
Mapping of Quality of Service Requirements to Resource Demands for
IaaS

Ioannis Bouras1, Fotis Aisopos1, John Violos1, George Kousiouris1, Alexandros Psychas1,
Theodora Varvarigou1, Gerasimos Xydas2, Dimitrios Charilas2 and Yiannis Stavroulas2

1Dept. of Electrical and Computer Engineering, NTUA, 9 Heroon Polytechniou Str, 15773 Athens, Greece
2Cognity S.A., 42 Kifissias Av., 15125 Marousi, Athens, Greece

Keywords: Infrastructure as a Service, Cloud Computing, Quality of Service, Artificial Neural Networks, Resource
Selection.

Abstract: Deciding and reserving appropriate resources in the Cloud, is a basic initial step for adopters when employing
an Infrastructure as a Service to host their application. However, the size and number of Virtual Machines used,
along with the expected application workload, will highly influence its operation, in terms of the observed
Quality of Service. This paper proposes a machine learning approach, based on Artificial Neural Networks, for
mapping Quality of Service required levels and (expected) application workload to concrete resource demands.
The presented solution is evaluated through a comercial Customer Relationship Management application,
generating a training set of realistic workload and Quality of Service measurements in order to illustrate the
effectiveness of the proposed technique in a real-world scenario.

1 INTRODUCTION

Cloud adoption, either through a Software as a Ser-
vice (SaaS), a Platform as a service (PaaS) or an
Infrastructure as a Service (IaaS) approach, enables
an application owner to take advantage of the Cloud
computing benefits, such as stability and scalability.
However, a Cloud provider can act in a twofold man-
ner in this process, e.g. a SaaS provider can also act as
an adopter, deploying his software on an external IaaS
to further migrate instability risks. When it comes to
choosing an IaaS provider for the deployment of any
kind of application, a major consideration that Cloud
adopters have to take, relates to the amount of the re-
sources that should be reserved, in order to ensure the
smooth operation of the application. This is far from
a simple decision, as the resources selected and the
expected workload during a period are decisive for
many application-related Key Performance Indicators
(KPIs), such as HTTP API calls processing times.

Moreover, in the case of a SaaS application de-
ployed in an IaaS, keeping those KPIs in certain levels
is most important, given that the SaaS provider should
also keep its own Quality of Service (QoS), satisfy-
ing its customers SLAs. Despite the fact that, for
this process a number of approaches exist (e.g. con-
trol based loops to regulate resources based on KPI

levels), the overall definition of the various offered
SLAs (in comparison also to the cost) needs an a pri-
ori analysis of the QoS, based on anticipated appli-
cation workload and used resources. Thus, the need
for a mapping mechanism arises, which would trans-
late the applications high-level terms (Workload and
QoS parameters), to respective infrastructure-level re-
source requirements.

The current work evaluates the concept of Map-
ping Models, i.e. models based on Artificial Neu-
ral Networks (ANNs) taking care of the aforemen-
tioned parameter translation. The design parameters
of those models, are tuned employing a Genetic Algo-
rithm (GA) in order to generate an optimum or a close
to optimum ANN architecture, for the given dataset.
The training of the ANN models is performed using
detailed application and infrastructure data, such as
average application traffic over a period, number of
requests, memory (RAM) allocated for an image etc.
This ensures the effectiveness of predictions, for var-
ious application and resource setups.

Therefore, this paper provides the following con-
tributions:

• A black box ANN-based model that maps high-
level IaaS adopter demands to low level parame-
ters, by predicting Quality of Service metrics of a

Bouras, I., Aisopos, F., Violos, J., Kousiouris, G., Psychas, A., Varvarigou, T., Xydas, G., Charilas, D. and Stavroulas, Y.
Mapping of Quality of Service Requirements to Resource Demands for IaaS.
DOI: 10.5220/0007676902630270
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 263-270
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

263



deployed application of specific nature, based on
specific resource and expected workload setups.

• The generation of a representative, experimental
dataset, extracted from a real business Software
as a Service application from the Customer Rela-
tionship Management (CRM) domain.

