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Abstract: Class imbalance occurs when data classes are not equally represented. Generally, it occurs when some classes
represent rare events, while the other classes represent the counterpart of these events. Rare events, especially
those that may have a negative impact, often require informed decision-making in a timely manner. However,
class imbalance is known to induce a learning bias towards majority classes which implies a poor detection of
minority classes. Thus, we propose a new ensemble method to handle class imbalance explicitly at training
time. In contrast to existing ensemble methods for class imbalance that use either data driven or randomized
approaches for their constructions, our method exploits both directions. On the one hand, ensemble members
are built from randomized subsets of training data. On the other hand, we construct different scenarios of
class imbalance for the unknown test data. An ensemble is built for each resulting scenario by combining
random sampling with the estimation of the relative importance of specific loss functions. Final predictions are
generated by a weighted average of each ensemble prediction. As opposed to existing methods, our approach
does not try to fix imbalanced data sets. Instead, we show how imbalanced data sets can make classification
easier, due to a limited range of true class frequencies. Our procedure promotes diversity among the ensemble
members and is not sensitive to specific parameter settings. An experimental demonstration shows, that our
new method outperforms or is on par with state-of-the-art ensembles and class imbalance techniques.

1 INTRODUCTION

In many real-word situations, rare events and unusual
behaviors, such as process failure or instability in
machine engineering, rare diseases and bank frauds,
are usually represented with imbalanced data obser-
vations. In other words, one or more classes, usually
the ones that represent such events, are underrepre-
sented in the data set. This issue, known to the Data
Mining community as the class imbalance problem,
makes the detection of rare events a challenging task
(Galar et al., 2012; Haixiang et al., 2017).

In the case of binary classification with class im-
balance ratio of 1%, a trivial solution that always pre-
dicts the majority class, will achieve an accuracy of
≈ 99%; though the accuracy seems high, the solution
is meaningless since not a single instance of the mi-
nority class is classified correctly. Thus, in our work,
we make the implicit assumption that the minority
class has a higher cost than the majority class (Zhou,
2012).

Several machine learning approaches have been
proposed over the past decades to handle the class
imbalance problem, most of which are based on re-

sampling techniques, cost sensitive learning, and en-
semble methods (Galar et al., 2012; Haixiang et al.,
2017).

In this paper, we address the problem of class im-
balance via an ensemble method. In general, ensem-
ble methods train multiple classifiers and combine
their predictions to solve the same classification task1.
Ensembles are known to deliver a higher quality than
each single ensemble member (Hansen and Salamon,
1990) and they provide state-of-the-art results in var-
ious real-world tasks (Galar et al., 2012).

Ensemble methods are not designed to work with
imbalanced data sets since they do not take class
imbalance into account during the ensemble con-
struction. However, they have shown successful re-
sults when applied to this task through the combi-
nation of various processing techniques at a data-
level (e.g. random sampling, feature selection, cost-
sensitive learning methods) with different ensemble
methods (Galar et al., 2012; Haixiang et al., 2017).

1While ensembles may indeed be applied to regression
problems as well, we focus in this work on classification
tasks.
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Nevertheless, to the best of our knowledge, none of
these techniques allow to include explicit (estimated)
knowledge about the class imbalance in the distribu-
tion.

In this work, we explain how to address class im-
balance directly by a new ensemble construction that
exploits both data-driven and randomized approaches.
On the one hand, ensembles members are built from
randomized subsets of the training data. On the other
hand, we use the class ratio from the training data to
construct different scenarios of class imbalance in the
unknown test set. The random sampling is then car-
ried out for each scenario. This procedure promotes
diversity among the ensemble members and subdi-
vides the ensemble into multiple weighted stages. As
opposed to existing methods, our approach does not
try to fix imbalanced data sets. Instead, we show how
imbalanced data sets can make classification easier,
due to a limited range of true class frequencies.

2 REVIEW ON EXISTING
TECHNIQUES FOR HANDLING
IMBALANCED DATA SETS

Several works have been proposed in literature to
address the class imbalance problem over the last
decades. Resampling methods and cost-sensitive
learning are the two main strategies that have been
employed for imbalanced learning.

