
Phased Classroom Instruction: A Case Study on Teaching Programming
Languages

Sebastian Mader and François Bry
Institute of Informatics, Ludwig Maximilian University of Munich, Germany

Keywords: Technology-enhanced Learning, Active Learning, Flipped Classroom, Peer Review.

Abstract: This article describes a novel educational format called “phased classroom instruction” and its enabling tech-
nology specially tuned to the effective learning of formal languages in tertiary STEM education. Like flipped
classroom, phased classroom instruction aims at promoting active learning. In contrast to flipped classroom,
phased classroom instruction scales to large classes thanks to its associated enabling technology. The arti-
cle reports on a real-life evaluation of the proposed format and of its enabling technology pointing to their
effectiveness.

1 INTRODUCTION

Programming languages and all formal languages
(like the language of chemical equations) used in
STEM education can only be learned by sufficiently
applying them. Language application, however,
mostly falls short in tertiary STEM education which
heavily relies on lectures (Stains et al., 2018) the large
audiences of which make an active participation of
students hardly possible. Even though lectures are
commonly decried, they persist in tertiary STEM ed-
ucation for pragmatical reasons: Lectures scale and
with steadily increasing numbers of students they of-
ten remain the last resort. As a consequence, “learn-
ing by applying” is delegated outside lectures leaving
the students mostly alone with problems and miscon-
ceptions.

The necessity of “learning by applying” and more
generally of “active learning” has often been stressed,
not only for learning formal languages. According to
Bonwell and Eison, in order to be actively involved
in their learning, students need to “engage in such
higher order thinking tasks as analysis, synthesis, and
evaluation” (Bonwell and Eison, 1991, p. iii). This
broad definition covers nearly every learning scenario
that goes beyond lecturing, and is restricted by Prince
to “activities that are introduced in the classroom”
(Prince, 2004, p. 233). The teaching format “flipped
classroom” has been introduced so as to promote ac-
tive learning by flipping the activities traditionally
performed during and outside classes: Students begin
with learning on their own, or “self-learning”, what

is followed by classroom sessions of active learning
(Bishop et al., 2013).

Flipped classrooms face two difficulties: First, the
creation of learning material suited to self-learning
is significantly more time-consuming than creating
learning material for presence lectures (McLaughlin
et al., 2014; Stelzer et al., 2010). Self-learning mate-
rial must be more bulletproof and extensive than lec-
ture material because with self-learning, no lecturer
can provide complementary explanations. Second,
flipped classrooms do not scale to several tens or even
hundreds of students. The role of lecturers in flipped
classrooms is the role of a “guide on the side” (King,
1993) which requires of lecturers to be aware of ev-
ery students’ progress and difficulties – a manageable
task with twenty to thirty students that becomes more
and more impossible as the number of students in-
creases.

Building upon the experience gathered with
flipped classrooms and exploiting possibilities of-
fered by technology, a novel teaching format, “phased
classroom instruction”, has been designed. Phased
classroom instruction fosters active learning like
flipped classrooms but is, in contrast to flipped class-
rooms, deployable in large classes thanks to its tech-
nological support. With phased classroom instruc-
tion, a classroom session consists of mini-lectures
lasting typically 15 to 25 minutes, followed by longer
phases devoted to application of the knowledge con-
veyed in the mini-lectures in practical exercises.

Phased classroom instruction’s practical exercises
are worked on in a browser-based environment which

Mader, S. and Bry, F.
Phased Classroom Instruction: A Case Study on Teaching Programming Languages.
DOI: 10.5220/0007655702410251
In Proceedings of the 11th International Conference on Computer Supported Education (CSEDU 2019), pages 241-251
ISBN: 978-989-758-367-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

241



is advantageous for lecturers and students alike. As
of lecturers, the browser-based environment makes
all currently worked on submissions available to the
lecturers and makes it possible to get assistance from
software for spotting students in need of help. As of
students, the browser-based environment provides ed-
itors customized to different types of exercises, such
as code editors with compiling functionality, editors
for logical proofs, detecting erroneous expressions or
even allowing only well-formed expressions. Such
editors are able to provide immediate feedback in-
stead – or in addition to – the lecturer, allowing short
feedback loops even in large classes. Furthermore,
the online availability of the students’ submissions
makes further work with the submissions easily pos-
sible, such as the lecturer referring to some of them
in following mini-lectures or students reviewing other
students’ submissions.

Phased classroom instruction is similar to Fred-
erick’s proposal to alternate “mini-lectures and dis-
cussions” (Frederick, 1986, p. 47). Both formats
differ inasmuch as Frederick’s format does not in-
clude written students’ submissions to exercises but
instead discussions on the mini-lectures’ content and
as with Frederick’s format active phases generally last
no more than 10 to 15 minutes. Furthermore, Freder-
ick’s proposal is to be deployed in a non-digital class-
room and does not discuss enabling technology.

