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Abstract: Polyp detection and segmentation in colonoscopy images plays an important role in early detection of 

colorectal cancer. The paper describes methodology adopted for the EndoVisSub2017/2018 Gastrointestinal 

Image ANAlysis – (GIANA) polyp segmentation sub-challenges. The developed segmentation algorithms are 

based on the fully convolutional neural network (FCNN) model. Two novel variants of the FCNN have been 

investigated, implemented and evaluated. The first one, combines the deep residual network and the dilation 

kernel layers within the fully convolutional network framework. The second proposed architecture is based 

on the U-net network augmented by the dilation kernels and “squeeze and extraction” units. The proposed 

architectures have been evaluated against the well-known FCN8 model. The paper describes the adopted 

evaluation metrics and presents the results on the GIANA dataset. The proposed methods produced 

competitive results, securing the first place for the SD and HD image segmentation tasks at the 2017 GIANA 

challenge and the second place for the SD images at the 2018 GIANA challenge.  

1 INTRODUCTION 

Colorectal cancer is one of the leading causes of 

cancer deaths worldwide. Often, it arises from benign 

polyps which with time become malignant. To 

decrease mortality, an early detection and assessment 

of polyps is essential. For an initial evaluation, an 

image of a segmented polyp could provide important 

evidence to describe polyp characteristics. In the 

current routine clinical practice, polyps are detected 

and delineated in colonoscopy images manually by 

highly trained clinicians. To automate these 

processes, machine learning and computer vision 

techniques have been considered to improve polyps’ 

detectability and segmentation objectivity (Bernal et 

al., 2015).  

An automatic polyp segmentation is a very 

challenging task. This is because polyps’ appearance, 

shape and size are highly variable (see Figure 1). In 

the early stages, a colorectal polyp is small and could 

have no obvious differentiating texture appearance, 

and therefore could be easily confused with other 

intestinal tissue. In the later stages polyps 
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progressively change, often significantly increasing 

in size and could develop more distinctive texture and 

colour patterns. Some of the polyps grow so large, 

that they will take most of the camera field of view, 

possibly not fitting entirely into the image frame. 

Additionally, illumination used in the colon screening 

can cause image artefacts, with pattern of shadows, 

highlights and occlusions, making the segmentation 

task even harder. A single polyp could look 

significantly different depending on the camera 

position. Furthermore, for some polyp types there is 

no apparent boundary between the polyp and the 

surrounding tissue. As in most cases of manual 

delineation, polyp segmentation is affected by the 

lab’s guidelines and experience of the clinician. It is 

therefore hard to determine the gold standard for the 

automatic segmentation procedures dealing with all 

possible types of polyps. 

This paper proposes novel fully convolutional 

neural networks to accomplish this challenging 

segmentation task. The FCNN methods that were 

developed produce the polyp occurrence confidence 

map (POCM). The polyp position in the image frame 
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Figure 1: Examples, from the GIANA SD training dataset, showing polyps with different size, position, shape and colour. 

The blue contour is the ground truth marked by clinicians. 

is indicated by higher values of the POCM. In the 

post-processing, the final polyp delineation is either 

obtained by simple thresholding or the hybrid-level 

set (Zhang et al. 2008, 2009) is used on the POCM to 

smooth the polyp contour and eliminate small noisy 

network responses. 

2 RELATED WORK 

Most of the existing polyp segmentation methods can 

be divided into two main approaches based either on 

polyp apparent edge or texture. Due to the fact that in 

many cases, polyps have well-defined shapes, some 

of the early approaches attempted to fit predefined 

polyp shape models. Hwang et al. (2007) used ellipse 

fitting techniques based on image curvature, edge 

distance and intensity values. Gross et al. (2009) used 

the Canny edge detector to process prior-filtered 

images, identifying the relevant edges using a 

template matching technique. Breier et al. (2011a, 

2011b) investigated applications of active contours 

for the polyp segmentation. Although these methods 

perform well for typical polyps, they require manual 

contour initialisation. 

