
Recursive Pedagogy: Automatic Question Generation using Real-time
Learning Analytics

Fatima Abu Deeb1 and Timothy Hickey2

1King Saud bin AbdulAziz University for Health Sciences, Al Ahsa, Saudi Arabia
2Brandeis University, Waltham, MA, U.S.A.

Keywords: Problem Solving Learning Environment, Peer Review, Educational Technology, Collaborative Learning,
Computer-supported Pedagogy.

Abstract: In this paper we introduce the notion of Recursive Pedagogy, which is a computer-supported approach to
teaching and learning in which students solve problems assigned by an instructor using a Problem Solving
Learning Environment, and their attempts to solve that problem are then used by the system to create new
kinds of problems to help them build high level cognitive skills. The Recursive Pedagogy approach generalizes
an approach we introduced earlier: the Solve-Then-Debug (STD) pedagogy to teach coding. In STD, students
write a program given its description and, when their code passes all of the unit tests, they debug a sequence of
incorrect programs submitted by their peers, starting with those with the most common errors. In this paper,
we discuss two new Recursive Pedagogies that we have implemented in the Spinoza Python Tutor: Solve-
Then-Critique-Correct-Solutions shows students correct programs from their peers and asks them to critique
the code relative to a rubric; Solve-Then-Analyze-Unit-Tests shows students results of a set of unit tests and
asks them to describe the probable error based on the unit test results. After students submit their Recursive
Pedagogy analysis of a peer’s attempt, they are shown other students’ analyses of that attempt and are asked to
select the best one. Recursive Pedagogies are designed to build skills in problem-solving, debugging, testing,
and composing high quality solutions. Moreover, they can be used in a flipped class and they keep all students
engaged in either problem solving or one of the other skills.

1 INTRODUCTION

There is a growing body of evidence demonstrating
that active learning in STEM classes can improve
learning outcomes (Freeman et al., 2014), increase
retention (Rath et al., 2007) and increase diversity
(Haak et al., 2011). One approach to incorporating
active learning in a class is to use a Problem Solv-
ing Learning Environment (PSLE) which allows the
instructor to pose problems in class for the students
to solve. Two mathematics PSLEs are WebWork
(Gage et al., 2002) and CalcTutor (Kime et al., 2015).
There are many PSLEs for coding including Spinoza
(Abu Deeb and Hickey, 2015), Codingbat (Parlante,
2007), CloudCoder (Andrei Papancea, 2013), and
many others.

Most PSLEs allow the students to submit multi-
ple attempts and provide immediate feedback about
the correctness of these attempts. They store student
interaction with the system to allow the instructor to
use these data to gauge a student’s understanding and

mastery of specific activities and concepts.
In a typical class using a PSLE the instructor

would use a Solve-Then-Debrief (STDB) pedagogy
in which they introduce new content in lecture format
and then test student understanding of the content by
assigning a problem in the PSLE, then stopping the
activity at the appropriate time, and moving into a de-
brief state where they discuss the most common errors
and compare and contrast the variety of possible so-
lutions.

If the PSLE is designed for classroom orchestra-
tion (e.g. Spinoza (Abu Deeb and Hickey, 2017) or
PCRS (Zingaro et al., 2013)), the instructor would be
able to monitor the progress of the students in real-
time and decide when to end the problem solving ac-
tivity based on actionable real-time learning analytics.

One major issue that arises when using a PSLE as
an in-class activity is that the students have different
skill levels. Some students will complete the problem
solving process very quickly and then have nothing to
do, while others will struggle and never complete the

204
Deeb, F. and Hickey, T.
Recursive Pedagogy: Automatic Question Generation using Real-time Learning Analytics.
DOI: 10.5220/0007673502040211
In Proceedings of the 11th International Conference on Computer Supported Education (CSEDU 2019), pages 204-211
ISBN: 978-989-758-367-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



problem, even if given the entire class time.
Partly motivated by this weakness of the Solve-

Then-Debrief pedagogy using traditional PSLEs,
we developed the Solve-Then-Debug Pedagogy
(Abu Deeb et al., 2018). After students correctly
solved a problem using the PSLE they were shown se-
lected incorrect attempts from their classmates which
represented the most common errors their class had
made, and they were led through a seven step process
to analyze the attempt and contrast their analyses with
that of their peers.