The contributions of this article are threefold:
First, a novel course format lessening the workload of
teachers, second, the conception of a novel technol-
ogy enabling the proposed instruction format in large
classes, and third, a report on a real-life evaluation of
the format and its enabling technology in a university
computer science course pointing to their effective-
ness.

This article is structured as follows: Section 1 is
this introduction. Section 2 is devoted to related work.
Section 3 introduces the course format, its enabling
technology, and the implementation in a software de-
velopment practical. Section 4 reports on an evalua-
tion of course format and enabling technology. Sec-
tion 5 summarizes the article and gives perspectives
for future work.

2 RELATED WORK

The survey of flipped classroom research by Bishop
et al. (Bishop et al., 2013) distinguishes two kinds
of teaching activities: Activities taking place in the
classroom and activities taking place outside of the
classroom. For their survey, to qualify as flipped
classroom, classroom activities have to consist of

“interactive group learning activities” (Bishop et al.,
2013, p. 4), while outside classroom activities have to
consist of “direct computer-based individual instruc-
tion” (Bishop et al., 2013, p. 4). Their definition
excludes formats that do not use videos for outside
classroom activities as well as formats that include
traditional lectures among classroom activities. Thus,
according to their definition, the format proposed in
this article does not qualify as flipped classroom even
though it incorporates components of that format.

Flipped classrooms have already been deployed
and evaluated in STEM education: Amresh et al.
(Amresh et al., 2013) introduced a flipped classroom
in an introductory computer science class of 39 stu-
dents. Their evaluation shows that while the flipped
classroom improved examination results, some stu-
dents were overwhelmed and intimidated by the for-
mat. Gilboy et al. (Gilboy et al., 2015) applied a
flipped classroom to two classes on nutrition: Outside
of the classroom, students learned from mini-lectures
and written material while all of the in-classroom time
was devoted to active learning in form of a “jigsaw
classroom” (see (Aronson, 2002)). In an evaluation,
the majority of students preferred the classroom learn-
ing activities to a traditional lecture of similar dura-
tion.

While the aforementioned studies represent
flipped classrooms adhering to Bishop et al.’s defi-
nition, other studies examined flipped classrooms in
which some kind of lecture took place during the
in-classroom activities: Stelzer et al. (Stelzer et al.,
2010) introduced flipped classrooms in an introduc-
tory course in physics attended by 500 to 1,000 stu-
dents. Classroom activities were conducted in groups
of 24 students. At the beginning, the course for-
mat did not include any lectures among the class-
room activities, but it was later adapted to contain
a small lecture at the classroom sessions’ beginning
recapitulating the outside classroom activities. The
authors observed a positive influence of the educa-
tional format on examination results. Furthermore,
the course was perceived by the students as less diffi-
cult than the same course taught in a traditional man-
ner. McLaughlin et al. (McLaughlin et al., 2014) used
a flipped classroom approach to teach pharmaceutics
to 162 students. Their approach included on-demand
micro-lectures to “reinforce and, if needed, redirect
students’ learning” (McLaughlin et al., 2014, p. 3).

The “Taxonomy of Educational Goals” by Bloom
(Bloom, 1956) defines a hierarchy of six educational
goals aimed at comparing and classifying of educa-
tional formats and content: Knowledge, Comprehen-
sion, Application, Analysis, and Evaluation. Each
of the aforementioned goals has all previously men-

CSEDU 2019 - 11th International Conference on Computer Supported Education

242



tioned goals as precondition, the rationale being that
nothing can be applied without first being known and
comprehended. Every goal except Application is fur-
ther subdivided into more specific goals. The taxon-
omy was revised by Krathwhol (Krathwohl, 2002):
The goals are expressed as verbs and reordered re-
sulting in the goals Remember, Understand, Apply,
Analyze, Evaluate, and Create. In the revised tax-
onomy, Remember is not equal to Knowledge from
the original taxonomy, in fact Knowledge is bro-
ken up into four dimensions: Factual Knowledge,
Conceptual Knowledge, Procedural Knowledge, and
Metacognitive Knowledge. These knowledge dimen-
sions are considered orthogonal to the formerly men-
tioned goals, resulting in a two-dimensional taxon-
omy. This taxonomy makes possible to express dis-
tinct objectives such as “analyze factual knowledge”
and “analyze conceptual knowledge”.

