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Abstract: The Brain-Computer Interface (BCI) can be used for evaluation of the state of individuals during everyday 
routines. As shown in previous works, there is a relationship between the BCI multimodal metric with 
functional states of human. We have used power of Theta, Alpha, Beta low and Beta high 
electroencephalography rhythms and head motion data signals for multimodal metric.  Heart Rate Variability 
(HRV) is common medical method for functional state assessment. In this paper the results of interrelation 
estimation between multimodal metric and HRV are shown. We used Pearson correlation coefficient (PCC) 
for estimates of  interrelation between multimodal metric and HRV. It was found, the best results for estimates 
of parasympathetic part of the autonomic nervous system and suprasegmental regulation HRV have value of 
PCC more then critical value for Pearson correlation. 

1 INTRODUCTION 

Human body is a phenomenally complex system. 
Interwoven with a multitude of physiological and 
mental processes, that overlap and influence one 
another in many different ways, it is similar in its 
nature to the Indra’s net – each vertex is beaded with 
many multifaceted jewels, and each jewel is reflected 
in all of the other jewels (Robertson, 2014). 

Given such fractal-like, interconnected structure 
of our organisms, it would be fair to say that 
assessment of subject’s functional state and mental 
status is a non-trivial task (Kublanov et al., 2015). 
Examined signals differs one from another both in 
their characteristics and origins, and, more often than 
not, are contaminated with unwanted noise and 
artefacts. In turn, extracted signal’s features, that 
contain useful insights and information, require usage 
of sophisticated statistical and mathematical 
apparatus in order to be properly interpreted 
(Kublanov et al., 2016). 

Despite such associated difficulties, there’s a 
common need in assessment of mental and functional 
state of a subject, in real-life conditions for healthcare 
and telemedicine application (Syskov et al., 2017).  

Widely accepted methodologies used for that are 
electroencephalography (EEG)  and  electrocardio-

graphy (ECG), which, while recording signals from 
different organs (brain and heart, respectively), deal 
with the same underlying physiological phenomena – 
electrical activity of our bodies. 

Another very common modality used in that 
setting is the motion activity. In the constant presence 
of the gravitational force, our bodies maintain 
continuous state of three-dimensional equilibrium. 
This self-balancing process produces various bio-
mechanical oscillations (for example tremors, 
clonuses and fasciculations) and shapes our posture – 
all are indicators of subject’s state. “Movement is 
life” indeed (Borisov et al., 2017). In (Borisov et al., 
2018) integrated feature space EEG and motion 
activity for multimodal metric calculation are used.  
Statistically significant changes in the assessment of 
the athlete's functional state for the stages are shown. 

In this research, we are testing the hypothesis of 
existence of common factor between heart rate 
variability (HRV) and multimodal metric in real-time 
conditions. To test this hypothesis, we conducted a set 
of small experiments, whose details, methodologies 
and final results are described as follows. 
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2 MATERIALS AND METHODS 

In this research, widespread wireless Emotiv EPOC+ 
headset was used for EEG and motion data 
acquisition (Borisov et al., 2017). Its technical 
specifications are presented in Table 1. 

Table 1: Emotiv EPOC+ technical specifications. 

Number of channels 
14 (CMS/DRL references, P3/P4 

locations) 
Channel names (International 10-

20 scheme) 
AF3, F7, F3, FC5, T7, P7, O1, O2, 

P8, T8, FC6, F4, F8, AF4
Sampling method Sequential sampling, single ADC

Sampling rate 128 SPS (2048 Hz internal)

Resolution 
14 bits 1 LSB = 0.51 μV (16 bit ADC, 

2 bits instrumental noise floor 
discarded) 

Bandwidth 
0.2 - 45Hz, digital notch filters at 

50Hz and 60Hz
Filtering Built in digital 5th order Sinc filter

Dynamic range 8400 μV (pp)
 

EPOC+ headset provides information about the 
induced electrical activity of the brain from 14 
channels. This information contains the voltage value 
for each electrode with a sampling frequency of 128 
Hz. Electrode placement locations are shown in 
Figure 1. 