The Solve-Then-Debug process can keep all stu-
dents actively engaged and moreover can help them
build valuable analytic skills. It does require that the
PSLE maintain an equivalence relation on incorrect
attempts so that it can find the most common mistakes
and select actual student attempts from the largest of
those equivalence classes.

After using Solve-Then-Debug in a large Python
Programming class, we realized that this same ap-
proach could be used to help students develop a much
wider range of important programming skills, includ-
ing the ability to

• critique correct solutions for clarity, simplicity, ef-
ficiency, and programming style

• effectively analyze unit-test results,

• write and analyze program specifications

• create effective unit-tests specifying important
corner cases

and many others. In this paper we formalize these ob-
servations and present a generalization of the Solve-
Then-Debug approach which we call Recursive Ped-
agogy (RP) which can be applied to any Problem
Solving Learning Environment which supports what
we call Constructionist Problems. The fundamental
idea is that whenever a student solves the original
problem, the system analyzes all previous attempts
made by their classmates, groups them into equiva-
lence classes, and formulates a new kind of problem
by selecting representatives from those equivalence
classes.

For coding PSLEs in Computer Science courses,
the original problem typically involves writing a pro-
gram to solve a problem. This corresponds to the
”Create” activity at the top of Bloom’s taxonomy of
Cognitive Processes (Krathwohl, 2002). The addi-
tional Recursive Pedagogy problems usually involve
additional high level activities such as the Analyze
or Evaluate cognitive processes. They help students
build their ability to analyze other students’ attempts
along a number of dimensions. We will focus mostly
on Problem Solving Learning Environments for Cod-
ing and we will describe in detail the Recursive Ped-

agogies available in Spinoza, but as we will see this
approach is applicable in a wide-variety of fields.

The notion of Recursive Pedagogy can also be
used in a collaborative learning context such as Pair
Programming or POGIL, since group problem solving
still is subject to the problem of some groups complet-
ing the work more quickly than others, especially in
large classes.

2 RELATED WORK

Recursive Pedagogy is most similar to Contributing
Student Pedagogy (CSP) (Herman, 2012; Falkner
and Falkner, 2012) in which students are encouraged
to contribute in a valuable way to the work of their
peers. Peer Review is the best known example of CSP
(Søndergaard and Mulder, 2012; Clarke et al., 2014).
In Peer Review, students are asked to apply a rubric
to grade the submissions of their peers. Research on
Calibrated Peer Review (Walvoord et al., 2008) has
provided evidence that if this is done carefully, the
reviews can be nearly as accurate as those obtained
using Teaching Assistants. Calibrated Peer Review
requires all of the students to grade the same three
sample assignments representing poor, average, and
excellent work, and then it uses each student’s perfor-
mance on these grading tasks to calibrate their skill as
a grader. The calibration is then used to weight their
grading of other students work and to select graders
with at least one highly skilled grader for each group.

In recursive pedagogy, students analyze the work
of their peers just as in Peer Review and their work
helps other students learn the skills and concepts be-
ing taught as in Peer Review and CSP.

There are some fundamental differences though.
The goal of Recursive Pedagogy is not to grade stu-
dents work, especially since in this context students
are typically making multiple attempts, getting feed-
back, and eventually getting the correct answer. In-
deed, as originally conceived most students engaging
in RP will not have their work directly analyzed by
others, and those that do will usually not see the com-
ments that others have made. Moreover, RP works
best if the attempts can be automatically analyzed for
correctness and automatically put into a natural equiv-
alence class. Neither of these are features of tradi-
tional Peer Review or CSP. Finally, the RP approach
provides a multi-step online process where students
alternately perform their own analysis and then see
and evaluate the analyses of their peers so they can
learn from each other both to solve problems effec-
tively and to critique attempted solutions.