• Evaluation of the aforementioned Mapping Mod-
els accuracy and comparison with mainstream
Machine Learning approaches in terms of effec-
tiveness, discussing also the efficiency dimension.

The rest of this document is organized as fol-
lows: Section 2 presents recent related works on map-
ping QoS to resource demands for clouds. Section 3
presents the ANN-approach followed in the current
work, explaining the Genetic Algorithm used, as well
as the Mapping Models inputs and outputs. Section
4 discusses the experimental CRM use case exam-
ined and the extraction of a meaningful dataset for
the Mapping Models, as well as the evaluation results.
Lastly, Section 5 concludes the current work.

2 RELATED WORK

Considering Cloud provisioning as a mean to opti-
mise an application performance and results, a ba-
sic preliminary step involves the selection of a ser-
vice provider. However, once selecting the appro-
priate provider, the most crucial step of the cloudi-
fication process is resource selection (Psychas et al.,
2018). Given some application runtime restrictions
(e.g. maximum HTTP API calls processing times),
certain Quality of Services requirements arise. The
problem concerning the decision on the amount of
resources to be reserved in the IaaS layer to satisfy
or ensure those QoS requirements has been raised
and thoroughly studied throughout the previous years
(Geeta and Prakash, 2017).

2.1 QoS-aware Resource Management
by IaaS

Starting from an IaaS provider perspective, work
in (Papagianni et al., 2013) attempted to tackle the
generic problem of providing an automated solution
for dynamically managing physical resources of a
data center used as substrate for IaaS platforms. The
authors employed a Self-Tuning Regulation (STR)
adaptation scheme, using an AutoRegressive with eX-
ogenous terms (ARX) model to dynamically anal-
yse resource and QoS monitoring values at run time.
This model was evaluated with a set of three distinct
multi-tier applications, assessing the performance of

the resource management framework by measuring
the number of violations with respect to the SLO
constraints. Authors in (Guazzone et al., 2011) pro-
posed a method for efficient mapping of user requests
for virtual resources onto a shared substrate intercon-
necting previously isolated islands of computing re-
sources, based on hard and soft QoS provisioning
schemes. The approach promotes a unified man-
agement and control framework for delivering effi-
ciently cloud IaaS, formulating the optimal networked
cloud mapping problem as a mixed integer program-
ming (MIP) problem with constrains related to cost
efficiency of the resource mapping procedure, while
abiding by user requests for QoS-aware virtual re-
sources.

Collazo-Mojica (Collazo-Mojica et al., 2012) pro-
posed a resource usage prediction engine based on
a multivariate linear regression model, which pro-
vides possible resource allocations in IaaS based on
heuristics. During runtime, the application perfor-
mance is being monitored, in order to provide scal-
ing suggestions. The approach is validated with a
CPU-bound cloud application running on Amazon
EC2 with a resulting average relative error of 17.49%.
Works in (Kritikos et al., 2016) and (Anastasi et al.,
2017) provide some interesting approaches on match-
ing resources offered by an IaaS to respective non-
functional parameters (like execution duration) for the
application. Lastly, (Ran et al., 2017) presents an on-
line overload probability estimation model aiming at
minimizing the total computing cost in IaaS, while
keeping the QoS levels agreed in customer SLAs
without any priori knowledge of the workload.

2.2 Predicting Resource Needs for SaaS

The issue of resource reservation from the perspec-
tive of SaaS providers, has also been extensively stud-
ied in numerous works which propose algorithms that
minimize infrastructure cost and SLA violations. Au-
thors in (Reig et al., 2010) used fast analytical and
adaptive predictors for resource needs in order to pre-
vent SLA violations concerning execution time. Au-
thors mainly target SaaS providers, handling hetero-
geneous workloads and attempt to predict the amount
of CPU and memory needed, based on reference exe-
cution times and using simple machine learning mod-
els, like Linear Regression and REPTree, aiming at
low computational complexity. Work in (Wu, 2011)
examines an EPR/CRM SaaS example, including pa-
rameters like Number of Records and Response time
in their respective SLAs. Authors aim at interpreting
customer requirements to infrastructure layer param-
eters, focusing on the VM level, similarly to the cur-

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

264



rent case study. They propose two SLA-based profit
maximization algorithms, based on a plain Mapping
Strategy of customer QoS requirements to resources.