Resampling strategies allow to rebalance the data
set in order to mitigate the effect of the bias of ma-
chine learning algorithms towards majority classes
which results in poor generalization and unaccept-
able error rates on minority classes (Japkowicz, 2000;
Chawla et al., 2002). Resampling methods are adapt-
able preprocessing techniques as they are independent
of the selected classifier. They fall into three main
families with regards to the method used for balanc-
ing the class distribution:
Over-sampling methods: aim at balancing the class
distribution through the creation of new minority class
samples, either by random duplication (Japkowicz,
2000) or synthetic creation. SMOTE (synthetic mi-
nority oversampling technique) (Chawla et al., 2002)
is a method which artificially generates synthetic in-
stances from minority class by inserting samples with
random linear interpolation between a minority sam-
ple and its k nearest neighbours. Many approaches
based on SMOTE were introduced in the literature
(Gao et al., 2012; Zhang and Li, 2014). Gao et al.
(Gao et al., 2012) employed a Parzen-window kernel
function to estimate the probability density function

of the minority class, from which synthetic instances
are generated as additional training data to rebalance
the class distribution. Zhang et al. (Zhang and Li,
2014) introduced RWO-sampling which is a random
walk oversampling method to balance the class distri-
bution by generating synthetic instances via random
walks through the training data.
Under-sampling methods: aim at balancing the class
distribution through the random elimination of sam-
ples from majority classes. Batista et al. (Batista
et al., 2000) proposed a more sophisticated under-
sampling technique by classifying samples from the
majority class into three main categories safe, border-
line and noise. Only safe majority class instances and
all minority class instances are considered for training
the classifier.
Hybrid methods: are a combination of over-sampling
and under-sampling methods (Peng and Yao, 2010;
Cateni et al., 2014). AdaOUBoost (Peng and
Yao, 2010) adaptively oversamples minority class in-
stances and undersamples majority class ones to build
different classifiers. The classifiers are combined ac-
cording to their accuracy to create the final prediction.
Cateni et al. (Cateni et al., 2014) address the class
imbalance problem by combining oversampling and
a similarity-based under-sampling techniques.

Solving the class imbalance problem is also possi-
ble through algorithmic modifications of existing ma-
chine learning classifiers or ensemble constructions.
Several works reported in (Haixiang et al., 2017) em-
ploy various modifications to existing learning meth-
ods, e.g. support vector machines, k-nearest neigh-
bors, or neural networks. Modifications can be in-
troduced by enhancing the discriminatory power of
the classifiers using kernel transformation to increase
the separability of the original training space (Gao
et al., 2016). They can also be formulated by con-
verting the loss functions to penalize errors made in
the classification of minority samples stronger (Kim
et al., 2016).

Combining classifiers in ensemble frameworks is
also another common approach in the class imbal-
ance literature (Galar et al., 2012; Haixiang et al.,
2017). Within ensemble-based classifiers, we can dis-
tinguish four main families. The first family includes
resampling-based ensembles. An ensemble of classi-
fiers is created after training base classifiers on bal-
anced data sets obtained with a resampling technique
(Sun et al., 2015; Tian et al., 2011). In the second
family, the ensemble is built based on boosting af-
ter applying some data resampling strategy. This ap-
proach adds a bias toward the minority class to the
weight distribution used to train the next classifier at
each iteration. Most of the proposed methods inside
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this family are based on the first applicable boost-
ing algorithm, Adaboost, proposed by Freund and
Schapire (Freund et al., 1996). Many extensions of
Adaboost were employed in the context of class im-
balance such as Adaboost.M1 and Adaboost.M2 (Fre-
und and Schapire, 1997; Schapire and Singer, 1999).
SMOTEBoost (Chawla et al., 2003) is a combina-
tion of SMOTE and AdaBoost.M2, where synthetic
instances are introduced before the reweighting step
in AdaBoost.M2. The synthetic instances have the
same weight as the instances in the original dataset,
while the weights attributed to the originals are up-
dated according to a pseudo-loss function. RUSBoost
(Seiffert et al., 2010) is another example of boost-
ing combined with random sampling and oppositely
to SMOTEBoost, it uses random under-sampling to
eliminate instances from the majority class in each
iteration. Within the third family, we find Bagging-
based ensembles, which are known for their simplic-
ity and good generalization ability (Galar et al., 2012).
The key factor in these methods is the combination of
resampling for class imbalance with the collection of
each bootstrap replica in order to obtain a useful clas-
sifier in each iteration while maintaining the diversity
aspect. Many approaches have been developed us-
ing bagging ensembles (Galar et al., 2012), such as
UnderBagging (Barandela et al., 2003) and OverBag-
ging (Galar et al., 2012). SMOTEBagging (Wang and
Yao, 2009) is also an example of bagging ensembles,
where minority class instances are created through a
combination of over-sampling and SMOTE and the
set of majority class instances is bootstrapped in each
iteration in order to form a more diverse ensemble.