Thus the main difference between our approach

Recursive Pedagogy: Automatic Question Generation using Real-time Learning Analytics

205



and Peer Review is that Peer Review engages students
in a reviewing dialog where the reviews directly con-
tribute to improving that particular document being
reviewed and every student has their work reviewed
in this way. In our approach, the purpose of the re-
views is for the reviewer to learn how to analyze at-
tempted solutions and the person whose work is being
analyzed won’t necessarily see those comments and
hence couldn’t use them to improve their work.

3 RECURSIVE PEDAGOGIES
FOR GENERAL PSLES

In this section we introduce the notion of Recursive
Pedagogies for PSLEs in general. We present the
properties that a PSLE must have to effectively sup-
port Recursive Pedagogies and we provide algorithms
for picking the Recursive Pedagogy problems effec-
tively and efficiently.

3.1 Constructionist Problems

Recursive pedagogies are applicable for any problems
in which an attempted solution can be algorithmically
analyzed for correctness and which can also be ef-
fectively critiqued by the teacher or a fellow student.
Therefore, the optimal kind of problem for recursive
pedagogy is one where the attempted solutions belong
to a large space of solutions, ideally where the user
constructs an answer using some formal language,
e.g. coding, or mathematics. The PSLE tests these
attempted solutions for correctness automatically us-
ing unit testing or some other uniform rubric.

Another important property for Recursive Pedago-
gies is that the domain must support a natural equiv-
alence relation on the space of possible attempts, so
that the system can identify the ”most common mis-
takes.” These kinds of problems are often assigned
in STEM courses in Mathematics, Computer Science,
Physics, and Chemistry.

In CS1 classes, a programming problem that asks
students to write code to satisfy specified constraints
belongs to this type of problem as the students could
have many ways to construct attempted solutions. The
correctness of these attempts can be tested against
an instructor-designed suite of unit tests. The at-
tempted solutions can be grouped together in equiv-
alence classes in many different ways (e.g. by the re-
sults of the unit tests).

In a Mathematics class, the instructor could ask
the student to calculate the derivative of some func-
tion, and expect the student to write the result, not
choose it from a multiple choice answer. The student

could submit the attempt they made and get immedi-
ate feedback about correctness. Similar solutions pro-
duced by all the students are grouped together in the
same category of attempts. In this case different cat-
egories of attempts will correspond to different errors
that could signal common misconceptions in forming
the derivative. The teacher or students could analyze
or critique an attempted solution by trying to point
out possible misconceptions that would have resulted
in that error. They could also suggest ways of simpli-
fying the answer to make it more clear.

In a problem where a STEM course is taught us-
ing programming, we can assume that students will
be writing programs with relatively simple algorithms
and that they have enough knowledge about coding to
do so easily. So we expect most errors would be due
to not having full mastery of the domain knowledge
of the problem. Student could critique each other’s
attempted solutions by pointing out these mistakes in
the domain knowledge.

There are many PSLEs that support this kind of
problem, for example for Mathematics classes we
have WebWork (Gage et al., 2002), CalcTutor (Kime
et al., 2015), and ProveIt (Ferraro, 2010). In pro-
gramming, we have Spinoza (Abu Deeb and Hickey,
2015), codingbat (Parlante, ), cloudcoder (Andrei Pa-
pancea, 2013) and many others.

3.2 Problem Solving Markov Models
for RP

In any PSLE which supports constructionist problems
a Problem Solving Markov Model (PSMM) can be
created (Abu Deeb et al., 2016). A PSMM is a graph
where each node represents an equivalent class of at-
tempted solutions and each edge represents consecu-
tive attempts from a member of one class to a member
of the second class. The size of the node represents
the frequency of the attempt and the color represents
its correctness. The edges are labelled with the prob-
ability that a student will make that transition. The
PSMM is used in Recursive Pedagogy to select the
most common attempts of some particular type (e.g.
logic errors, syntax errors, correct solutions). We will
provide examples in the next section.