Peer review supports students in attaining parts of
the learning goal Analyze, as this goal concerns it-
self with “making judgements based on criteria and
standards” (Krathwohl, 2002, p. 215). Peer review
consists in students providing feedback on their peers’
work. This feedback can either replace the lecturer’s
feedback or extend it. Peer review is reflexive in
the sense of making reviewers reflect on their own
work (Topping, 1998; Lundstrom and Baker, 2009;
Williams, 1992) and has been shown to have a pos-
itive impact on reviewers’ own writing (Lundstrom
and Baker, 2009). In a study in tertiary STEM educa-
tion, Heller and Bry (Heller and Bry, 2018) used peer
review for providing feedback on coding assignments.
Their study showed that in the majority of cases, the
delivered peer review was correct and that the major-
ity of the students found helpful to deliver peer re-
views, but that they found only sometimes helpful the
peer reviews they received on their own work.

To support students giving peer review, scoring
rubrics can be provided to students (Cho et al., 2006).
A rubric is “a scoring guide to evaluate the quality
of students’ constructed responses” (Popham, 1997,
p. 72). Jonsson and Svingby (Jonsson and Svingby,
2007) conclude in their survey, that the use of scoring
rubrics in peer review can further support students’
learning.

According to Hattie and Timperley (Hattie and
Timperley, 2007), feedback is “information provided
by an agent (...) regarding aspects of one’s per-
formance and understanding” (Hattie and Timperley,
2007, p. 81) and effective feedback should answer
three questions (Hattie and Timperley, 2007, p. 87):

• “Where Am I Going?” (Hattie and Timperley,
2007, p. 88): With feed up, a task can be con-
textualized showing learners to what end a certain

concept should be learned.

• “How Am I Going?” (Hattie and Timperley, 2007,
p. 89): The feed back dimension gives informa-
tion about students’ performance on a task and
how their performance relates to some perfor-
mance goal.

• “Where to Next?” (Hattie and Timperley, 2007,
p. 90): With feed forward, learners’ can be given
an outlook where to next, e.g., by providing them
with further sources of information on concepts
not understood or on related concepts.

Feedback can be provided on four levels (Hattie
and Timperley, 2007):

• Task-level feedback is given pertaining students’
work on a task, e.g., the correctness of a mathe-
matical computation.

• Process-level feedback aims to give information
about the processes that are involved in achiev-
ing a goal, e.g., giving learners information about
what rules to apply to simplify a mathematical
equation.

• Self-regulation feedback aims to provide feed-
back about students’ self-regulation skills and
metacognitive knowledge, e.g., the skill to self-
evaluate one’s own work.

• Self-level feedback is unrelated to the task and
only pertains the student, e.g., “You are very tal-
ented.”

With the exception of self-level feedback, each of the
aforementioned feedback levels is effective depend-
ing on the learner and the situation in which the feed-
back is given. (Hattie and Timperley, 2007) As of
the timing of feedback, Hattie and Timperley con-
clude from surveying various studies that task-level
feedback should be provided as soon as possible and
process-level feedback should be delayed so as not to
inhibit the construction of the learners’ autonomy.

Scaffolding is defined by Wood et al. (Wood et al.,
1976) as a “process that enables a child or novice to
solve a problem (...) which would be beyond his unas-
sisted efforts” (Wood et al., 1976, p. 90). One way
to provide scaffolding is by feedback. Merriënboer
et al. (Van Merriënboer et al., 2003) further specify
scaffolding as a combination of “performance sup-
port and fading” (Van Merriënboer et al., 2003, p. 5),
the support first being provided to the students while
they are working towards a goal and later being grad-
ually withdrawn, or “faded”. Scaffolding can be pro-
vided in person by instructors which generally re-
quires them to work with a single student or a small
group of students or provided by software what can

Phased Classroom Instruction: A Case Study on Teaching Programming Languages

243



accommodate more students and be used in out-of-
classroom learning scenarios. Automatic scaffold-
ing is often provided in form of feedback and can
be found in intelligent tutoring systems and adaptive
learning environments.

The “Test My Code” environment by Vihavainen
et al. (Vihavainen et al., 2013) provides feedback in
form of both automated tests and incremental exer-
cises, i.e., exercises partitioned into guidance-giving
subtasks. Pedro et al. (Sao Pedro et al., 2014) devel-
oped an automatic scaffolding system which supports
students in developing data collection skills by means
of simulations of scientific experiments. Their envi-
ronment detects off-track students and provides them
with feedback to help them get back on track. In their
study, they showed that the automatic scaffolding pro-
vided by their system helped students to develop data
collection skills.

Automatic scaffolding is explored for non-STEM
subjects as well: He et al. (He et al., 2009) pro-
pose a system for automatic assessment of text sum-
maries produced by students which provides feed-
back in the form of key points missing in students’
summaries. Yang (Yang, 2015) provides computer-
generated feedback about a concept map created by
students about a text’s content. Yang observed that the
feedback provided by their system had a positive im-
pact on the students’ reading comprehension as well
as on their summary-writing skills.