The above mentioned techniques rely heavily on a 

presence of complete polyp contours. To improve the 

robustness, further research was focused on the 

development of robust edge detectors. Bernal et al. 

(2012) presented a “depth of valley” concept to detect 

more general polyp shapes, then segment the polyp 

through evaluating the relationship between the 

pixels and detected contour. Further improvements of 

this technique are described in (Bernal et al., 2013) 

and (Bernal et al., 2015). In the subsequent work, 

Tajbakhsh et al. (2013) put forward a series of polyp 

segmentation method based on edge classification, 

utilising the random forest classifier and Haar 

descriptor features. In the follow-up work (Tajbakhsh 

et al. 2014a, 2014b) segmentation was refined via use 

of several sub-classifiers.  

Another class of polyp segmentation methods is 

based on texture descriptors, typically operating on a 

sliding window. Karkanis et al. (2003) combined 

Grey-Level Co-occurrence Matrix (GLCM) and 

wavelet. Using the same database and classifier, 

(Iakovidis et al., 2005) proposed a method which 

provided the best results in terms of area under the 

curve (AUC) metric. Local Binary Pattern and the 

original GLCMs methods are also tested in 

(Alexandre et al. 2008), however, because of a 

different dataset, and values of the design parameters, 

the results cannot be directly compared. More 

recently, with advances in deep learning, hand-

crafted feature descriptors are gradually being 

replaced by convolutional neural networks (CNN) 

(LeCun et al. 1998) and (Krizhevsky et al. 2012). 

Park et al. (2015) formulated a pyramid CNN to 

learn the scale-invariant polyps’ features. The 

features are extracted from the same patch at three 

different scales through three CNN paths. Ribeiro et 

al. (2016) evaluated CNN comparing it with other 

state-of-art hand-crafted features used for polyp 

classification, and found that CNN has superior 

performance. CNN is not only used for recognition 

but also for feature extraction. R. Zhang et al. (2017) 

designed a transfer learning scheme. They used a pre-

trained CNN to extract low-level polyp features and 

SVM for classification. It illustrates that CNN can 

learn informative and robust low-level features. 

However, the general problem with the sliding 

window approach is that it is harder to use image 

contextual information and it is inefficient in the 

prediction mode (i.e. segmentation of the test 

images). This problem has been addressed by the so 

called fully convolutional networks (FCN), with the 
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Figure 2: The proposed Dilated ResFCN polyp segmentation network. Frome left to right, Blue: Feature extraction part; 
Yellow: Dilation convolution; Green: Skip connection. 

two key architectures (Long et al. 2015) and 

(Ronneberger et al., 2015). These methods can be 

trained end-to-end and output complete segmentation 

results, without a need for any post-processing.  

Vázquez et al. (2017) and Akbari et al. (2018) directly 

segmented the polyp image by standard FCN. 

L. Zhang et al. (2017) use the same FCN, but they add 

a random forest to decrease the false positive. The U-

net (Ronneberger et al., 2015) is one of the most 

popular architectures for biomedical image 

segmentation. It has been also used for polyp 

segmentation. Li et al. (2017) designed a U-net 

architecture for polyp segmentation with smooth 

contours. 

In recent years, it has been noticed that there is a 

close relationship between receptive fields and 

segmentation results of convolutional networks. As 

for generic image segmentation, a new layer called 

dilation convolution has been proposed (Yu et al. 

2015) to control the CNN receptive field in a more 

flexible way. Chen et al. (2018) also utilised dilation 

convolution and developed further network changes 

called atrous spatial pyramid pooling (ASPP) to learn 

the multi-scale features. The ASPP module consists 

of four parallel convolutional layers with different 

dilations.  

