
Development of Agent System for Multi-robot Search

Masashi Omiya1, Munehiro Takimoto2 and Yasushi Kambayashi1
1Department of Computer and Information Engineering, Nippon Institute of Technology,

4-1 Gakuendai, Miyashiro-machi, Minamisaitama-gun, Saitama 345-8510, Japan
2Department of Information Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan

Keywords: Mobile Agent, Ad-hoc Network, Multi Robot, Particle Swarm Optimization.

Abstract: In this paper, we propose an agent system that controls multiple mobile robots. We describe the agent system

as well as an example multi-robot system as an application of this agent system. The aim of the multi-robot

system is providing efficient searches for a given target. Therefore, it is necessary to mutually communicate

and cooperate among robots. Taking account of the delay of communication, cost, fault tolerance, and

robustness, we have chosen mobile agent system for the information transmission method. We have also

chosen ad-hoc method for the communication mode, where each robot communicates directly without going

through the Internet. Even though agent systems are often implemented using Java language or Python

language, we have chosen C++ language for developing our agent system with the hope for gaining

performance efficiency. We have modularized each function and it does not depend on other modules. We

have shown the feasibility of our multi-agent system by applying the system to a multi-robot system that

implement particle swarm optimization.

1 INTRODUCTION

Recently we are observing scenes where robots play

an active part in places where people can hardly work.

For example, multiple autonomous robots may be

used for search and rescue operations in urban areas

after a disaster. In the previous study, we have shown

that a team of multiple robots search efficiently using

mobile agents (Oda et al., 2018).

A mobile agent is a program that migrates

between devices and performs a given task at an

arbitrary target device (Kambayashi and Takimoto,

2005). The agent platform need to transmit and

receive agents between devices. When

communicating via an access point that controls the

network, the access point allocates IP addresses to

each devices. In the previous study, we have specified

the destination of agent using the assigned IP address

(Oda et al., 2018).

Considering after disaster cases, disconnection

may occur frequently between the access point and

the communication device due to collapse of the

communication infrastructures. Therefore,

communication through the access points becomes

hard to achieve.

On the other hand, in ad-hoc mode which devices

communicate directly, the network can be constructed

dynamically (Nishiyama et al., 2014). Since a mobile

agent is a partially self-sufficient program, it does not

need to keep continuous communication. They can

continue to work with intermittent communication,

since they only require connection when they move

(Kambayashi et al., 2016).

We have three objects in this study; 1) employing

ad-hoc mode for the agent transition method, 2)

developing a new agent system implemented in C++,

and 3) realizing a search using multiple mobile robots.

We have prepared a specific class to determine the

destination of a given agent. As the example

experiment, we have implemented a search

simulation using the particle swarm optimization.

The rest of this paper is organized as follows. The

second section describes the background. The third

section describes the agent system in C++ we have

designed and implemented. The fourth section

demonstrates the applicability of our agent system to

an example multi-robot system. We show the

feasibility of our mobile agent system by discussing

an experiment. Finally, the fifth section concludes our

discussion.

Omiya, M., Takimoto, M. and Kambayashi, Y.
Development of Agent System for Multi-robot Search.
DOI: 10.5220/0007702603150320
In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (ICAART 2019), pages 315-320
ISBN: 978-989-758-350-6
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

315

2 BACKGROUND

Agent systems have been widely developed in various

languages (Stone and Veloso, 2000; Braun and

Rossak, 2005). AgentSpace is the prominent agent

system (Sato, 1997). AgentSpace was developed in

Java language. In the previous study, we developed a

mobile agent platform in Python language (Oda et al.,

2018). The purpose of selecting C ++ language as a

development language in this paper is to improve the

agent system’s processing speed. We have provided

C++ classes that provide basic functions for

constructing mobile agents. In this agent system, the

users are expected to overwrite functions to construct

their own agents. Since our agent platform only sends

executable programs as files, agents can be written in

arbitrary programming languages such as Java and

Python language.

We have conducted projects that have taken

advantage of multiple mobile agents. These projects

include evacuation route generation (Taga et al.,

2016; Taga et al., 2017; Taga et al., 2018), and rescue

and search operation (Nagata et al., 2013). These two

studies have one commonality, namely, building a

multi-agent system in a distributed environment. As a

result of these studies, we have shown that an

efficient search can be achieved through

communication among multiple mobile agents.

3 AGENT SYSTEM

In this agent system, an agent is transmitted as an

executable file, and local data are transmitted as

separate files. We have designed the system

extensively using polymorphism through the C++

inheritance mechanism. Since it is possible to

override member functions from derived classes, it is

relatively easy to change depending on the purpose.