Didactic reduction is very similar to scaffolding
and fading. Didactic reduction is a term coined by
Grüner (Grüner, 1967) and refers to breaking down a
concept into its most basic parts (“scaffolding”) while
still retaining its functionality. Later on, the more ad-
vanced parts can be put back step by step (“fading”)
until the concept is available in its full complexity. In
tertiary STEM education, new concepts are often em-
bedded into other concepts making it hard for students
to grasp the actual concept to learn. With didactic re-
duction, other concepts can be omitted at first, and
later on be reintroduced step by step.

The article Heller et al. (Heller et al., 2018) de-
scribes how various course formats can be realized by
Backstage.1 Phased classroom instruction is briefly
mentioned, however, without referring to its evalua-
tion and implementation first reported about in this
article.

1https://backstage2.pms.ifi.lmu.de:8080

3 PHASED CLASSROOM
INSTRUCTION AND ITS
ENABLING TECHNOLOGY

The following section introduces the course format,
its technological support, and the actual implementa-
tion in the accompanying lecture of a software devel-
opment practical.

3.1 Format

A session in the format consists of one or more blocks
each of them consisting of three phases:

1. a lecture (subsequently mini-lecture) of about 15
to 25 minutes introducing new concepts to the stu-
dents

2. an extensive practical exercise where students
work in groups of two to four students putting
the newly acquired concepts to use. During this
phase, the lecturer stands ready to provide strug-
gling teams with support

3. a peer review where each team is assigned another
team’s submission for review

Mini-lectures minimize the amount of passive lis-
tening and therefore counteract the problem of stu-
dents’ attention dropping during lectures after about
25 to 30 minutes (Stuart and Rutherford, 1978). To
restore students’ attention, Young et al. suggest that
“short breaks or novel activities may temporarily re-
store attention to normal levels” (Young et al., 2009,
p. 52), which leads to the next part of the format, the
exercise for students to work on in groups. Depending
on the subject taught, the exercise can take different
forms: From a larger coding exercise, a mathematical
proof, to the creation of a larger body of text about
some topic. Working on exercises in groups leverages
benefits of collaborative learning, such as an improve-
ment in academic achievement (Prince, 2004).

The combination of lecture, exercise, and peer re-
view brings the majority of Bloom’s taxonomy (in the
revised form) into the classroom: For “Knowledge”,
the mini-lectures provide both the factual and con-
ceptual knowledge required for the exercise. If ex-
ercises are formulated in a scaffolded way, they can
provide procedural knowledge: Breaking a bigger ex-
ercise into smaller subtasks shows students the prob-
lems the bigger problem is composed of and by that
one possible approach to solve the problem. Peer re-
view teaches students the ability to evaluate and cor-
rect work of others, and therefore supports students’
meta-cognitive knowledge through its reflective na-
ture.

CSEDU 2019 - 11th International Conference on Computer Supported Education

244



The dimensions “Remember” and “Understand”
are covered by the mini-lectures, “Apply” and (parts
of) “Analyze” by exercises, and (parts of) “Analyze”
and “Evaluate” through peer review. Therefore, the
format should cover six of the seven steps of Bloom’s
taxonomy. The last of step, “Create”, would arguably
require more extensive problems and a longer dura-
tion, which can hardly be implemented in a lecture.

3.2 Enabling Technology

The enabling technology has to provide lecturers with
a group organization component and with means of
keeping an overview of the groups’ work even in
larger classes. The technology should make it easy for
lecturers to identify groups in need of support. To this
goal, all students’ submissions should be be available
to the software. This is achieved by providing stu-
dents with web-based editors integrated into the soft-
ware to work out their submissions.

The enabling technology is available in the learn-
ing and teaching platform Backstage which orches-
trates the process starting from assigning the exercises
to the teams, providing them with an appropriate edi-
tor for creating their submission, and finally randomly
assigning each team another team’s submission for
peer review. The number of participants is not limited
by the technology, as Backstage was built to support
a few hundred students, but by the format itself: It
is likely that after reaching a certain number of stu-
dents, collaboration will be heavily impaired due to
sheer number of students being present in the class-
room. With increasing number of students, the num-
ber of teams that require personal support through the
lecturer is bound to increase as well, which at some
point becomes too much for a single lecturer to han-
dle.

Backstage provides students with editors that sup-
port them in solving specific types of exercises, such
as a coding editor for programming tasks, a logic ed-
itor for creating logic proofs, and an editor for induc-
tion proofs. Each of the editors creates automated
feedback and in this way provides scaffolding to stu-
dents. The logic editor, e.g., disallows incorrect steps
in a proof and the code editor automatically runs tests
on the students’ submission. Didactic reduction is im-
plemented by focussing on the important concept to
be exercised: The code editor removes compiler and
file management from the equation and the proof ed-
itors focusses solely on which rules to apply, not on
the structure of the resulting proof. Groups choose
by themselves how to collaborate: Work together on
a single computer or split the task into subtasks and
work on those subtasks in smaller groups. When

working on two or more computers, Backstage sup-
ports students in quickly exchanging their worked on
artifacts and creating their final group submission.