3.3 A Strategy for Choosing the
Attempts in Recursive Pedagogy

Some Recursive Pedagogies rely on choosing at-
tempts from the most common PSMM nodes. This is
a little subtle though, because the ranking of the sizes
of the PSMM nodes changes as time progresses. The
precise algorithm we have implemented in Spinoza is

CSEDU 2019 - 11th International Conference on Computer Supported Education

206



described in detail in (Abu Deeb and Hickey, 2017)
and it proceeds by taking the chronologically first at-
tempt in the largest equivalence class that the student
has not yet seen. Typically the Recursive Pedagogy
will restrict the nodes of interest (e.g. only incor-
rect attempts, or only attempts made by at least 5%
of the class, etc.), and students will do 2-10 of these
RP problems for each problem they solve.

3.4 Scalability for Recursive Pedagogy

Since all students comment on the same Recursive
Pedagogy problems, often in the same order, the ini-
tial problems will get comments from large numbers
of students. A student who is in the second phase
may not be able to read through all of those com-
ments to select the best one, especially in a class of
over 100 students. Thus, there is a need to algorith-
mically limit the number of comments to be shown to
the students. One possible approach is to only keep
some of the most popular and some of the most re-
cent comments. Another approach is to only show the
first 20 comments or so, as the first ones are coming
from the fastest students who most likely know how
to solve the problem and are more likely to provide
better comments.

Another use of Recursive Pedagogy is to generate
hints for students who are still working on the initial
problem. If their most recent attempt is in the equiv-
alence class of a problem that has been selected as an
RP problem, then the instructor can choose to allow
them to see the critiques of that problem by other stu-
dents in the RP phase. The same issue of information
overload arises with hint generation as with RP com-
ments. One needs to decide which of the RP com-
ments to show the still strugging student. One pos-
sible solution is to ask the Teaching Assistants (TAs)
to provide hints and only show hints from those TAs.
We could also show just the most popular comments
as hints.

4 RECURSIVE PEDAGOGIES IN
SPINOZA

In this section we present the Recursive Pedagogies
that are currently implemented in Spinoza, describe
the pedagogy for each of these problems, and provide
some justification for the choices made in designing
these pedagogies.

4.1 Solve-Then-Debug

Any PSLE that supports a Constructionist problem
solving activity, can be extended to include the Solve-
Then-Debug (STD) pedagogy which adds another
layer to the Solve-Then-Debrief (STDB) activity. It
helps engage the fastest students in the learning pro-
cess and can also provide additional hint generation
for the slower students. It was first introduced in
(Abu Deeb et al., 2018).

The Solve-Then-Debug activity begins with the
instructor asking the students to solve a problem in a
PSLE. The students solve the problem all at the same
time, and they are allowed to submit multiple attempts
until they get the correct result.

After a student solves a problem correctly, they
can move to the next phase which we call the de-
bug phase; this guarantees that the debugger knows
at least one way to solve the problem, which could
make the debugging more accurate.

In the debug phase, the PSLE creates a problem
solving Markov Model for this problem, and the stu-
dent is given a problem from the largest incorrect
node in the Markov Model that they have not yet de-
bugged. We choose the largest node to allow students
to recognize the most common mistakes, and also to
increase the possibility that other students, who are
still in the solve phase, could be helped by these de-
bugging comments.

The student will see the first attempt that belongs
to that category of error, and then is asked to classify
that error (syntax, logic, incomplete) and give a com-
ment describing why that attempt is incorrect. All stu-
dents who debug that node, will see the same attempt
and hence that attempt will acquire very many com-
ments. This was designed to insure that students are
benefiting from each other’s comments, but as men-
tioned above, this can create a problem if hundreds of
students are commenting on the same problem. We
discussed some remedies to this over-commenting is-
sue in the previous section.

The student in the debug phase can press the ”run”
button and see the results of the unit tests on the de-
bug problem code, but our system doesn’t allow them
to edit the buggy code. We make this restriction, be-
cause we do not want the students to write their solu-
tion to the problem; we want them to think critically
about the error and imagine the feedback they will get
using their fix.