Moreover, (Sun et al., 2017) introduced ROAR
(Resource Optimization, Allocation and Recommen-
dation System), a modeling framework to simplify,
optimize, and automate SaaS resource allocation de-
cisions to meet QoS goals for web applications. A
textual domain-specific language (DSL) called the
Generic Resource Optimization for Web applications
Language (GROWL) is defined to specify the high-
level and customizable load testing plan and QoS
requirements without low-level configuration details.
ROAR derives the appropriate cloud resource con-
figurations to orchestrate tests against each resource
allocation option, before using the results to recom-
mend a cost-optimized resource allocation to meet the
QoS goals.

2.3 Mapping Models Approach

The Mapping Models tool, developed in the context
of the CloudPerfect Innovation action project (Cloud-
Perfect:, 2017), uses a sophisticated machine learn-
ing approach, employing genetically optimized Artifi-
cial Neural Networks. This approach was selected, as
the relation between the parameters (inputs and out-
puts) of the problem are rather complex, presenting
non-linear behavior. Its goal is to translate high level
QoS requirements of a SaaS provider to low level re-
source demands for the IaaS layer. The current work
is based on (Kousiouris et al., 2011) and (Kousiouris
et al., 2014), aiming to provide an innovative solution,
tested using a CRM SaaS application deployed over a
commercial IaaS testbed.

3 MAPPING QUALITY OF
SERVICE TO RESOURCES

Mapping Models provide a generic supervised ma-
chine learning approach for correlating the defined
requirements (QoS) of a SaaS application for vari-
ous workloads, to resource level attributes (as these
are needed to be expressed in the SLA with the
IaaS provider). Specifically, the number of resources
needed by a specific application instance can be es-
timated given the respective application level charac-
teristics, such as the defined QoS restrictions and the
applied workload.

Mapping Models are based on Artificial Neural
Networks in GNU Octave 1 and built on a per soft-

1https://www.gnu.org/software/octave/

ware component basis with application-specific terms
that vary depending on each use case and in different
hardware configurations available per Cloud Provider.
As a first step, the SaaS application administrator
(IaaS adopter) needs to define the application param-
eters (workload, resources and KPIs) to be used as
model inputs and outputs respectively. This process
is necessary in order to adapt in each examined case.
ANNs are non-linear approximators that can be used,
in a black-box manner, to capture the dependency of
the output from the applied input, as shown in Figure
1.

Figure 1: ANN black box approach inputs and outputs.

The implementation utilizes the GNU Octave ’newff’
function for ANN building, which is based on feed
forward back propagation networks trained with the
Levenberg-Marquardt algorithm. The core of the
Models Creation mechanism currently consists of an
ANN factory, based on Octave tool. For the training
phase, the ANN factory needs a representative dataset
of executions provided by the IaaS adopter in an Oc-
tave file format, which will be used from a macro-
scopic point of view. This training dataset will be
used to determine the network weights and identify
complex, linear or non-linear dependencies of the out-
put from the inputs.

The design parameters of the ANN are configured
by a Genetic Algorithm (GA), in order to optimize
their selection. In general, selecting these parame-
ters is a tedious process, based on human experience.
However, it can not be easily repeated and applied
in an automated environment, thus in the current ap-
proach the GA solution was followed. The design pa-
rameters that are included in the optimization process
include the number of hidden layers, the number of
neurons per hidden layer and the type of transfer func-
tions of each network layer, from the available three
types in Octave (tansig, logsig and purelin)2. As il-
lustrated in Fig. 2, the neuro-evolution process starts
with an intial population of random architectures of
ANNs. On each generation the GA selects the fittest

2http://radio.feld.cvut.cz/matlab/toolbox/nnet/backpr52
.html/

Mapping of Quality of Service Requirements to Resource Demands for IaaS

265



Figure 2: The neuro-evolution process employed by the Mapping Models.