3 GENERAL METHODOLOGY

Here, input data is denoted as a multi-set D =
{(x(i),y(i))}1≤i≤N which consists of |D| = N data
points x(i) and their corresponding label y(i). We as-
sume that each pair (x(i),y(i)) is an independent re-
alization of a random variable (X ,Y ) which follows
some arbitrary but fixed probability measure P. Each
random variable has its own state space, which is de-
noted by a calligraphic version of the random vari-
able’s letter, e.g., X denotes the state space of X . In
this paper, we will use X = Rd for some d ∈ N and
binary class labels, e.g., Y = {0,1}. However, our
method works with any state spaces which are sup-
ported by the underlying classifiers. Generic realiza-
tions of random variables are denoted by lowercase
boldface letters, like x. The symbol 1{expression} is the
indicator function that evaluates to 1 if and only if the
expression is true. We denote empirical estimates by

a tilde symbol, e.g., Ẽ[X ] is the expected value of X
estimated from data, and E[X ] is the true expectation.
To simplify notation, we use P(Y = y | X = x) = P(y |
x) whenever the corresponding random variables can
be inferred from the context.

3.1 Motivation

To understand the intuition behind our approach, sup-
pose we learn a model M from a data set D to solve
a classification task. Choosing M = P results in the
Bayes optimal classification: ŷ = argmaxy∈Y P(y | x),
where ŷ is the predicted class label. P is unknown,
but we may indeed try to learn it from data, result-
ing in the estimate P̃(y | x) = P̃(y,x)/P̃(x) ∝ P̃(y,x).
However, since our data set D is finite, there will
always be a discrepancy between the true P and its
empirical counterpart P̃. Due to this deviation from
the true distribution our classifier is likely to behave
erroneous. If we would know the estimation error
ε(y,x) = P(y,x)− P̃(y,x) for each possible data point
(y,x) ∈ Y ×X , we could correct our model.

3.2 Class Frequency Correction for
Binary Classification

Now, assume Y = {0,1} and consider that we esti-
mate P̃ from an arbitrary but fixed data set D . With-
out any prior knowledge about ε, we must distin-
guish the following three cases (it suffices to con-
sider only one class due to symmetry of the binary
classification task): (1) P(Y = 1) > P̃(Y = 1), (2)
P(Y = 1)≈ P̃(Y = 1), and (3) P(Y = 1)< P̃(Y = 1).
To prepare our classifier for these situations, we con-
struct three new data sets D>

Val,D
≈
Val,D

<
Val—one for

each of the above scenarios. In the first case, the class
y = 1 is actually more likely than the data suggests,
hence ε > 0 and we should create a subsample D>

Val
from D , such that P̃>(Y = 1) = P̃(Y = 1)+ ε, where
P̃> is the class distribution in D>

Val—we refer to this
process as rebalancing. The third case is symmetri-
cal: we have ε < 0 and we shall subsample D<

Val from
D . Finally, for the case (2), we subsample the set
D≈Val via stratified proportionate allocation—the class
distribution will approximately match the class distri-
bution in D and ε≈ 0.