After the student submits their comment, they can
then see other students’ comments on the same incor-
rect attempt, and the restriction on editing the attempt
is removed, but we also add a restriction to prevent
the student from editing their original comment. Stu-

Recursive Pedagogy: Automatic Question Generation using Real-time Learning Analytics

207



Figure 1: This view of the student debugging comments from the Solve-Then-Debug activity has been annotated with X’s for
incorrect comments and checkmarks for correct comments, with a letter indicating which of the two main errors the comment
is referring to: (a) a logic error where all centuries are incorrectly counted as leap years and (b) a style issue since the code
can be written in one line, e.g. return y%4==0 and y%100!=0 or y%400==0.

dents are not allowed to change their comments since
otherwise they might be tempted to just copy other
students’ comments blindly in the next step without
trying first, and not engage in critical thinking. At this
point, the student can then edit the buggy code and
get feedback of correctness or can use other students’
comments to try to fix the buggy attempt. This step al-
lows the student to test their hypothesis, either by the
Spinoza unit-test feedback on their edited attempt, or
from looking at the other students’ comments.

The student must then pick the comment which
they think is most accurate, this is to encourage them
to read all the comments as it might help them gain in-
sights that they missed in their own debugging anal-
ysis, and also help develop their skills in critiquing
other students analyses. After choosing the most ac-
curate comment they can then move to the next debug
problem with the second highest number of attempts
and the cycle repeats until the instructor stops the ac-
tivity.

In a large class, it is rarely the case that the fastest
students will end up solving all the generated debug
practice problems before the instructor stops the ac-
tivity. However, in case a student does finish all the
major common misconceptions, Spinoza allows the
student to view all the subsequent versions in each
node, until all the versions are commented by this stu-
dent. Lastly if the student finishes all the debug prac-
tice problems, they can view their previous comments
and other students comments to all the debug practice
problems they have completed.

If the instructor chooses to enable hints in this ac-
tivity, then a struggling student who is still in the solve
phase, and gets an error that is in the same equivalence

class of a debug problem already solved by other stu-
dents, will be able to choose to see the comments on
that related attempt. This will allow slower students to
engage in critical thinking, as they would need to ex-
amine the different suggestions their peers provided
and pick the best one to try. Since these hints were
written by fellow students, they may contain both in-
sights and misleading suggestions.

Below is an incorrect attempt at writing a python
program to return true if the argument y is a leap year
and false otherwise. Fig. 1 shows an ”other students
comments” pane for this attempt where we have an-
notated the comments to show our analysis of their
comments.

def is_leap_year(y):
if y%400==0:

return True
elif y%4==0:

return True
elif y%100!=0:

return True
else:

return False

This problem was debugged by 10 students and 7
out of 10 gave correct comments. Two students indi-
cated that they do not know how to debug the prob-
lem. The last student just gave a completely wrong
comment on the coding style.

4.2 Solve-Then-Analyze-Unit-Tests

”Solve-Then-Analyze-Unit-Tests” is a variant of
Solve-Then-Debug. In this RP the students as before

CSEDU 2019 - 11th International Conference on Computer Supported Education

208



Figure 2: Solve-Then-Analyze-Unit-Tests.

will need to solve an instructor specified problem and
after they solve the problem correctly, they can ad-
vance to ”Analyze-Unit-Tests” phase. The ”Analyze-
Unit-Test” phase is different from the debug phase of
STD in that the student will only see the result of the
unit tests. The code that generates these unit tests will
be hidden as in Figure 2. After the student submits a
comment describing how to fix the program to meet
the description of the problem, the code will be shown
to them along with other students’ comments for the
same version of the program. The student can edit
the code at this point to confirm their analysis or con-
sider other students’ comments. To advance to the
next ”Analyze-Unit-Tests” problem, the student must
select the best comment that describes the bug based
on the unit tests.