In summary, polyp segmentation is becoming more 

and more automated and integrated. Deep feature 

learning and end-to-end architectures are gradually 

replacing the hand-crafted features operating on a 

sliding window. Polyp segmentation can be seen as a 

semantic instance segmentation problem and 

therefore, a large number of techniques developed in 

computer vision for generic semantic segmentation 

could possibly be adopted, providing effective and 

more accurate methods for polyp segmentation. 

3 METHOD 

3.1 Pre-processing 

The first step in the proposed processing pipeline is 

the removal of black borders in the images. The 

border pixels have small random intensity variations, 

and therefore CNN could be “distracted” and learn 

unnecessary image border patterns. It has been found 

that the border pixels obtained from the same video 

sequence have always the same value. After video 

sequence detection, images from the same video are 

stacked and the border can be easily located via 

analysis of local variance. To save the memory and 

training computational load, all the input images are 

re-scaled to 250x287x3 in size. 
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3.2 Dilated ResFCN 

The first proposed network architecture, Dilated 

ResFCN, is shown in Figure 2. It is derived from the 

architecture proposed by (Peng et al., 2017). The 

proposed network consists of three sub-structures 

preforming different tasks, these are: feature 

extraction layers, multi-resolution classification 

layers and the deconvolution layers. The feature 

extraction part of the network is based on the 

previously proposed ResNet50 model (He et al. 2016). 

It can be divided into five sub components. Res1 – 

Res5. The Res1 represents the first convolutional and 

pooling layers. Res2 – Res5 represents the sub-

networks having respectively 9, 12, 18, 9 

convolutional layers with 256, 512, 1024, 2048 

feature maps. Each of these sub-networks operates on 

the gradually spatially reduced feature maps, down-

sampled with a stride of 2 when moving from sub-

network Resi to the sub-network Resi+1, the size of 

corresponding feature map is 62*72, 31*36, 16*18, 

8*9. Excluding the regular connection, the outputs 

from the Res2 to Res5 is being directed to parallel 

classification paths consisting of a dilation 

convolutional layer, 1x1 convolutional layer, dropout 

layer and final 1x1 convolutional layer with two 

outputs corresponding to the polyp and background 

confidence maps. There are four such parallel paths 

fed from the outputs of Res2- Res5, with each path 

using different dilations. The outputs of these four 

paths are subsequently combined by skip connection 

which includes the deconvolution layers and fusion 

layer.  

In the proposed Dilated ResFCN network, the 

deconvolution layers perform bilinear interpolation 

without training. The initial weights of the proposed 

architecture have two sources: The feature extraction 

part is initialized by a publicly available ResNet-50 

model, which was trained on the ImageNet. The 

convolutional layers in the four parallel paths are 

initialized by the Xavier method (Glorot and Bengio, 

2010). The network is trained with softmax cross-

entropy loss using Adam optimizer. 

3.3 SE-Unet 

The second proposed network, SE-Unet, is shown in 

Figure 3. It is design to segment polyps which have 

been missed by the ResFCN as it more “sensitive” in 

some cases than ResFCN, however overall tends to 

produce more false positive pixels. This method is 

inspired by the U-net and SE-net (Hu et al., 2017). 

The whole network can be divided into four parts, 

consisting of feature learning, up-sampling, Atrous 

spatial pyramid pooling (ASPP) and SE-modules.  

The VGG16 network is used as an encoder with the 

decoder being a mirrored VGG16. The resolution of 

the last encoder layer is 16×18. The ASPP is used to 

learn the multi-scale high-level features, it consists of 

 

Figure 3: The structure of the proposed SE-Unet architecture. 
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1×1 kernel, 3×3 kernel, and two dilation kernels with 

dilation rates 2 and 4. Each component of ASPP 

outputs 256 feature maps, so the total number of 

feature maps is 1024.  

Pixels at the same position are fused by a 1×1×256 

kernel. The SE-module is added behind each 

concatenation layer in the up-sampling module. For 

each feature map in the concatenation layer it assigns 

a coefficient between zero and one. Large coefficients 

indicate that the corresponding features have more 

significance. 