The general procedure works as follows: Split all
data which is available for training into a training set
and a validation set. Then, subsample the validation
set to generate three specific sets D>

Val,D
≈
Val,D

<
Val. For

each case µ ∈ {>,≈,<}, we learn a model mµ on the
training data and use the data in the validation set Dµ

Val
to refine the learning process. This procedure yields
three families of models, namely M>,M≈ and M<.
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Mµ may contain one or many models mµ depending
on the chosen optimization procedure e.g., repeating
the subsampling process multiple times or optimizing
different quality metrics q. The resulting models will
later be combined to form an ensemble, but first, we
shed some light on how to choose the probability off-
set α = |ε|, which is required for our method.

3.3 Class Imbalance and the Probability
Offset

At a first glance, choosing the probability offset α

might seem infeasible. How should one even guess
which α ∈ (0;1) is appropriate? Surprisingly, it turns
out that class imbalance simplifies this problem! In
fact, the stronger the class imbalance, the tighter is
the range for reasonable probability offsets. Let us
formalize this result.
Lemma 1 (Probability of Probability Offsets). Let D
be a data set with empirical class distribution P̃(y).
We denote the class ratio w.r.t. the minority class by
r = min

{
P(Y=0)
P(Y=1) ,

P(Y=1)
P(Y=0)

}
. There exists c,c′ such that

for all α > 0, the probability of the event

|P̃(Y = 0)−P(Y = 0)| ≥ α

is upper bounded by

exp
(
− α2c

r+αc′
+ ln2

)
.

Proof. For a sequence of independent random vari-
ables Z1,Z2, . . . ,ZN with zero-mean and |Zi| ≤ K, we
know from the Bernstein inequality (cf. Theorem
7.30 in (Foucart and Rauhut, 2013)) that

P

(∣∣∣∣∣ N

∑
i=1

Zi

∣∣∣∣∣≥ ε

)
≤ 2exp

(
−

ε2

2

∑
N
i=1V[Zi]+

Kε

3

)
Consider the random data set D = {(X (i),Y (i))}1≤i≤N .
Using the above inequality with ε = |D|α,
Zi = (1{Y (i)=1} − E[1{Y (i)=1}]) and observing
that E[1{Y (i)=1}] = P(Y = 1) yields

P
(∣∣P̃(Y = 1)−P(Y = 1)

∣∣≥ α
)

≤ 2exp
(
− (αN)2/2

∑
N
i=1V[Zi]+K(αN)/3

)
,

where the inequality on the left hand side is divided by
|D|= N, and V[Zi] is the variance of Zi. Since V[R+
c] =V[R] for any random variable R, we have V[Zi] =
V[1{Y (i)=1}]. Since 1{Y (i)=1} is a Bernoulli random
variable, its variance is P(Y = 0)P(Y = 1) and thus
V[Zi] = P(Y = 0)P(Y = 1). By construction, r is an
upperbound on the variance, e.g., V[Zi] < r. Finally,
noticing that |Zi|< 1 proves the lemma with c = N/2
and c′ = 1/3.

The lemma tells us that the probability that α is
large decreases exponentially fast as a function α,
damped by the class imbalance which is measured
by r. Let us consider as an example the case where,
P(Y = 1) = 0.9, i.e., 10% of all data points belong
to the minority class. By applying Lemma 1 to this
scenario while keeping all other quantities fixed, we
see that a deviation of more than 5% happens in at
most 0.011285% of all data sets. A deviation of at
least 2.5% occurs for at most 14.615% of all data sets.
Thus, we see that large α values (say, > 5%) are very
unlikely in the presence of class imbalance.

3.4 The Ensemble Framework

The procedure that we described at the beginning of
this section yields three diverse types of classifiers
M>,M≈ and M<, each optimized with respect to a
different validation set. The resulting classifiers are
combined into an ensemble which is prepared to han-
dle different scenarios of class discrepancy and dif-
ferent quality metrics q. The ensemble weights can be
considered as unobserved random variables and apply
expectation-maximization to estimate them (Soltan-
mohammadi et al., 2015). However, such techniques
assume the existence of a context and require the clas-
sifier accuracy to be Lipschitz continuous. In contrast,
we propose to interpret µ ∈ {>,≈,<} and q as ran-
dom variables. Let m(x) = ŷ be the prediction of a
single model, the outcome of the ensemble is:

E[m(x)] = (1)