The feedback and the scaffolding provided by
those editors can potentially replace lecturer interven-
tions for advanced groups, which in turn, frees up the
lecturer’s time, allowing them to support groups that
need their help.

During the exercise phase, Backstage provides
lecturers with an overview of the currently worked-on
submissions, allowing them to stay on top of a larger
number of submissions and identify struggling groups
much faster as opposed to the alternative of walking
around glancing at screens and worksheets. In a large
classroom with extensive exercises, a more reduced
view on the classroom is required: Aggregated mea-
sures, such as the percentage of passing tests, can be
shown to the lecturer. After the exercise has been fin-
ished, the online availability of all submissions allows
teachers to adapt their teaching to an exercise’s result:
Weaknesses and misconceptions as well as positives
can immediately be discussed by the means of stu-
dents’ submissions.

Figure 1: Interface in which a peer review is given: Another
group’s submission displayed in the same editor the sub-
mission was worked on (top), the checklist of conditions a
correct submission has to fulfill (middle), and a text area for
further comments (bottom). The checklist items have been
translated from German.

For peer review, Backstage provides the reviewing
team with the submission to review in a “try-out” en-
vironment (if applicable), and with a checklist of con-
ditions that a correct submission has to fulfill, such as
“Has each case of a proof by induction an induction

Phased Classroom Instruction: A Case Study on Teaching Programming Languages

245



hypothesis?” For each checklist item, the reviewing
team has to decide if the solution fulfills the condition.
Those checklist items serve two purposes: First, they
act as a simplified scoring rubric which guides stu-
dents in giving feedback. Second, they allow to gener-
ate correctness feedback for exercises for which cor-
rectness cannot be automatically determined: If each
of the checklist items is marked as fulfilled, the sub-
mission is seen as correct. An example for the view
in which the peer review is conducted can be seen in
Figure 1: In the top, another teams solution can be
seen, the aforementioned checklist of conditions can
be seen in the middle, and in the bottom there is a text
area where further comments can be provided by the
reviewing team.

3.3 Implementation

A total of five sessions using the format described
above were developed for the accompanying lecture
of a software development practical. In this soft-
ware development practical, students are tasked to de-
velop a game in groups of four using the program-
ming language JavaScript. Each session was built
for a 135 minute lecture with a 15 minute break
halfway through. The lecture material was created
from scratch. The creation of eleven mini-lectures
and eleven exercises amounted to around 60 hours. A
first evaluation took part in the winter term 2018/19.
For the initial iteration of the practical, only sixteen
students were admitted in order to initially test the
mini-lectures and exercises before using the course
format and material for a greater number of students.
Students worked in groups of four.

To teach students the techniques required for the
development of their own game, mini-lectures were
structured around the game “Snake”.2 In each mini-
lecture, one technical aspect of game development
was explained using Snake and implemented in the
subsequent exercise in each group’s personal version
of Snake. Groups always worked on the same code,
so that at the end each group had implemented their
own version of Snake from scratch.

The exercises were worked on in a specialized
JavaScript editor which can be seen in Figure 2.
It enabled students to write and run code directly
from their web browser. The utilized version of the
JavaScript editor did not support unit tests, i.e., the
correctness of a submission was determined solely
by peer review or the students themselves. Indeed,
for the exercises at hand, groups could easily check

2https://en.wikipedia.org/wiki/Snake (video game
genre)

for correctness themselves as the game can either be
played correctly or not.

Figure 2: The JavaScript editor used by the teams for creat-
ing their submissions showing the output of a group’s sub-
mission. The tabs at the top allow to switch between the ed-
itor’s functionalities. In the image, output is selected, which
shows the result of the program’s execution: The black rect-
angle is the snake’s body, the blue rectangle its head, and the
red rectangle the apple the snake has to eat.

Each mini-lecture began with a “why?” contex-
tualizing its content, providing the students with a
learning goal and why this learning goal should be
attained, acting as general feed forward. Each mini-
lecture closed with a review of the exercise that fol-
lowed, where the exercise and the steps it consists
of were reviewed. The exercise description shown to
students was structured in a similar way: The main
exercise and steps on the way providing a form of in-
structional scaffolding. Everything was displayed at
once, i.e., the visibility of a step was not dependent
on completing the preceding steps.

The exercises were worked on in groups of four
students sitting next to each other. Students could ei-
ther collaborate on a single computer or work on two
or more computers and bring their results together af-
terwards.