We confirmed the operation of communication in ad-

hoc mode environment and the communication in

multi-hop between multiple mobile robots are both

possible.

3.1 Configuration

As shown in Figure 1, the agent system consists of

Agent class and Server class.

The Agent class inherits three classes: Execute class,

Transmit class, and Routing class. The users are

expected to implement their own class, i.e. the user

agent as a subclass of the Agent class, and to take

advantages of these classes through multiple inher-

Figure 1: Class relation.

itance. We designed our agent system to implement

only one functionality in each class so that it provides

as much flexibility and simplicity of the code as

possible. The Agent object sends and receives user

agents from another device. The Server object

establishes the connection for transmission of agents.

We explain each class in the following sections.

3.1.1 Server

This class receives the request of agent migration that

is transmitted from other devices, and manages a

socket connection to other devices. The Server object

runs continuously in an independent thread. From

now, we call the Server object, the server.

As shown in Figure 2, the server thread receives

the request of an agent migration that is transmitted

from another device. The Agent object asks the server

in order to establish the socket connection through a

function call. Likewise, a connected socket can be

received through a function as well.

Figure 2: Receive request.

3.1.2 Execute

This class receives agents from other devices using

the communication connection established by the

server and executes them as an independent thread.

When a member function of this class, i.e. execute

HAMT 2019 - Special Session on Human-centric Applications of Multi-agent Technologies

316

function, is executed, as shown in Figure 3, the server

communicates through the socket connection, and the

received data are saved as files on the local disk.

Figure 3: Receive agent.

3.1.3 Routing

This class determines the destination device of the

agent. By default, as shown in Figure 4, the routing

function attempt to connect in the order of the address

list prepared in advance, and the succeeding address

is taken as the next destination. The user can override

the routing member function in a derived class.

Figure 4: Default routing algorithm.

3.1.4 Transmit

This class transmit agents to other devices. This class

inherits the Routing class. When the transmit function,

which is a member function of this class, is executed,

the inherited routing function is executed to

determine the destination device. And then, the

transmit function communicates with the determined

destination device and transmits the designated agent.

The user can override the transmit function in a

derived class.

3.1.5 Agent

When the Agent class is instantiated and an Agent

thread starts, the Agent thread operates as an

independent thread different from other threads.

Figure 5 shows the flow of an Agent thread. The

Agent thread first instantiates the Server class.

Figure 5: Agent thread flowchart.

Since the server also starts the server thread, as

shown in Figure 6, multiple threads are executed at

the same time. After instantiating the Server class, the

agent thread waits until the server thread receives a

request of an agent migration. When a request of an

agent migration is received, the Agent thread

executes the execute function. The execute function

receives an agent and local data files, if the agent uses

them through a socket connection established by the

server, and then makes the agent running. When the

agent’s processing completes, the Agent thread

executes the transmit function and transmits the agent

to the next destination. After transmitting the agent,

the Agent thread resets the server and waits again

until it receives another request of agent migration.

Figure 6: All running threads.

3.2 User Agents

This agent system executes and moves an agent

prepared in advance in the local directory. The user

prepares a file used as an agent and data files

necessary for the agent’s processing in the local

directory.

When the user constructs a user agent class, he or

she is expected to prepare a class that inherits the

Agent class, such as the MyAgent class, as a program

that uses our agent system. The execute function, the

transmit function, and the routing function can be

overridden from the derived class, if necessary.

Development of Agent System for Multi-robot Search

317

The agent starts processing for the first time after

it is received. The entire process is initiated by

transmitting an agent to the first device using a

program that only transmits the agent.

4 EXAMPLE OF MULTIROBOT

APPLICABILITY

In order to investigate the feasibility of our simple

agent system, we have implemented a set of search

robots using our mobile agent system. The set of our

robots implements the particle swarm optimization

(PSO) for its search for a target. Potential usefulness

of PSO for search robots is demonstrated (Ishiwatari

et al., 2017).

4.1 Particle Swarm Optimization

The particle swarm optimization (PSO) is an

optimization algorithm using swarm intelligence

proposed by Kennedy and Eberhart (1995). PSO is a

method of performing a search using modelled

particle swarm. Each particle has position and

velocity, and adjusts its position and speed from

surrounding particles. Particles converge to a position

considered as a solution. If 𝑥 is the position and 𝑣 is

the velocity, each particle repeats the update of its

own position and speed using the following equation:

𝑥 ← 𝑥 + 𝑣 (1)

𝑣 ← 𝑤𝑣 + 𝑐1𝑟1(𝑥̂ − 𝑥) + 𝑐2𝑟2(𝑥̂𝑔 − 𝑥) (2)

𝑤 is the inertial constant. 𝑐1, 𝑐2 are the proportion of

particles going to a better position. 𝑟1, 𝑟2 are random

numbers. 𝑥̂ is the local best. 𝑥̂𝑔 is the global best.