∑
µ∈{>,≈,<}

P(µ) ∑
q∈Q

P(q | µ)
T

∑
t=1

P(t | µ,q)mµ
q,t(x) ,

where Q is a set of quality metrics, e.g., Q =
{precision, recall}, and T is the number of models
that we have generated for each combination of µ and
q—our experimental results will show that small val-
ues of T suffice. The values of P(µ), P(q | µ), and
P(t | µ,q) control how the specific models mµ

q,t in-
fluence the final outcome. The probability P(µ) ex-
presses our knowledge on how the class distribution
in the training set differs from the true one. Accord-
ing to Lemma 1, all directions are equally likely—our
experiments validate this. The probabilities P(q | µ)
can be interpreted as the importance of the quality
measure q for the actual prediction task. As such, the
importance depends on D , Q , or even on µ, and can-
not be derived in general. Finally, P(t | µ,q) are the
classical (normalized) ensemble weights. Since each
weak model depends on µ, q, and t, the outcome may
be interpreted as a mixture of mixtures of experts.
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4 EXPERIMENTAL
DEMONSTRATION

We conduct an experimental evaluation to assess the
behavior of our proposed method. Our experiments
are driven by the following questions: (Q1) Do
the empirical results confirm our theoretical findings
about the choice of α to design the class imbalance
scenarios? (Q2) How does our ensemble construction
perform, compared to state-of-the-art methods? To
this end, we consider six case studies.

4.1 Case Studies

The first four sets, namely, “Pima”, “Yeast”, “Glass”
and “Haberman” are benchmark data sets, which are
publicly available on the UCI repository (Lichman,
2013). The “Welding” and “Milling” data sets de-
scribe real-word industrial processes, where result-
ing manufactured pieces have to be classified into
{ok,not-ok}, given a set of processes features.

Table 1: Summary description of the imbalanced data sets
used in the experimental study.

Data-set #Ex. #Atts. (min% : maj%)

Pima 768 8 (34.90 : 65.10)
Yeast 1484 8 (10.99 : 89.01)
Glass 214 10 (07.98 : 92.02)

Haberman 306 3 (26.56 : 73.44)
Welding 809 5 (09.00 : 91.00)
Milling 5700 4 (11.00 : 89.00)

Table 1 summarizes the properties of the selected
data-sets, namely: number of examples (#Ex.), num-
ber of attributes (#Atts.), class name (minority and
majority Class(min;maj)), the percentage of examples
of each class.

4.2 Experimental Setup

All experiments are cross-validated and conducted us-
ing the R software. The data sets of the six case studies
are split into a training, a validation and a test set for
each cross validation fold. 60 % of the data was used
for training, while the remaining 40% are equally split
between validation and testing. The baseline classifier
in this work is Decision Tree (DT) (Breiman et al.,
1984). Our framework is compared to three baseline
models, namely Decision Tree (Breiman et al., 1984),
Random Forest (RF) (Breiman, 2001), and Gradient
Boosting Machine (GBM) (Friedman, 2001). The pa-
rameters of both GBM and RF are tuned using grid
search procedures over a set of input parameters. In

addition to the plain baseline methods, our method
is also compared to various state-of-the-art methods
for handling class imbalance. The name of the meth-
ods and the corresponding literature references are de-
tailed in Table 2. An additional ensemble of DT com-
bined with random undersampling is also added for
comparison and denoted by “Ens”. The number of
trees in the ensemble is set to 6 (= maximum number
of trees used in our proposed method).

Our Method. Three validation sets D>
Val,D

≈
Val,D

<
Val

are designed from the validation set to represent
each of the three possible scenarios of class imbal-
ance. We investigate two sets of quality metrics Q :
{precision, recall} and {F1-score}. For simplicity, the
number of trees T per quality measure is set to 1 in
these experiments which implies P(t | µ,q) = 1. So
for each scenario, we have one tree for each compo-
nent of Q . For example, for the first setting of Q :
{precision, recall}, we have two trees one aiming to
maximize the recall and the other aiming at maximiz-
ing the precision. In the first setting , P(recall | µ) is
set to P̃(Y = 1) with P(precision | µ) = 1−P(recall |
µ). The rationale behind this choice is to interpret
the frequency of the minority class as a proxy for
the importance of the recall, where we estimate the
frequencies on the training data. Since in a realistic
application of our method, each of the three cases in
{>,≈,<} is equally likely, we set P(µ) = 1/3, which
is a generic choice in the absence of any prior knowl-
edge about class proportion in the test set. Predic-
tions are performed by thresholding the output of the
ensemble (Eq. 1) at 1/2.