The up-sampling layers implement bilinear 

interpolation and the initial weights are selected using 

the Xavier method. The network is trained with the 

sigmoid cross-entropy loss using Adam optimizer.  

4 IMPLEMENTATION 

4.1 Dataset 

The proposed polyp segmentation methods are 

developed and evaluated on the database from the 

EndoVisSub2017 GIANA Polyp Segmentation 

Challenge. The training database, with the ground 

truth segmented polyps, has two subsets: (i) SD 

(CVC-ColonDB), consisting of 300 low resolution 

500-by-574 pixels polyp images, and (ii) HD, with 56 

high resolution 1080-by-1920 pixels images. The test 

database has 612 SD (CVC-ClinicDB) images with 

reduced 384-by-288 resolution and 108 full 

resolution HD images. For selection of the methods’ 

design parameters, 4-fold tests have been performed 

on the training data. The SD subset consist of the 

images extracted from a few video sequences, with 

images from the same sequence being highly 

correlated (i.e. showing the same polyp). Therefore, 

when constructing the validation data folds, care was 

taken not to include any images from the same video 

simultaneously in the training and test subsets for any 

of the folds. This paper only reports the results 

obtained for the SD images. 

4.2 Data Augmentation 

Data augmentation is a standard technique, used to 

enlarge training data sets. It is frequently used, 

particularly in cases when the available dataset is 

relatively small. More recently, it has been reported 

that data augmentation can play an important role in 

controlling the generalisation properties of deep 

networks, e.g. Hernández and König (2018) has 

experimentally demonstrated that the augmentation 

alone could provide better results on test data, than in 

combination with the weight decay and dropout. 

Whereas the training data augmentation is now 

commonly accepted methodology, data augmentation 

during the test time is not yet extensively used. 

However it is gradually growing in popularity. It is 

anticipated that it can further improve generalisation 

properties of the deep architectures.  

4.2.1 Training Data Augmentation 

From a perspective of a typical training set used in a 

context of the deep learning, the training data 

available for the polyp segmentation (see section 4.1) 

is rather small. Therefore, available data were heavily 

augmented with random rotation, translation, scale 

changes as well as colour and contrast jitter. In total, 

after augmentation, the training data include more 

than 90,000 images. Based on ablation tests with the 

FCN8 and Dilated ResFCN networks, it has been 

concluded that rotation and colour jitter have the most 

significant effect on improvement of the 

segmentation performance. Although intuitively not 

necessary obvious, the colour jitter plays an important 

role. This can be explained by the fact that the 

network is trained on the data from a small number of 

subject and the original images don’t reflect all 

possible variations of tissue pigmentation, vascularity 

or indeed instrument setup, including illumination 

and camera parameters. Results of comprehensive 

ablation tests are to be reported in a separate 

publication. A sample of the augmented images using 

colour and contrast jitter is shown in figure 4.  

 

Figure 4: A sample of the augmented images using the 

colour and contrast jitter. From left: original, colour jitter 

and contrast jitter images. 

4.2.2 Test-time Data Augmentation 

 

Figure 5: Test-time rotation based data augmentation.
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Figure 6: Typical results, with red and blue contours representing respectively segmentation results and the ground truth. Top: 

results obtained using the Dilated ResFCN network. Middle: results obtained using SE-Unet. Bottom: The segmented polyps 

using SE-Unet, which were not detected using the Dilated ResFCN. 

Since the implemented CNNs don’t have built in 

rotation invariance, one possible way to further 

improve the accuracy of the segmentation is to 

perform the rotation data augmentation during the test 

time. For this purpose rotated versions of the original 

test image are presented to the network and the 

corresponding outputs are averaged to better utilise 

generalisation capabilities of the network. The whole 

process is explained in figure 5. The test-time data 

augmentation implemented for the Dilated ResFCN 

uses 24 rotated images. 