 

 

Figure 1: Emotiv EPOC+ electrode locations in standard 
10-20 montage scheme. 

In addition to that, headset also provides data from 
a three-axis accelerometer, which allows assessment 
of the movement of the headset in space during the 
experiment. 

Recorded signal contains the values of the 
acceleration for each axis and the data recording time. 
The scheme of the accelerometer axes is shown in 
Figure 2. 

Psycho-physiological telemetric system "Rehacor” 
(made by Medicom MTD, Ltd., Russia, see technical 
specifications in Table 2) with a set of cardiograph 
electrode terminals was used for ECG signal 
acquisition. 

 

Figure 2: Scheme of accelerometer axes. 

Table 2: “Rehacor” technical specifications. 

Number of channels 4 
Sampling rate 250 Hz 

Resolution 24 bits 
Dynamic range 5 - 8000 μV (pp)

ECG channel noise ≤ 2 μV (pp) 
Low-pass filter cutoff 

frequencies
30; 40; 100 Hz 

High-pass filter cutoff 
frequencies

0.05; 0.16; 0.5; 1.6; 5; 16 Hz 

Callibration signal 
5 Hz sine wave; 1 μV 

amplitude 
HRV calculation range 45 - 240 bpm 

2.1 Experiment Setup 

A series of experiments with the equipment described 
above was carried out on 9 healthy subjects in the age 
group of 23±3 years, to study parameters which 
would describe different functional and mental states 
of a subject. Each experiment contained five stages as 
described further. 

At the stage of functional rest (RS), the subject sits 
opposite the monitor of the personal computer and 
looks at the black screen. 

Stage of TOVA test (Test of Variables of 
Attention) is an intellectual test for the variability of 
attention (T1 and T2). It is a mental test to evaluate 
the function of active attention and control reactions. 

The Pebl software was used for the test procedure. 
During the test, squares and circles appears 
alternately at the top and bottom of the computer 
screen. The task of the subject is to press a space on 
the keyboard when a square appears at the top of the 
screen. 

At the stage of hyperventilation (HL), the subject 
frequently breathes, imitating breathing during heavy 
physical load. The final stage is aftereffect period 
(AE). The time-line of the experiment is shown in 
Figure 3. 

Raw EEG, HRV and movement data were 
recorded and collected during the experiments, before 
being processed as described in the next sections. 
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Figure 3: Time-line of the experiment. 

2.2 Motion Data Processing 

The three-axis accelerometer provides information on 
the magnitude of the acting accelerations along the 
three axes, respectively. The acceleration value for 
each axis is registered through equal time intervals. 
The signal measured by the accelerometer is a linear 
sum of three components (Borisov et al., 2018): 
 Body Acceleration Component (BA) is 

acceleration resulting from body movement; 
 Gravitation Acceleration Component (GA) is 

acceleration resulting from gravity; 
 Noise inherent to the measuring system. 

GA provides information about the spatial orientation 
of the device, and the BA provides information about 
the movement of the device and subject’s head 
movement. 

The frequency spectrum of accelerations caused 
by human motion is located in the range from 0 to 20 
Hz. The gravitational component is located in the 
range from 0 to 0.3 Hz. The component containing 
instrumental noise is located generally in the range 
above 20 Hz. 

To isolate the motion component from the signal, 
a second-order Butterworth window filter with 
frequencies from 0.3 to 20 Hz was used. 

The most relevant motion data (MD) features of 
the accelerometer signal are (Borisov et al., 2018): 
 Maximum and minimum values of acceleration; 
 Average value of acceleration at a given time 

interval; 
 Standard deviation (STD); 
 Zero cross rate (ZCR); 
 Mean ZCR; 

 Mean energy for a current stage; 
 Activity (in the equation below); 
 Average activity time. 

Because of the discrete nature of the accelerometer 
signal, ZCR was calculated as the number of sections 
where the previous sign differs from the current sign. 
Activity, the value characterizing the change in the 
signal over time, was calculated by the following 
formula (1): 

ݕݐ݅ݒ݅ݐܿܣ ൌ෍ට߂௫ଶ ൅ ௬ଶ߂ ൅ ௭ଶ, (1)߂

where ߂௫ ൌ ሺݔ௜ െ  .௜ିଵሻݔ
The average activity time is the ratio of the total 

activity time, which exceeds the average level by 10%, 
to the number of stages not exceeding this level.  