4.3 Results

Table 2 encloses descriptive statistics of the experi-
mental results on the F1-score for both majority and
minority classes per method/case study.

4.3.1 Impact of α

Experiments on varying α for the six data sets con-
firms our theoretical findings in Lemma 1, which in-
dicates that large α values are unlikely. In fact, the
maximum alpha value depends on the particular data
set. E.g., on the glass data, the frequency of the mi-
nority class is 7.98%, thus, we cannot set α above
this value. In contrast, the frequency of the minor-
ity class of the Pima data is 34.9%, which implies
that we can drive α up to 30% without problems. On
“Yeast”, “Haberman”, and “Milling”, the AUC is al-
most constant w.r.t. to α. On “Welding”, we can ob-
serve a clear decrease in AUC for an increasing α. On
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Table 2: Experimental Results for our six case studies. Abbreviations: DT = decision tree (Breiman et al., 1984), GBM =
gradient boosting machine (Friedman, 2001), RF = random forest (Breiman, 2001), DT/GBM/RF+U = DT/GBM/RF+under-
sampling (Japkowicz, 2000), DT/GBM/RF+O = DT/GBM/RF+over-sampling (Japkowicz, 2000) DT/GBM/RF+S =
DT/GBM/RF+SMOTE (Chawla et al., 2002), DT/RF+UBA = DT/RF+UnderBagging (Barandela et al., 2003), DT/RF+AD
= DT/RF+Adaboost.m2 (Schapire and Singer, 1999), DT/RF+SBA = DT/RF+SMOTEBagging (Wang and Yao, 2009),
DT/RF+SBO = DT/RF+SMOTEBoost (Chawla et al., 2003), DT/RF+RUS = DT/RF+RUSBoost (Seiffert et al., 2010),
PRO1 = our Ensemble using precision and recall, PRO2 = our Ensemble using F1-score, Min. = F1 for minority class, Maj.
= F1 for majority class.

Method Welding Pima Glass Haberman Milling Yeast
Min. Maj. Min. Maj. Min. Maj. Min. Maj. Min. Maj. Min. Maj.

