0.672 9.362 

64.13 8721 355 21 5.92% 1.302 7.853 

86.03 12474 473 13 2.75% 0.314 9.537 

113.73 16149 440 19 4.32% 0.531 9.046 

258.79 36231 492 26 5.28% 2.623 9.951 

275.1 41264 212 22 10.38% 1.451 6.433 

419.21 54498 516 24 4.65% 1.534 9.427 

507.17 66439 460 28 6.09% 2.352 8.854 

790.74 104378 543 49 9.02% 2.858 9.364 

898.84 119546 316 31 9.81% 1.692 7.223 

Table 3 shows that the proposed method requires 

less computational time than the conventional method 

because our method only computes the “parent” 

nodes obtained from newly split or merged leaf nodes 

during terrain crack removal; hence, only the tiles that 

correspond to terrain cracks are processed. During 

crack removal with the conventional elevation 

adjustment-based method, the entirety of the terrain 

quadtree must be traversed; therefore, all the tiles 

must be processed when this method is used. This 

approach consumes more computational time, and the 

average processing time of the conventional method 

is approximately 8 times that of our method. 

5 CONCLUSIONS AND 

DISCUSSION 

In this work, we have proposed a terrain crack 

removal method that is able to handle large 

differences in boundary LoD. This method fully 

exploits the features of quadtree structures and the 

implicit adjacency relationships of parent and child 

nodes. Additionally, terrain crack removal and the 

updating of boundary vertex normals occur in real 

time. With this method, the elimination of terrain 

cracks will no longer be limited by differences in 

boundary LoD. The following conclusions were 

drawn from the validations and comparative analyses 

that were performed using terrain data from a typical 

mountainous region in Sichuan Province. 

(1) Our method is applicable at boundaries where 

the difference in LoD is equal to 1 and complex 

terrain areas where the LoD difference between 

adjacent tiles is greater than 1. 

(2) The continuity of terrain lighting is ensured by 

our method through the recalculation and re-

evaluation of boundary vertex normals after the crack 

removal process, thereby overcoming the lighting 

discontinuities that hinder the use of the conventional 

crack removal method. 

(3) The efficiency of our method is, on average, 

eight times greater than that of the conventional 

method because the proposed method does not 

traverse the entirety of the terrain quadtree during 

crack removal, which saves a substantial quantity of 

computational time. 

The method that is proposed in this work is 

suitable for terrain rendering based on quadtree 

structures. However, further research must be 

performed to investigate the suitability of the method 

for other terrain mesh models, such as triangular 

meshes and binary tree models. 
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