4 EVALUATION

Phased classroom instruction has been evaluated as
course format for a JavaScript software development
practical during the winter term 2018/19 (see Section
3.3).

The sessions took place during the first five weeks
of the term. During the following weeks, the students
implemented a larger software project independently

CSEDU 2019 - 11th International Conference on Computer Supported Education

246



putting the concepts learned during the sessions to
use. During this phase, each team was supported by
weekly meetings with a teaching assistant.

4.1 Method

Data for the evaluation was collected using a survey
and taken directly from the Backstage system as well.
The survey was conducted during the final session of
the practical and consisted of six parts:

1. Four questions referring to the students’ course
of study, current semester, gender, and team they
were in.

2. Six questions measuring the students’ attitude to-
wards the course format and its elements.

3. Six questions measuring the students’ attitude to-
wards the content and structure of mini-lectures
and exercises.

4. Six questions measuring the students’ attitude to-
wards the enabling technology.

5. Five questions measuring the students’ program-
ming proficiency using an adapted version of the
survey by Feigenspan et al. (Feigenspan et al.,
2012).

6. Three questions in form of free-text questions,
asking about what they liked most, what could be
done better and for further comments.

For parts (2), (3), and (4), a six-point Likert scale
from strongly agree to strongly disagree with no neu-
tral choice was utilized. All submissions and peer re-
views were retrieved directly from the Backstage sys-
tem. A single lecturer determined for each team and
exercise the point in time – if at all – in which the exer-
cise was solved correctly and whether the peer review
delivered was correct.

The correctness of an exercise was determined in
a strict way: A submission was seen as correct, if and
only if the whole task was solved correctly. For peer
review, the lecturer determined which of the checklist
items (see Section 3.2) the submission properly ful-
filled and compared their judgement to the group’s
review. A review was seen as correct if, and only
if, lecturer and group judgement were identical. The
written comments were not taken into account for de-
termining a peer review’s correctness.

Data from the first lecture had to be excluded from
the evaluation, because internet connection broke
down during the lecture, making it nearly impossible
for students to turn in their submissions and provide
peer review.

4.2 Results

All of the sixteen students completed the question-
naire, six of whom were female, ten male. In each
session, at least three members of each team were
present and the majority of the time all of the par-
ticipants were present.

Figure 3 shows the students’ attitude towards the
course format: The vast majority of students strongly
agreed that the immediate exercise and the discussion
with their team mates helped their understanding of
the topic and none of the students would have pre-
ferred to have a traditional lecture. Regarding peer
review, students found their own reviewing of the sub-
missions of other teams more helpful than the reviews
they received for their own submission.

Figure 4 shows the students’ attitude towards the
content and structure of mini-lectures and exercises:
Most students agreed that the mini-lectures were suf-
ficient to solve the exercises and preferred exercises
building upon each other to independent exercises.
The majority of the students’ did not find the exer-
cises too difficult or too big.

The results for the students’ attitude towards the
enabling technology can be seen in Figure 5: While
the majority of the students found that the JavaScript
editor helped them getting started with JavaScript, a
number of students thought the opposite. Further-
more, around a third of the students would have pre-
ferred to solve the exercises in a real development
environment as opposed to the JavaScript editor on
Backstage. Students thought that the views for sub-
mitting a solution and giving peer review were clearly
designed and the course format was supported well by
Backstage.

The overall correctness for each team’s submis-
sion for every exercise can be seen in Figure 6. If
a team failed to finish a task during the lecture, they
were tasked to complete it as a team outside class. A
correct task, finished outside class, is indicated by a
yellow square. Generally, the correctness of the sub-
missions decreases rapidly after the first two lectures
and somewhat recovers for the last lecture.

The correctness of the peer reviews can be seen in
Figure 7: In the majority of cases, the peer review was
correct and there are no big differences in the num-
ber of correctly delivered peer reviews between the
groups.

Figure 8 shows how long each group took to turn
in a correct (or, otherwise final) submission deter-
mined by the lecturer as described in Section 4.1.
Submissions that were submitted after 100 minutes
are omitted so that only submissions that were done
during the session are represented. Generally, dura-

Phased Classroom Instruction: A Case Study on Teaching Programming Languages

247



Figure 3: Students’ responses to the section referring to their attitude towards the course format.

Figure 4: Students’ responses to the section referring to their attitude towards the implementation of the course format.

Figure 5: Students’ responses to the section referring to their attitude towards the technological support.

tions for the first two sessions fit the duration pro-
posed by the course format. The exercises in the
fourth session were not solved by a single team in
time, with the times normalizing again for the final
session.