DT 20.34
±13.43

93.18
±1.9

54.97
±6.26

81.19
±3.91

6.67
±11.55

93.52
±2.36

29.47
±15.95

80.51
±6.76

18.94
±10.32

87.69
±3.01

67.59
±11.64

97.1
±0.56

GBM 11.57
±4.02

94.98
±0.59

59.22
±3.3

83.09
±3.6

0.0
±0.0

93.97
±1.71

32.96
±13.97

81.53
±2.58

12.78
±12.51

90.42
±3.57

56.15
±18.43

96.78
±0.99

RF 12.83
±9.95

95.53
±0.87

62.4
±2.21

85.02
±1.79

6.67
±11.55

93.89
±2.47

21.65
±19.89

77.85
±9.82

5.13
±8.88

90.85
±2.02

67.46
±11.05

97.58
±0.29

DT+U 24.17
±12.51

88.43
±6.22

56.81
±2.42

76.77
±2.76

13.47
±11.84

89.55
±6.46

28.59
±17.9

71.62
±10.95

26.86
±4.32

83.75
±7.75

63.66
±23.14

94.9
±3.37

GBM+U 24.6
±7.73

93.69
±1.84

62.6
±1.86

80.56
±3.07

6.06
±10.5

92.37
±2.15

37.33
±5.33

74.26
±6.6

18.91
±6.27

81.51
±6.33

72.57
±8.89

97.06
±0.88

RF+U 23.29
±10.33

94.61
±1.94

62.96
±4.87

79.91
±2.82

5.56
±9.62

91.53
±3.8

28.38
±24.6

78.45
±9.81

26.19
±2.06

85.65
±5.13

71.33
±20.06

96.65
±2.4

DT+O 18.72
±8.94

90.02
±1.66

59.6
±5.09

72.32
±3.98

14.07
±12.24

93.08
±2.45

35.47
±12.99

72.27
±2.63

22.33
±11.54

74.55
±2.65

65.54
±18.32

95.93
±1.95

GBM+O 15.43
±11.22

94.75
±0.66

59.04
±2.96

80.28
±3.19

0.0
±0.0

93.22
±1.75

35.81
±13.26

78.37
±2.14

23.02
±3.44

79.62
±1.82

64.23
±10.46

96.65
±1.03

RF+O 13.69
±6.03

94.83
±1.08

64.77
±4.59

82.82
±2.25

0.0
±0.0

93.97
±1.71

22.8
±20.35

82.88
±1.89

31.11
±10.18

85.52
±3.21

66.72
±17.23

97.15
±0.78

DT+S 19.27
±3.74

87.86
±1.37

36.07
±5.38

81.78
±2.02

18.14
±3.31

0.0
±0.0

34.02
±1.4

56.45
±20.48

21.67
±20.21

85.15
±3.38

77.01
±7.38

97.48
±0.65

GBM+S 11.85
±6.29

94.77
±1.36

57.53
±5.04

82.41
±0.62

13.01
±12.28

60.58
±28.81

40.49
±9.53

49.84
±25.36

6.67
±11.55

90.51
±1.26

61.63
±21.63

96.8
±1.35

RF+S 0.0
±0.0

95.22
±0.83

57.33
±1.32

81.57
±5.51

21.9
±7.19

57.8
±9.21

24.2
±15.89

68.55
±10.76

8.33
±14.43

90.87
±2.91

73.0
±13.48

97.53
±0.62

Ens 14.45
±1.84

8.0
±2.88

21.23
±36.78

81.22
±2.66

0.0
±0.0

93.97
±1.71

43.89
±4.85

80.47
±5.2

14.56
±14.29

45.07
±36.02

71.05
±13.6

96.85
±0.67

DT+UBA 25.02
±4.46

91.87
±2.28

68.32
±3.58

82.31
±2.32

0.0
±0.0

94.73
±1.11

42.21
±9.33

69.27
±6.4

26.57
±5.47

79.28
±4.87

57.95
±19.71

93.46
±2.38

DT+AD 7.39
±9.22

94.79
±0.93

64.07
±0.28

84.64
±1.36

7.41
±12.83

93.17
±1.36

40.61
±9.2

79.62
±6.9

14.7
±15.43

87.02
±3.43

65.62
±10.21

97.01
±0.66

DT+SBA 22.11
±2.54

71.87
±5.22

65.28
±3.61

84.3
±1.5

29.76
±15.02

90.86
±1.59

42.05
±7.2

77.87
±5.95

29.67
±6.98

58.0
±3.82

77.6
±6.49

97.6
±0.53

DT+RUS 15.17
±10.5

93.67
±1.48

63.25
±2.76

78.8
±1.99

7.14
±12.37

63.52
±55.02

38.76
±10.58

57.84
±29.71

22.65
±12.99

83.34
±1.35

64.5
±14.72

95.2
±2.25

DT+SBO 16.47
±2.49

0.0
±0.0

62.23
±3.3

74.8
±1.39

14.39
±12.92

89.47
±4.23

42.39
±8.75

77.56
±5.83

22.65
±12.99

83.34
±1.35

68.57
±11.06

97.09
±0.57

RF+UBA 12.63
±18.91

95.47
±1.1

65.2
±4.6

78.65
±1.67

23.06
±4.12

59.93
±17.86

41.01
±6.66

61.44
±24.54

23.53
±11.76

86.3
±2.12

60.41
±20.0

93.9
±2.74

RF+AD 5.9
±6.84

95.41
±0.93

61.62
±0.8

84.36
±1.89

8.33
±14.43

94.31
±1.32

32.8
±18.72

80.71
±4.31

14.7
±15.43

87.02
±3.43

69.37
±20.63

96.41
±1.58

RF+SBA 24.62
±4.67

76.19
±4.18

62.75
±4.03

84.64
±1.06

13.46
±12.61

91.48
±3.58

27.51
±24.04

81.02
±5.74

28.33
±7.11

49.95
±14.79

71.59
±14.17

97.3
±1.04

RF+RUS 8.66
±11.21

95.41
±1.14

67.27
±3.55

81.41
±0.76

21.8
±3.43

83.04
±6.79

40.25
±7.21

64.79
±18.8

16.73
±14.58

86.54
±1.66

64.01
±17.16

95.23
±1.65

RF+SBO 16.47
±2.49

0.0
±0.0

63.15
±6.92

78.23
±3.84

21.67
±20.21

90.59
±2.51

35.5
±19.59

80.2
±5.67

14.86
±12.93