These parameters are stored in data files. We

prepared three files for storing the particle data:

Particle.txt, LocalBest.txt, GlobalBest.txt.

Since robots represent particles of PSO data

present in each particle’s attributes, they are stored in

files bound to each robot. They are Particle.txt and

LocalBest.txt. The data shared among all the particles,

i.e. robots, are stored in a file namely GlobalBest.txt.

These files are bound to each mobile agent. Mobile

agents are trying to make the global data consistent

among the robot by migrating among the robots.

Particle.txt is a file that records the current

coordinates and speed of the robot as particle data.

Each robot holds its own file.

LocalBest.txt is a file that records parameters of a

local best particle. Each robot holds its own file. The

agent records the nearest neighbour coordinates on

the trajectory of the robot in LocalBest.txt as shown

in Figure 7.

Figure 7: LocalBest at each point.

GlobalBest.txt is a file that records parameters of

a global best particle. This file moves with the agent

and shares among the robots as the global best for the

robots toward the destination. The agent records in

GlobalBest.txt the coordinates of the robot that was

the closest to the destination among the robots that it

got through as shown in Figure 8.

Figure 8: GlobalBest at each robot.

Figure 9 shows a robot’s local directory. The

robot’s control computer possesses Particle.txt and

LocalBest.txt in its local directory. The visiting agent

possesses GlobalBest.txt, but it is a separate file so

that the control computer can access this file as well.

Figure 9: Particle files in the robot’s local directory.

4.2 Search Agent

Our agents uses PSO to search. The agents perform

three tasks to search as follows:

1. acquisition of parameters necessary for PSO,

2. update of parameters with acquired coordinates,

and

3. recording of updated parameters.

HAMT 2019 - Special Session on Human-centric Applications of Multi-agent Technologies

318

The robots approach the destination by the agents’

repetitions of these three tasks, i.e. acquiring,

updating and recording of parameters among the

colleague search robots.

The agent reads the parameters from the files in

the robot’s local directory. We use an orthogonal

coordinate system, and the x velocity and the y

velocity are provided as parameters for each robot.

Every robot first needs to set its own parameters and

local best. Therefore, the agent needs to determine

whether the robot of the destination has already been

initialized. We decided to use an empty file named

Initialized.txt to determine if the parameters of the

robot were initialized. The agent causes the robot that

executed the agent to create Initialized.txt. The agent

determines whether data has been initialized, based

on whether Initialized.txt exists in the robot.

 When the agent is executed, it first checks

whether the robot that is running the agent has

Initialized.txt. If Initialized.txt does not exist in the

robot, the agent initializes the parameters, creates

Initialized.txt, and then acquires the particle data. If

Initialized.txt exists, i.e. it is already initialized, the

agent acquires particle data immediately.

In parameters acquisition, the agent reads each

data file and obtains parameters as local variables. If

the distance from the current robot to the destination

is closer than the distance from the local best

coordinates or the global best coordinates, the local

best or global best is updated with the current

coordinates. After obtaining the parameters, it

updates the parameters. When updating, the agent

substitutes the acquired coordinates into the

calculation formula of PSO, i.e. equation (1) and (2),

and modifies the coordinates and speed. After

updating the particle data, the agent records the

updated data in each file and moves with

GlobalBest.txt to another robot. The agent repeats

these steps of processing with the next destination.

4.3 Experiment

We have constructed a simulator of multi-robot

system based on our multi-agent system, and

conducted an experiment in order to demonstrate that

our agent system is feasible for searching with PSO.

We have set the search field as a two-dimensional

field of 1024 × 1024 and set the destination as (512,

512). We set parameters for each of the three robots

as follows:

 Robot 1 (x=0, y=0, speedX=1, speedY=1).

 Robot 2 (x=768, y=256, speedX=-1, speedY=0).

 Robot 3 (x=256 y=1024, speedX=1, speedY=0).

In this experiment, assuming that there is no local

solution, we updated the velocity of each particle with

a simplified formula with an inertial constant 𝑤 set to

0.9 and a random number 𝑟1, 𝑟2 associated with local

best and global best fixed at 0.5.

Figure 10 shows the result. Figure 10 (a) shows

the initial step, Figure 10 (b) shows the situation after

ten steps, Figure 10 (c) shows the situation after thirty

steps, and Figure 10 (d) shows the situation after fifty

steps. In comparison with the initial values of robot 1,

x approached 462.23 and y approached 510.387. In

comparison with the initial values of robot 2, x

approached 243.33 and y approached 242.832. In

comparison with the initial values of robot 3, x

approached 224.881 and y approached 479.691.