ANNs to be crossovered based on a probability sys-
tem regarding their performance (Selection process).
From this procedure, new architectures of ANNs will
be created and after the necessary mutation process
(in order to maintain some amount of randomness in
the GA) a new generation of ANNs is produced, ready
to be trained and validated. This process continues
until the predifined number of generations is reached.
Furthermore, proper data preprocessing ensures the
inclusion of the minimum and maximum values in the
training subset in order to avoid extrapolation risks.

The evolutionary performance criterion for the
GA i.e the Fitness Function, is the error on the train-
ing set. However, variations with the performance cri-
terion as the error on the intermediate validation set,
had been tried out in the original version of the algo-
rithm (Kousiouris et al., 2013), which seemed to yield
towards worse results. In each generation, the gener-
ated models are evaluated and selected, based on their
prediction performance on the intermediate validation
set, while the final selection is performed according to
the prediction performance on the third and final sub-
set (test set) of the initial data (approximately 30% of
them), which is not used during the training process.

The overall process of model creation consists of
the following steps:

• Create KPI monitoring endpoints in application
structure

• Define different types of used resources

• Gather dataset with rows including values for
workload, resource type and KPI values respec-
tively

• Feed the file in the tool UI

• Launch the training and validation phase for the
model

• Check prediction outcomes and save candidate
model

• Use model for prediction of new
cases/combinations

The Mapping Models tool consists of 3 main
scripts, the model-creator, the model-selection and
the ann-script, along with a number of helper func-
tions for e.g. (de)normalization. Inside the tool, the
process is as follows:

• The model-creator script is responsible for the
UI part, receiving input files and configuration
paths from the user (e.g. path to model reposi-
tory, model ID, number of input columns of the
provided csv file etc). File manipulation as well
as identification is based on the model ID, which
needs to be unique. Furthermore, the IaaS adopter
is asked whether the KPI is ascending or de-
scending and whether they prefer over or under-
provisioning, a feature that will be taken under
consideration in the selection of the final model.

• Upon finalization of the setup, the model-
selection script is launched, which is responsible
for retrieving the data, normalizing them, splitting
them into three subsets (65% training, 15% inter-
mediate validation and 20% final test set) and set-
ting up the GA part of the code before calling the
ann-script inside the GA function. Furthermore,
it is responsible for identifying, at the end of the
process, the best model by applying the test set
and concluding on the error.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

266



• The ann-script is the core function that receives a
proposed ANN architecture by the GA (a chromo-
some) and is responsible for creating the respec-
tive network based on the parameters, as well as
training and measuring its error on the intermedi-
ate validation set.

Upon finalization of the process, the UI part picks
up the control and presents the outcomes (error of all
the candidate models and detailed error of the best
model in all validation cases), asking the user whether
the outcome was satisfactory, in which case it stores
the model for future use. An example is illustrated in
Figure 3.

Figure 3: Mapping model performance.

Figure 4: Vertical structure of the CRM application.

4 PREDICTING QoS FOR A CRM
SaaS APPLICATION

For the purpose of validating the described mapping
approach, we employ a use case scenario involving

a multi-tenant SaaS application from the Customer
Relational Management (CRM) domain, deployed on
the Cloud at the IaaS level. This application, initially
deployed on a commercial on-premises infrastructure,
is moved to the IaaS layer in a horizontal manner. At
a glance, agents of the CRM application (users) log in
and perform customers, products and orders manage-
ment.

4.1 CRM Application Architecture

The CRM application follows the modern Microser-
vices architecture, according to which the application
logic is broken into several independent services, each
of which is charged with performing a specific task.
This allows for the application to be easily scalable
and become distributed in multiple hosting environ-
ments.