On a scale from 0 to 9, the average coding pro-
ficiency was rated with 3.69 (Min: 1, Max: 9, Var:
7.30), participants reported a coding experience of in
average 3.47 years (min: 0, Max: 10, Var: 9.16).
Eight of the participants reported that they code in
their free time besides the assignments for the courses

they are attending.

4.3 Discussion

Generally, the course format was well-liked by the
students, with students preferring the mini-lectures
combined with practical exercises over the traditional
lecture and reporting better understanding through the
immediate practice and discussion with their team
mates. The results for peer review are as expected
from other studies on peer review: Students seem to

CSEDU 2019 - 11th International Conference on Computer Supported Education

248



S2
-1

S2
-2

S3
-1

S3
-2

S4
-1

S4
-2

S5
-1

S5
-2

Team 2

Team 3

Team 4

Team 1

Correctness of Exercises by Team

incorrect
correct after session
correct in session

Figure 6: Correctness of each team’s submission for each
exercise.

S2
-1

S2
-2

S3
-1

S3
-2

S4
-1

S4
-2

S5
-1

S5
-2

Team 2

Team 3

Team 4

Team 1

Correctness of Peer Review by Team

incorrect
no peer review
correct

Figure 7: Correctness of each team’s peer review for each
exercise.

S2
-1

S2
-2

S3
-1

S3
-2

S4
-1

S4
-2

S5
-1

S5
-2

Exercise

0

10

20

30

40

50

60

70

80

Ti
m

e 
in

 m
in

ut
es

Time per exercise
Team 2
Team 3
Team 4
Team 1

Figure 8: Time to submission for which correctness was
determined for each team.

profit more from looking at other teams’ submissions
and providing review as from the review they receive
from other groups. While the provided peer reviews

seem to be mostly correct, a wrong review led to a
team’s submission being shown as incorrect, which
could have led to this attitude. To solve this, the qual-
ity of the peer review has to be improved, so that false
negatives are the exception. One way to increase the
quality of peer reviews and therefore the value for re-
viewees is proposed by Heller and Bry: Assigning
submissions of struggling students (here: groups) to
well-performing students (Heller and Bry, 2018). In
the present scenario, an imaginable assignment strat-
egy would be to assign submissions of teams who
failed the previous exercise to teams who successfully
solved said exercise.

The majority of students somewhat disagreed that
the exercises were too difficult. This, in combination
with the fact that the exercises for the third session
were not solved by a single team during the desig-
nated time, could be an indicator that some of the ex-
ercises should be made easier for the next iteration of
the practical. During the third lecture, object-oriented
programming with JavaScript was introduced, which
is different to that of the Java programming language
taught earlier in the curriculum which the students
are accustomed to. This could possibly explain why
the students were struggling in this session. Subse-
quently, the next exercise could not be solved as well,
because it was dependent on a working submission
for the preceding task.

The results shown in Figure 5 show that Back-
stage supported the course format well and that the
views for submission and peer review were clearly
designed. While most of the students thought that the
JavaScript editor made their start with JavaScript eas-
ier, there are a few students who disagreed with this
statement and an even larger number of students who
would prefer to use a real development environment
for the exercises. The authors’ hypothesized that this
may be caused by previous experience and being ac-
customed to the feature set offered by full-fledged de-
velopment environments. A correlation analysis be-
tween all values for coding proficiency and those two
questions did not reveal any correlation, which sug-
gests that the reason for this attitude most likely lies
somewhere else.

The previous experience of the participants varied
greatly, which is reflected in the completion times for
exercises as well: Groups’ completion times are often
differing in the amount of 10 to 15 minutes, which
opens up the possibility of further collaboration in the
class room: peer teaching. Groups who already com-
pleted their submission can support other groups in
solving the exercise.

Phased Classroom Instruction: A Case Study on Teaching Programming Languages

249



5 CONCLUSION AND
PERSPECTIVES

This article introduced a course format and its en-
abling technology which intends to bring active learn-
ing to large class tertiary STEM education. The for-
mat combines mini-lectures with extensive exercises
worked on in groups. The enabling technology sup-
ports the lecturer in staying on top of larger classes by
providing them the currently worked on submissions
and aggregated values about the groups’ submissions
for an easy overview. Students are supported by ed-
itors specialized to certain types of exercises which
can provide scaffolding in form of automated feed-
back.

An evaluation was carried out with a small number
of participants to first collect feedback about format
and course material, improving both, before running
another iteration with a larger number of students in
the summer term 2019. The evaluation has shown that
students heavily favor the active approach with none
of them preferring a traditional lecture over the new
course format. A problem with the exercise design
was identified through the evaluation: For one ses-
sion, all teams failed to complete the exercises, most
likely due to a new, unclear subject matter and too
extensive exercises. The students found the enabling
technology to support the format well and its views
clearly designed.