We speculate that ”Solve-Then-Analyze-Unit-
Tests” (STAUC) would be better for providing a gen-
eral hint for the students who are still in the Solve
phase, as the students in the analyze phase will not be
presented with the code at that point so they will not
give too specific comment that suits only one version
of that class of attempt. For example, with hints gen-
erated by the Solve-Then-Debug pedagogy, students
often refer to some specific variable by name or to an
error on a particular line number. A problem in the
same equivalence class is unlikely to have a variable

with the same name or an error on that same line num-
ber, though they may well have the same error.

4.3 Solve-Then-Critique-Correct-
Solution

Another recursive pedagogical activity that we have
implemented in Spinoza is Solve-Then-Critique-
Correct-Solution. In this activity, all students are first
asked to solve a problem using a PSLE, as usual. Af-
ter a student solves the problem correctly, the student
moves to the critique phase. In the critique phase
the PSLE selects a correct problem for all students
to critique. Ideally it would follow the same Markov
Model approach and use some finer equivalence rela-
tion on the space of correct solutions to group them
into nodes and pick the most common nodes first.
This categorization could be based on the style or
the simplicity of the solutions. Our current version
in Spinoza does not do any finer analysis and simply
moves through the solutions in chronological order.

Our current implementation for Solve-Then-
Critique-Correct-Solution has two main steps. Af-
ter the student solves the problem, they are presented
with a correct solution by one of their classmates and
a rubric. After they submit their critique they can
see other students’ evaluations of the same attempt

Recursive Pedagogy: Automatic Question Generation using Real-time Learning Analytics

209



Figure 3: Solve-Then-Critique-Correct-Solution view of other students’ critiques of the ”movieCost” problem with selection
checkboxes for the best critique. Several students made no comments at all, but three made quite insightful comments, which
were then seen by all later students.

and they must select the best critique before they can
move on to the next problem. For example, Fig. 3
shows the critiques of the student attempt shown be-
low, which is a correct solution to a particular prob-
lem to calculate the cost of a movie ticket based on
the patron’s age.

def movieCost(age):
if age <18:

return 6
if age >=65:

return 6
else:

return 10

This step can help the student evaluate the quality
of their own critique by comparing it to the critiques
of their peers.

4.4 Preliminary Results

Spinoza was tested in a small Introduction to Python
Programming class with 19 students in Fall 2018.
Students were asked to solve Python programming
problems both in class and as homework. They were
also asked to complete six Recursive Pedagogy prob-
lems for each Spinoza programming problem they
completed. At the end of the semester students were
asked to complete a short survey about their impres-
sions of using Spinoza with Recursive Pedagogy, 15
out of 19 completed the survey.

When asked which type of Recursive Pedagogy
they liked the most, 53% selected the Solve-Then-
Debug (STD), 33% chose Solve-Then-Analyze-Unit-
Tests (STAUT), and 13% chose Solve-Then-Critique-
Correct-Solution (STCCS). When asked which was
most challenging, the results were 47% for STAUT,
33% for STCCS, and 20% for STD. A majority pre-
ferred having a mixture of different kinds of Re-
cursive Pedagogies (67%) rather than just one type
(33%). A plurality (40%) preferred to use Spinoza as
an in-class activity only, while (33%) preferred to use
it both as an in-class and a homework activity. Only
13% wanted to use it as homework only, and another
13% didn’t want to use Recursive Pedagogy at all.

5 CONCLUSIONS AND FINAL
REMARKS

This paper presented the idea of Recursive Pedagogy
which is a computer supported pedagogy designed
specifically for a class of students with varying skills
and speeds that are using a problem solving learning
environment to support active learning. It provides
some initial evidence that students found this peda-
gogy useful and interesting, but larger trial are needed
to determine its efficacy.

In the future we intend to implement more exam-
ples of RP in Spinoza and to explore adding Recursive
Pedagogy to other PSLEs such as CalcTutor. We also

CSEDU 2019 - 11th International Conference on Computer Supported Education

210



plan to explore the use of different equivalence rela-
tions that look into the structure of the programs and
not just the behavior under unit tests.