Figure 4 illustrates the application components,
along with their interconnections in a vertical struc-
ture. For the purposes of the current experimentation
we focus on the 4 Microservices that provide the core
functionality of the CRM application: Users, Prod-
ucts, Customers and Orders. Due to its nature, the
CRM application can be scaled up (modifying CPU
cores and memory) or out (adding more instances). In
the frame of this work, we experimented with various
test cases in order to assess a set of scalability scenar-
ios in terms of cost and performance. These scenarios
mainly considered scaling out, an example of which
is depicted in Figure 5.

In such cases, additional instances of degraded, in
terms of performance, components are deployed in or-
der to maintain the applications overall availability.

Figure 5: Scalability use of the CRM application.

A major performance indicator for any application
that users interact with in real-time, is the processing
time of user actions, i.e. the time that the system does
not allow further interactions until the previous action
is processed. In our case, the user does not interact

Mapping of Quality of Service Requirements to Resource Demands for IaaS

267



directly with the individual Microservices, but with
the UI one, which in turn spawns requests to the core
Microservices. Thus, we defined as a KPI the average
processing time of each individual core Microservice:
Users, Products, Customers and Orders one.

Different workloads and host hardware configu-
ration mainly affect the processing time of each Mi-
croservice. To be able to predict processing time
based on given traffic and hardware we utilized the
Mapping Models. For the following experiments, we
deployed all Microservices as docker containers in a
single dedicated host server.

4.2 Dataset Creation

Building a dataset for the Mapping Models required
the generation of enough paradigms of real user sce-
narios. For that purpose, we composed a simulation
of a common users scenario in the CRM (we call this
scenario lifecycle):

1. User logs in

2. User serves M customers

3. Each customer performs N orders

4. Each order is saved/updated K times

5. User logs out

We built a testbed application (the orchestrator)
based on a smooth combination of bash scripts, GO
and NodeJS codebase to load the CRM with a vari-
ety of lifecycle traffic and retrieve statistical measure-
ments (memory usage, request execution time etc.)
from each individual CRM Microservice.

Table 1: Lifecycle script input parameters.

Parameter Values
experiment duration (sec) 30, 60, 120
#virtual users distributed

in the above duration
1, 10, 30, 50, 60, 90,

100, 120, 150, 200, 300
#customers (M) 2, 4

#orders per customer (N) 2, 4
#updates per order (K) 7

Table 2: Containers RAM (MB) per Service component per
batch execution.

Batch
Service 1 2 3 4
Orders 700 896 1384 1792

Customers 700 896 1384 1792
Products 1024 1596 2048 3096

Users 700 896 1384 1792

The script was executed by creating different
number of concurrent users each time. Table 1. shows
the parameter variations in the script configuration.

All combinations of these values (132) formulated a
batch that was executed under a different hardware
setup each time. To achieve hardware variation in the
experiments, we modified the overall memory allo-
cated to each Docker container, creating four different
configurations for each batch Table 2.

Thus, the Mapping Models dataset was generated
by running the lifecycle batches (132) under the 4 dif-
ferent hardware profiles, providing 396 paradigms for
each Service component. Table 3 shows some indica-
tive values for the various Microservices, where:

• RAM: the overall memory allocated for the re-
spective docker container

• #Users: total number of virtual users created dur-
ing the scenario run

• #Request: the number of requests served by the
component

• #RPS: requests per second for the component

• Processing Avg: average Microservice process-
ing time

During the execution phase, we used the simplest
possible configuration, i.e. a single instance of each
application Microservice. The Microservice perfor-
mance is monitored throughout the scenario execu-
tion time, and an average processing time is provided
as the final Quality of Service meter. Each thread sim-
ulates the lifecycle scenario described in Section B of
the current document as UI actions, which are trans-
lated in a number of requests to the supporting service
components.

Figure 6: 3D view of the Customers service parameters.

As observed in the initial dataset results, most re-
quests during the lifecycle are generated in Orders
Microservice, while the RAM increment has a pos-
itive effect, only in Products and Users ones. Fig.
6 illustrates the main parameters of a Microservice
dataset in the 3D space.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

268



Table 3: Mapping Models Dataset generated by the orchestrator.