4.3 Evaluation Measures 

4.3.1 Dice Index 

For a single segmented polyp the Dice coefficient 

(also known as F1 score) is used as the base 

evaluation metric. It was also adopted as a metric by 

the GIANA challenge. This metric is used to compare 

the similarity between the binary segmentation results 

and the ground truth. It is calculated as follows: 

 

𝐷𝑖𝑐𝑒 =
2|𝑆 ∩ 𝐺|

|𝑆| + |𝐺|
 

 

where: S represents the result of the segmentation, G 

represents the corresponding segmentation ground 

truth and |A| represent number of pixels in object A. 

As for the overall results obtained on the all test 

images, the mean and the standard deviation of the 

Dice coefficients calculated for each image are used. 

Jaccard similarity index, also known as Intersection 

over Union, is another popular similarity metric often 

used in literature. However, as the Dice coefficient 

and Jaccard index have monotonic relation, only Dice 

coefficient results are reported in this paper. 

4.3.2 Precision and Recall 

Precision and recall are standard measures used in a 

context of binary classification. For image 

segmentation, precision is calculated as the ratio 

between the number of correctly segmented pixels 

and the number of all segmented pixels:  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall is calculated as a ratio between the number of 

the correctly segmented pixels and the number of 

pixels in the ground truth: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
In the context of image segmentation precision and 

recall could be used as indicators of over- and under-

segmentation. 
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Figure 7: The typical segmentation results of a hybrid method for images form the test set.

4.3.3 Hausdorff Distance  

In this work the Hausdorff distance is used to evaluate 

how closely the contour of the segmented polyp 

matches the shape of the corresponding ground truth. 

The Hausdorff distance is a common metric used to 

measure the similarity between contours of two 

objects. It is defined as:  
 

𝑚𝑎𝑥{𝑠𝑢𝑝𝑥∊𝐺  𝑖𝑛𝑓𝑦∊𝑆 𝑑(𝑥, 𝑦), 𝑠𝑢𝑝𝑥∊𝑆 𝑖𝑛𝑓𝑦∊𝐺  𝑑(𝑥, 𝑦)} 

 

where: d(x, y) denotes the distance between points 

x ∈G and y ∈ S. The smaller the value of the 

Hausdorff distance the better the two contours match, 

with the 0 indicating the perfect overlap between 

contours. It should be noted that the Hausdorff 

distance is complementary to the Dice coefficient as 

these metrics measure different properties of the 

segmented objects. It is quite possible to have 

segmentation results with the Dice coefficient close 

to 1 (with 1 indicating the perfect match) and the 

Hausdorff distance having a large value, indicating a 

poor contour match.  

5 RESULTS 

5.1 Validation Results 

As part of selection of the design parameters the 

developed methods were tested on the 4-fold 

validation data (see section 4.1). A number of 

parameters have been tested, including parameters of 

the backpropagation training algorithm (e.g. learning 

rate, momentum, number of epochs, etc.) or post 

processing such as polyp occurrence confidence map 

(POCM) threshold. This section shows only the 

results used to select which output of the Dilated 

ResFCN network should be used. The results from the 

proposed networks are also compared against the 

well-known FCN8 network (Long et al. 2015) and the 

hybrid method. The hybrid method uses the Dilated 

ResFCN as the base segmentation method and 

switches to the SE-Unet when the base network does 

not detect any polyp.  

Table 1: Mean values obtained for different metrics on 

4-fold validation data using FCN8s, Dilated ResFCN 

(DPFCN), SE-Unet and hybrid segmentation. 

 Dice Precision Recall Hausdorff 

FCN8s 

Foreground 
0.6321 0.6922 0.6497 271 

FCN8s 

Background 
0.6682 0.6767 0.6524 193 

DRFCN 

Foreground 
0.7789 0.8038 0.8099 56 

DRFCN 

Background 
0.7860 0.8136 0.8060 54 

SE-Unet 0.6969 0.7477 0.7138 109 

Hybrid 0.8014 0.8349 0.8210 62 
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Table 2: Statistics of the Dice coefficient obtained on the test data. 