REFERENCES

Abu Deeb, F., DiLillo, A., and Hickey, T. J. (2018). Using
fine grained programming error data to enhance cs1
pedagogy. In International Conference on Computer
Supported Education.

Abu Deeb, F. and Hickey, T. (2015). Spinoza: The code
tutor. In Proceedings of the International Conference
on Computer and Information Science and Technol-
ogy, Ottawa, Canada.

Abu Deeb, F. and Hickey, T. (2017). Flipping introductory
programming classes using spinoza and agile peda-
gogy. In 2017 IEEE Frontiers in Education Confer-
ence (FIE), pages 1–9. IEEE.

Abu Deeb, F., Kime, K., Torrey, R., and Hickey, T. (2016).
Measuring and visualizing learning with markov mod-
els. In Frontiers in Education Conference (FIE), 2016
IEEE, pages 1–9. IEEE.

Andrei Papancea, Jaime Spacco, D. H. (2013). An open
platform for managing short programming exercises.
Proceedings of the ninth annual international ACM
conference on International computing education re-
search, pages 47–52.

Clarke, D., Clear, T., Fisler, K., Hauswirth, M., Krishna-
murthi, S., Politz, J. G., Tirronen, V., and Wrigstad,
T. (2014). In-flow peer review. In Proceedings of the
Working Group Reports of the 2014 on Innovation &
Technology in Computer Science Education Confer-
ence, pages 59–79. ACM.

Falkner, K. and Falkner, N. J. (2012). Supporting and
structuring “contributing student pedagogy” in com-
puter science curricula. Computer Science Education,
22(4):413–443.

Ferraro, M. (2010). ProveIt math and proof practice.
Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K.,

Okoroafor, N., Jordt, H., and Wenderoth, M. P. (2014).
Active learning increases student performance in sci-
ence, engineering, and mathematics. Proceedings
of the National Academy of Sciences, 111(23):8410–
8415.

Gage, M., Pizer, A., and Roth, V. (2002). Webwork: Gen-
erating, delivering, and checking math homework via
the internet.

Haak, D. C., HilleRisLambers, J., Pitre, E., and Freeman, S.
(2011). Increased structure and active learning reduce
the achievement gap in introductory biology. Science,
332(6034):1213–1216.

Herman, G. L. (2012). Designing contributing student ped-
agogies to promote students’ intrinsic motivation to
learn. Computer Science Education, 22(4):369–388.

Kime, K., Torrey, R., and Hickey, T. (2015). Calctutor:
Applying the teachers dilemma methodology to cal-
culus pedagogy. In Frontiers in Education Conference
(FIE), 2015 IEEE, pages 1–8. IEEE.

Krathwohl, D. R. (2002). A revision of bloom’s taxonomy:
An overview. Theory into practice, 41(4):212–218.

Parlante, N. Codingbat code practice.
Parlante, N. (2007). Nifty reflections. ACM SIGCSE Bul-

letin, 39(2):25–26.
Rath, K. A., Peterfreund, A. R., Xenos, S. P., Bayliss, F.,

and Carnal, N. (2007). Supplemental instruction in in-
troductory biology i: enhancing the performance and
retention of underrepresented minority students. CBE-
Life Sciences Education, 6(3):203–216.

Søndergaard, H. and Mulder, R. A. (2012). Collaborative
learning through formative peer review: pedagogy,
programs and potential. Computer Science Education,
22(4):343–367.

Walvoord, M. E., Hoefnagels, M. H., Gaffin, D. D., Chum-
chal, M. M., and Long, D. A. (2008). An analysis of
calibrated peer review (cpr) in a science lecture class-
room. Journal of College Science Teaching, 37(4):66.

Zingaro, D., Cherenkova, Y., Karpova, O., and Petersen,
A. (2013). Facilitating code-writing in pi classes. In
Proceeding of the 44th ACM Technical Symposium
on Computer Science Education, SIGCSE ’13, pages
585–590, New York, NY, USA. ACM.

Recursive Pedagogy: Automatic Question Generation using Real-time Learning Analytics

211