Microservices RAM (MB) #Users #Requests RPS Processing Avg (msec)
Orders 700 10 70 3.04 23.59

Customers 700 10 70 3.04 23.59
Products 1024 10 20 0.87 104.70

Users 700 10 20 0.87 55.30
Orders 1792 10 70 2.92 23.03

Customers 1792 10 10 0.42 66.3
Products 3096 10 20 0.83 80.10

Users 1792 10 20 0.83 37.45

4.3 Evaluation of Experimental Results

To validate the accuracy of the Mapping Models ap-
proach, we compared them with three mainstream and
effective machine learning techniques, namely Sup-
port Vector Machines (SVMs), Random Forests (RFs)
and Linear Regression (LR). In order to achieve the
desired level of generalization and prediction perfo-
mance, the aforementioned models were tuned using
exhaustive Grid Search on a wide range of hyperpa-
rameter values, combined with k-fold cross-validation
as the model validation technique. In specific, for
the SVMs we used the RBF kernel, tuning the C and
gamma parameters. In Random Forests we tuned the
number of estimators, the maximum depth of the tree
and the minimum number of samples required to be at
a leaf node. Linear Regression, being a simple model,
performed poorly on the given dataset and its results
will not be presented. The code for these experiments
was written in python using the scikit-learn library
(Pedregosa et al., 2011).

Table 4: Percentage Errors Analytical Comparison.

Service ANN Random Forest SVM
Orders 9.6 18.17 20.83

Customers 6.22 10.51 9.33
Products 13.39 13.52 12.82

Users 8.37 9.38 9.38

The design parameters of each ANN model which
were configured, after 30 generations, by the Genetic
Algorithm (GA) with 3 candidate transfer functions
and a maximum of 10 layers and 30 neurons per layer
are illustrated in Table 5.

In order to keep the models simple, a different
model was built and trained for each different Mi-
croservice of the CRM application (given that they are
independent) resulting to better performance and to a
comprehensive insight of the behavior of each sepa-
rate Service Component. The validation metric for
these experiments was the Mean Absolute Percentage

Error (MAPE) of each model for the same test set.
An overview of the resulting MAPEs is illustrated

in Fig. 7, with the numbers for each Service sepa-
rately provided in Table 4. As it can be observed in
the provided results, the ANN, optimized by the Ge-
netic Algorithm, clearly outperforms the competition
for all services, being however less efficient during
the training phase, due to the optimization step intro-
duced by the use of the GA.

Figure 7: Mapping Models, SVM and Random Forest Per-
formance Comparison.

5 CONCLUSIONS

This work presented a machine learning approach,
employing Artificial Neural Networks and a Genetic
Algorithm, in order to analyze resource, workload and
Quality of Service parameters trade-offs for a SaaS
application adopting resources from the IaaS layer.
This was evaluated using a real business CRM ap-
plication dataset, and compared to several existing
mainstream approaches. Evaluation results illustrated
the effectiveness of the ANN solution, in contrast
with other techniques. The application of the GA
makes the training of the current solution less effi-
cient, adding an extra step, however during runtime
no significant time deviation can be observed from
other approaches.

In terms of future work, the authors plan to in-
clude more hardware parameters (e.g. CPU cores)

Mapping of Quality of Service Requirements to Resource Demands for IaaS

269



Table 5: Neural Network parameters selected by GA.

Optimized ANN details Format
Service Layer Number Neuron per layer Transfer functions per Layer
Orders 4 5-3-2-1 tansig-logsig-logsig-purelin

Customers 3 5-3-1 tansig-logsig-purelin
Products 3 5-3-1 tansig-logsig-purelin

Users 3 5-3-1 tansig-tansig-purelin

and build an extended dataset for the aforementioned
application. This will provide a more thorough view
of resources and QoS relation and will result into a
more concrete analysis, taking into account also an
efficiency comparison of various approaches.