2.3 HRV Signal Processing 

Frequency-domain analysis method was applied to 
ECG signal and HRV indexes were calculated. 

Artifact removal was carried out using 3-sigma 
rule and moving window algorithm. Mean window 
value was used for value restoring. Spectral 
characteristics of frequency ranges, depicted in Table 
3, were used for subject's functional state assessment 
(Borisov et al., 2017). 

Table 3: HRV frequency ranges. 

Title Abbreviation 
Frequency 
range (Hz) 

High frequency HF 0.4 – 0.15
Low frequency LF 0.15 – 0.04

Very low frequency VLF 0.04 – 0.003
Ultra low frequency ULF < 0.003

 

ULF range is not used in analysis of short-term 
recordings (3 - 5 minutes in our case). Total spectrum 
power (TP) is defined a sum of powers in HF, LF and 
VLF frequency ranges.  

Normalized power values in each frequency range 
(that is HF/TP, LF/TP and VLF/TP) are defined as a 
percentage ratio of the total power of the spectrum to 
TP value. 

The activity of the parasympathetic link of the 
autonomic nervous system and the activity of the 
autonomous regulation loop are characterized by the 
power of HF/TP index. LF/TP index characterizes the 
state of the sympathetic center of vascular tone 
regulation. VLF/TP index is caused by the influence 
on the rhythm of the heart of the supra-segmental 
regulation level since the amplitude of these waves is 
closely related to the mental stress and the functional 
state of the cerebral cortex. 
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On all stages of our experiment, sliding window 
with 100 seconds size was used for assessment of 
HF/TP, LF/TP and VLF/TP parameters. 

2.4 EEG Signal Processing 

At the first stage of EEG signal processing, all data 
were transformed to the frequency domain. To 
separate EEG rhythms (see Table 4) from the signal, 
a second-order Butterworth bandpass filter was 
applied. 

Table 4: EEG frequency ranges. 

Title Frequency range (Hz) 
θ 4 – 7 
α 7 – 15 
βlow 15 – 25 
βhigh 25 – 31 

 

EEG data in frequency domain is described as 56-
dimension (14 channels, 4 frequency ranges each) 
feature space. This data was passed through EEG 
signal processing pipeline, as depicted in Figure 4. 
 

 

Figure 4: EEG signal processing. 

Initially, Principal Component Analysis (PCA) 
and Linear Discriminant Analysis (LDA) methods 
were used for dimensionality reduction and extraction 
of informative signal (Jolliffe, 2014) and 
(McLachlan,1992) from the input data. 

As a result of PCA and LDA application (covered 
in more detail in (Islam, 2010)) EEG feature vector 
was reduced to 10 components, namely AF3, T7, O1, 
T8, AF4 channels with Theta and Alpha frequency 
bands.After dimensionality reduction and feature 
selection step, Independent Component Analysis 
(ICA) was used for separation of EEG signal from 
background and inherit system noise. EEGlab 
scientific package, in addition with supplied 
guidelines (SCCN: Independent Component 
Labeling), was used for this task. 

Based on spectral analysis of extracted 
components, frequency bands most likely containing 
artifacts were selected, on each stage of experiment. 

All frequency spectra then were analyzed for 
presence of eye-movement overshoots, with 1 second 
size window using 3-sigma method. Signal was 
filtered in case of overshoot presence. Example of eye 
movement artifact component is shown in Figure 5. 
 

 

Figure 5: Eye component of EEG. 

2.5 Creation of Multimodal Metric 

By “metric”, we mean a measure that gives a scalar 
estimate of “human proximity” to one of the two 
states, in real time. In this work metric for RS and HL 
stages are calculated (as shown on Figure 6).  

 

Figure 6: Metric RS-HL definition. 