84.86
±1.73

69.91
±12.65

97.21
±0.98

PRO1 38.65
±4.09

94.17
±1.17

67.82
±2.07

83.55
±1.99

26.19
±2.06

93.86
±0.66

46.32
±4.17

78.79
±6.43

42.21
±14.73

87.92
±6.56

83.37
±10.0

98.5
±0.71

PRO2 37.84
±5.77

94.18
±1.19

67.93
±1.35

84.08
±3.54

26.46
±3.67

93.85
±1.34

47.47
±6.14

78.89
±5.9

42.77
±14.46

86.81
±8.47

82.37
±18.89

98.61
±0.96
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“Glass” and “Pima”, changing α induces some jitter
on the AUC. However, there is neither an increasing
nor a decreasing trend—all results have the same or-
der of magnitude. We hence conclude that small α

values suffice and that our method is not overly sensi-
tive w.r.t. specific choices of α. Hence, the answer to
question Q1 is in the affirmative, and fix α = 3% for
the other experiments, i.e., no optimization over α is
performed.

4.3.2 Classification Performance

The results of our large comparison of classification
methods is shown in Table 2. In most real-world ap-
plications, the F1-score of the minority class (“Min.”)
is of exceptional importance. Not surprisingly, in
almost all cases, the baseline methods DT, RF and
GBM are outperformed by methods for imbalanced
data. There is no clear winner among the state-of-the-
art undersampling, oversampling, or SMOTE tech-
niques. It depends on the particular data set which
strategy delivers the best F1-score for the minor-
ity class. It is thus especially remarkable that our
method achieves the best and second best F1-score—
depending on the choice of quality measures Q —for
the minority class on five of six data sets. Only de-
cision tree UnderBagging achieves a better minority
F1-score on the “Pima” data. Nevertheless, note that
our proposed methods exhibits a lower standard er-
ror. Thus, a “typical” run of our method might out-
perform DT+UBA. In terms of majority (“Maj.”) F1-
score, our method is outperformed in 5 of 6 cases.
However, in two cases, the best result is delivered by
a plain random forest without any technique to han-
dle class imbalance—the corresponding minority F1-
score is thus far from optimal. The other three cases
are led by RF + oversampling, RF + SMOTE, and RF
+ Adaboost—all three are variants of the random for-
est. However, the decline majority F1-score of our
proposed method is in four of five cases below 3 per-
cent. Assuming that F1-score on the minority class
is the most important measure, we answer Q2 in the
affirmative.

5 CONCLUSION

In this paper, we presented a new ensemble method
for classification in the presence of imbalanced
classes. We started by reviewing the state-of-the-art
in the area of classification with imbalanced classes.
Real data sets are always finite which leads to a cor-
ruption of empirical class frequencies. Moreover, we
proved that these corruptions are unlikely to be large

in case of class imbalance and proposed a method
to correct for small corruptions. The correction is
performed by generating specialized validation sets
which correspond to different scenarios. Each vali-
dation set may then be used to induce an ensemble
of classifiers. We discussed how the classifiers for
different scenarios can be combined into an ensem-
ble and proposed different choices for the ensemble
weights. In an experimental demonstration, we val-
idated our theoretical findings, and showed that our
method outperforms several state-of-the-art methods
in terms of F1-score. Since our insights about class
imbalance and erroneous empirical class frequencies
are completely new, our work may serve as the basis
for multiple new research directions.
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