ACKNOWLEDGEMENTS

This work has been supported by the CloudPerfect
project and funded from the European Unions Hori-
zon 2020 research and innovation programme, topic
ICT-06-2016: Cloud Computing, under grant agree-
ment No 73225.

REFERENCES

Anastasi, G., Carlini, E., Coppola, M., and Dazzi, P. (2017).
Qos-aware genetic cloud brokering. In Future Gener-
ation Computer Systems 75, 1 - 13.

CloudPerfect: (2017). Enabling cloud orchestration, perfor-
mance and cost efficiency tools for qoe enhancement
and provider ranking. In http://cloudperfect.eu/.

Collazo-Mojica, X., Sadjadi, S., Ejarque, J., and Badia, R.
(2012). Cloud application resource mapping and scal-
ing based on monitoring of qos constraints. In SEKE.

Geeta and Prakash, S. (2017). A review on quality of service
in cloud computing. In Big Data Analytics, Advances
in Intelligent Systems and Computing. Springer Sin-
gapore, pp. 739 748.

Guazzone, M., Anglano, C., and Canonico, M. (2011).
Energy-efficient resource management for cloud com-
puting infrastructures. In IEEE Third International
Conference on Cloud Computing Technology and Sci-
ence, pp. 424 431.

Kousiouris, G., Kyriazis, D., Gogouvitis, S., Menychtas, A.,
Konstanteli, K., and Varvarigou (2011). Translation
of application-level terms to resource-level attributes
across the cloud stack layers. In IEEE Symposium
on Computers and Communications (ISCC), pp. 153
160.

Kousiouris, G., Menychtas, A., Kyriazis, D., Gogouvitis,
S., and Varvarigou, T. (2014). Dynamic, behavioral-
based estimation of resource provisioning based on
high-level application terms in cloud platforms. In Fu-
ture Generation Computer Systems 32, 27 40.

Kousiouris, G., Menychtas, A., Kyriazis, D., Konstanteli,
K., Gogouvitis, S., Katsaros, G., and Varvarigou, T.
(2013). Parametric design and performance analy-
sis of a decoupled service-oriented prediction frame-
work based on embedded numerical software. In IEEE
Transactions on Services Computing 6, 511 524.

Kritikos, K., Magoutis, K., and Plexousakis, D. (2016).
Towards knowledge-based assisted iaas selection. In
IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 431 439.

Papagianni, C., Leivadeas, A., Papavassiliou, S., M. V.,
Cervell-Pastor, C., and Monje, A. (2013). On the op-
timal allocation of virtual resources in cloud comput-
ing networks. In EEE Transactions on Computers 62,
1060 1071.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine learning in
python. In Journal of Machine Learning Research 12,
2825 2830.

Psychas, A., Violos, J., Aisopos, F., Evangelinou, A.,
Kousiouris, G.and Bouras, I. V. T., Xidas, G., Char-
ilas, D., and Stavroulas, Y. (2018). Cloud toolkit for
provider assessment, optimized application cloudifi-
cation and deployment on iaas. In Future Generation
Computer Systems.

Ran, Y., Yang, J., and Zhang, S., X. H. (2017). ynamic
iaas computing resource provisioning strategy with
qos constraint. In IEEE Transactions on Services
Computing 10, 190 202.

Reig, G., Alonso, J., and Guitart, J. (2010). Prediction of
job resource requirements for deadline schedulers to
manage high-level slas on the cloud. In Ninth IEEE
International Symposium on Network Computing and
Applications, pp. 162 167.

Sun, Y., White, J., Eade, S., and Schmidt, D. (2017). Roar:
A qos-oriented modeling framework for automated
cloud resource allocation and optimization. In Jour-
nal of Systems and Software 116, 146 161.

Wu, L., G. S. B. R. (2011). Sla-based resource alloca-
tion for software as a service provider (saas) in cloud
computing environments. In Proceedings of the 2011
11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGRID 11. IEEE Com-
puter Society, Washington, DC, USA, pp. 195 204.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

270