Figure 10: The position of each particle.

We have observed that the whole particles

approached to the optimal solution. From this

observation, we can conclude that our agent system

works well for search robot using PSO. Although the

simulation uses only three robots in this simple

experiment, the behaviors of the agents are as

expected, and we can expect that the many robots can

cooperatively search for a target. We believe that it is

possible to search for multiple robots in an actual

machine by acquiring the coordinates with GPS.

5 CONCLUSIONS

We have developed an agent system in C ++ language.

The system is designed and constructed to be easily

extensible so that we can add and modify functions

by extending the base classes. Since our agent system

can perform multi-hop communication in ad-hoc

mode, we believe that it can be used for less

Development of Agent System for Multi-robot Search

319

restrictions and wide range of applications. For

example, we can record the address of devices that

passed while the agent was moving, and use it to

return to the transmitter of the agent.

We have developed a simulator of a multi-robot

system to demonstrate the feasibility of our agent

system. When the user executes the agent system, the

agents move to robots that mimic PSO in the multi-

robot system. We could demonstrate the feasibility of

our agent system on a set of search robots.

In the current system, each agent is passed as a

program file, and when it arrives at the destination,

the agent does not have any local data. Local data are

also sent with the agent so that the agent acquires the

necessary data from the file. This is a disadvantage.

We will re-design the agent system so that the agent

can move with its own environment and maintain its

own state even during execution.

The current system does not allow interruption

during the execution and the migration of the agent.

At the next stage, we will extend the agent system so

that execution can be interrupted and moved to a

destination. And then, we will build an actual multi-

robot system for search as a future work.

ACKNOWLEDGEMENTS

This work is partially supported by Japan Society for

Promotion of Science (JSPS), with the basic research

program (C) (No. 17K01304), Grant-in-Aid for

Scientific Research (KAKENHI) and Suzuki

Foundation.

REFERENCES

Braun, P. and Rossak, W.R., 2005. Mobile Agents: Basic

Concepts, Mobility Models, and the Tracy Toolkit,

Morgan Kaufmann.

Ishiwatari, H., Sumikawa, Y., Takimoto, M. and

Kambayashi, Y., 2017. Cooperative Control of Multi-

Robot System Using Mobile Agent for Multiple Source

Localization, In Eighth International Conference on

Swarm Intelligence, pages 210-221.

Kambayashi, Y. and Takimoto, M., 2005. Higher-Order

Mobile Agent for Controlling Intelligent Robots,

International Journal of Intelligent Information

Technologies, 1(2), 28-42.

Kambayashi, Y., Nishiyama, T., Matsuzawa, T., and

Takimoto, M., 2016. An Implementation of an Ad hoc

Mobile Multi-Agent System for a Safety Information,

In Thirty-sixth International Conference on

Information Systems Architecture and Technology,

AICS vol. 430, pages 201-213.

Kennedy, J. and Eberhart, R., 1995. Particle swarm

optimization, In IEEE International Conference on

Neural Networks 4, pages 1942-1948.

Nagata, T., Takimoto, M. and Kambayashi, Y., 2013.

Cooperatively Searching Objects Based on Mobile

Agents, Transaction on Computational Collective

Intelligence XI, pages 119-136.

Nishiyama, H., Ito, M., Kato, N., 2014. Relay-by-

Smartphone: Realizing Multi-Hop Device-to-Device

Communications. IEEE Communications Magazine,

vol. 52, no. 4, Apr, pp. 56-65.

Oda, K., Takimoto, M. and Kambayashi, Y., 2018. Mobile

Agents for Robot Control Based on PSO, In Tenth

International Conference on Agents and Artificial

Intelligence, pages 220-227.

Stone, P. and Veloso, M., 2000. Multiagent systems: A

survey from a machine learning perspective,

Autonomous Robots, 8(3), 345-383.

Taga, S., Matsuzawa, T., Takimoto, M. and Kambayashi,

Y., 2017. Multi-Agent Approach for Evacuation

Support System, In Ninth International Conference on

Agents and Artificial Intelligence, pages 220-227.

Taga, S., Matsuzawa, T., Takimoto, M. and Kambayashi,

Y., 2016. Multi-Agent Approach for Return Route

Support System Simulation, In Eighth International

Conference on Agents and Artificial Intelligence, pages

269-274.

Taga, S., Matsuzawa, T., Takimoto, M., Kambayashi, Y.,

2018 Multi-agent Base Evacuation Support System

Using MANET, In Tenth International Conference on

Computational Collective Intelligence, LNAI 11055,

pages 445-454.

HAMT 2019 - Special Session on Human-centric Applications of Multi-agent Technologies

320