Integrated feature vector is created by 
concatenation of motion modalities and bio-electrical 
activity vectors. The model of integrated feature 
vector is depicted in Figure 7. 

After construction, 32 component vector was 
weighted with coefficients of hyperplane PD 
separating resting (RS) and hyperventilation stages 
(HV) for calculating scalar value for each time point, 
using machine learning as described in (Borisov et al., 
2018).  
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Figure 7: Model of integrated feature vector. 

3 RESULTS AND DISCUSSION 

Both coefficients of multimodal metric and HRV 
indexes were calculated using sliding window with 
100 seconds size and 5 seconds step. As a result of 
data processing pipeline, time series with the 
following structure were obtained: 
 3 minute stages (T1, HV and T2) –  

16 data points; 
 5 minute stages (RS and AE) –  

40 data points; 
 Total record of all stages contains 128 

(40 × 2 + 16 × 3) data points; 
 For each subject, a total of 8 vectors (7 HRV 

indexes and 1 PD coefficient) were calculated. 

Examples of plotted HRV indexes and normalized 
coefficient of multimodal metric PD are shown on 
Figure 8. 

Visual analysis of plotted data indicates that there 
exists a dynamic that reflects changes in the 
functional state of a subject during the experiment, 
both in multimodal metric and in calculated HRV 
indexes. 

To test our initial hypothesis of existence of 
common factor between heart-rate variability signal 
and time-series of multi-modal metric, Pearson 
correlation coefficients (PCC) were calculated for RS 
and HV time-series. 

Statistical significance of correlation coefficients 
was evaluated. Based on table values from (Förster 
and Rönz, 1979) for p=0.05: 
 Sample size N is 112 (56 × 2); 
 Number of degrees of freedom DF is 110 

(N – 2); 
 For given value of DF, critical value of correlation 

coefficient is 0.2. 
 

 

Figure 8: HRV indexes and multimodal metric (PD). 

Upon evaluation of PCC correlation coefficients, 
it was found that data series, consisted of 
concatenated RS and HV intervals, has a statistically 
significant Pearson’s correlation value. Results are 
shown on the graphical plot below (see Figure 9), 
with absolute correlation values on horizontal axis 
and calculated HRV indexes on vertical axis; each 
subject is depicted with unique color point on each 
stage. 

The presence of a significant correlation allows us 
to formulate a hypothesis about the presence of 
factors that are common to the parameters of the 
functioning of the central nervous system, the 
autonomic nervous system and the vestibular 
apparatus, which can be identified using the proposed 
multimodal metric. 

The explanation of such factors may be based on 
the following phenomena identified during the 
research: the spectral components of the HRV signal 
in  the  VLF  frequency  band  changed  significantly, 
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Figure 9: Correlation of vector of concatenated RS and HV intervals with HRV indexes. 

which can be explained by the influence of the 
supersegmental control of the autonomic nervous 
system on the heart rate. 

4 CONCLUSION 

In this paper, we verified a multimodal metric of 
Brain-Computer Interface. For verification, the 
assessment of the functional state was carried out 
using the parameters of HRV. Integrated feature 
space for accelerometer and EEG allows to get more 
accuracy and accessibility for different function states. 
Multimodal metric based on this feature space useful 
for assets “human proximity” to desired function 
level during training or rehabilitation. 

We used PCC for estimates of interrelation 
between multimodal metric and HRV. The common 
correlation factor develops itself individually in each 
subject. Thus, it may serve as a diagnosis feature for 
functional processes that occur in subject’s body. It’s 
tightly bound to the sustenance of the homeostatic 
state of individuals (Yee and Rabinstein, 2010). 

Since the study was conducted on relatively 
healthy people, such a factor may be the state of 
human health. Further studies involving people with 
different nosologies and neurophysiological states.  

There are should allow for the identification of 
additional of physiological patterns. For example, the 
above results can be developed in the development of 
methods for assessing changes in the functional state 
of a person with sympathetic correction for patients 
with depression and disorders of the function of the 
vestibular apparatus (Kublanov et al., 2018).  

Further investigations need to be carried out in 
order to pinpoint the nature and origins of this factor 
for real world assessment of humans. 
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