Method Foreground Background Rotation test data augmentation 

Mean Std Missing Mean Std Missing Mean Std Missing 

Dilated ResFCN 0.7717 0.2394 17 0.8126 0.2043 9 0.8293 0.1956 9 

SE-Usnet 0.8019 0.2240 14 N/A N/A N/A 0.8102 0.2207 13 

Hybrid 0.7825 0.2204 6 0.8169 0.1904 6 0.8343 0.1837 3 

As it can be seen from the Table 1 the overall best 

results are provided by the hybrid method followed by 

the Dilated ResFCN. Both proposed methods 

outperform the FCN8 segmentation network. A 

selection of typical results obtained on the validation 

data with different types of polyps is shown in Figure 6. 

This figure also demonstrates typical differences in the 

segmentation results generated by the two proposed 

methods. 

5.2 Test Data Results 

Table 2 shows the Dice coefficient’s mean and 

standard deviation as well as the number of missed 

polyps obtained on the test dataset. The results for the 

both proposed methods, and the hybrid method (see 

section 4.4) are shown. With the Dilated ResFCN used, 

the DICE segmentation statistics are reported when the 

foreground or the background network outputs are 

used. The results obtained with the test-time data 

augmentation are also reported. It can be seen that the 

best results, with biggest mean Dice coefficient, 

smallest Dice standard deviation and the smallest 

number of missed polyps are achieved by the hybrid 

method with implemented test-time data augmentation.  

A sample of the typical segmentation results obtained 

by the hybrid method with the test-time data 

augmentation is shown in Figure 7. It should be noted 

that the method is able to successfully segment polyps 

of various size, shape and appearance. The Dilated 

ResFCN was used to generate results submitted to the 

GIANA 2017 challenge. The Dilated ResFCN clearly 

outperformed other submissions with the highest mean 

and the smallest standard deviation of the Dice 

coefficient. The results generated by the hybrid method 

with some added post processing (not reported in this 

paper) were submitted to the GIANA 2018 challenge. 

The submission secured second place, with small 

standard deviation and only slightly smaller Dice 

coefficient compared to the wining submission. 

 

 

 

 

6 CONCLUSIONS 

The paper describes two novel fully convolutional 

neural network architectures specifically designed for 

segmentation of polyps in video colonoscopy images. 

The networks have been developed and tested on the 

Gastrointestinal Image ANAlysis – (GIANA) polyp 

segmentation database. The available training dataset 

with 300 low resolution and 56 high resolution 

images, is very limited from a perspective of a typical 

training set used in a context of the deep learning. 

Therefore, available data were heavily augmented 

with random rotation, translation, scale changes as 

well as colour and contrast jitter, with the rotation and 

colour jitter havening the most significant effect on 

the quality of the segmentation. In total, after 

augmentation the training data include more than 

90,000 images. The output from the network was 

optionally processed using the hybrid level set 

method. However, it should be noted that the DICE 

similarity scores obtained using a simple thresholding 

of the network outputs are very similar to the values 

of this measure obtained after applying the level set 

method. Nevertheless the level set could be used as it 

provides a simple mechanism to control smoothness 

of the segmented polyp boundaries. The proposed 

architectures provide competitive results, as is 

evident from the fact that they achieved the best 

results for the polyp segmentation task at the GIANA 

2017 challenge and second place for polyp 

segmentation in the SD (low resolution) images at the 

GIANA 2018 challenge.  

To the best knowledge of the authors, temporal 

dependencies in the colonoscopy video have not yet 

been used for polyp detection or segmentation within 

context of the deep architectures. The authors are 

aiming to examine various scenarios to test if such 

information could improve the overall performance 

of the polyp segmentation FCNNs. Two possible 

processing pipelines are to be investigated, with the 

explicit image warping obtained with a help of image 

registration (Shen et al., 2005) and implicit temporal 

fusion as part of the deep architecture. 
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