To address the issue of teams not finishing ex-
ercises, two approaches are imaginable: Exercises
should be scaffolded in a way that shows teams the
steps to a complete solution, with the current step
in the best case always being an attainable step. In
the evaluated format, all steps were visible at once,
which most likely led groups to focus on more than
one step at once which could be solved by showing
students only one step at a time. Another approach is
to provide struggling groups (e.g., groups not solving
the previous exercise correctly) a more detailed tem-
plate or a smaller task to work on, so that at the end
of each session each group has achieved something
which provides a sense of achievement.

The format seems to have potential, but for the
format to work for large class teaching, the enabling
technology has to be able to reliably calculate aggre-
gated measures that allow lecturers to identify strug-
gling groups or general problems, because with in-
creasing exercise complexity and classroom size even
the most experienced lecturer can hardly have an
overview – and an understanding – of all submissions,
even if they are presented to them in an easy way.
How such an aggregated measure can be calculated
has to be examined in further studies.

ACKNOWLEDGEMENTS

The authors are thankful to Maximilian Meyer for the
implementation of the JavaScript editor as part of his
master’s thesis (Meyer, 2019).

REFERENCES

Amresh, A., Carberry, A. R., and Femiani, J. (2013). Evalu-
ating the effectiveness of flipped classrooms for teach-
ing CS1. In Frontiers in Education Conference, 2013
IEEE, pages 733–735. IEEE.

Aronson, E. (2002). Building empathy, compassion, and
achievement in the jigsaw classroom. Improving aca-
demic achievement: Impact of psychological factors
on education, pages 209–225.

Bishop, J. L., Verleger, M. A., et al. (2013). The flipped
classroom: A survey of the research. In ASEE
national conference proceedings, Atlanta, GA, vol-
ume 30, pages 1–18.

Bloom, B. S. (1956). Taxonomy of Educational Objectives,
Handbook 1: Cognitive Domain. Longmans.

Bonwell, C. C. and Eison, J. A. (1991). Active Learning:
Creating Excitement in the Classroom. 1991 ASHE-
ERIC Higher Education Reports. ERIC.

Cho, K., Schunn, C. D., and Wilson, R. W. (2006). Validity
and reliability of scaffolded peer assessment of writ-
ing from instructor and student perspectives. Journal
of Educational Psychology, 98(4):891.

Feigenspan, J., Kästner, C., Liebig, J., Apel, S., and Hanen-
berg, S. (2012). Measuring programming experience.
In Program Comprehension (ICPC), 2012 IEEE 20th
International Conference on, pages 73–82. IEEE.

Frederick, P. J. (1986). The lively lecture – 8 variations.
College teaching, 34(2):43–50.

Gilboy, M. B., Heinerichs, S., and Pazzaglia, G. (2015). En-
hancing student engagement using the flipped class-
room. Journal of nutrition education and behavior,
47(1):109–114.

Grüner, G. (1967). Die didaktische Reduktion als Kernstück
der Didaktik. Die Deutsche Schule, 59(7/8):414–430.

Hattie, J. and Timperley, H. (2007). The power of feedback.
Review of educational research, 77(1):81–112.

He, Y., Hui, S. C., and Quan, T. T. (2009). Automatic
summary assessment for intelligent tutoring systems.
Computers & Education, 53(3):890–899.

Heller, N. and Bry, F. (25-28 September 2018). Peer
teaching in tertiary STEM education: A case study.
In The Challenges of the Digital Transformation in
Education - Proceedings of the 21st International
Conference on Interactive Collaborative Learning
(ICL2018), volume 2, page to appear. Springer.

Heller, N., Mader, S., and Bry, F. (2018). Backstage: A ver-
satile platform supporting learning and teaching for-
mat composition. In Proceedings of the 18th Koli
Calling International Conference on Computing Ed-
ucation Research, page 27. ACM.

CSEDU 2019 - 11th International Conference on Computer Supported Education

250



Jonsson, A. and Svingby, G. (2007). The use of scoring
rubrics: Reliability, validity and educational conse-
quences. Educational research review, 2(2):130–144.

King, A. (1993). From sage on the stage to guide on the
side. College teaching, 41(1):30–35.

Krathwohl, D. R. (2002). A revision of bloom’s taxonomy:
An overview. Theory into practice, 41(4):212–218.

Lundstrom, K. and Baker, W. (2009). To give is better
than to receive: The benefits of peer review to the
reviewer’s own writing. Journal of second language
writing, 18(1):30–43.

McLaughlin, J. E., Roth, M. T., Glatt, D. M.,
Gharkholonarehe, N., Davidson, C. A., Griffin, L. M.,
Esserman, D. A., and Mumper, R. J. (2014). The
flipped classroom: a course redesign to foster learning
and engagement in a health professions school. Aca-
demic Medicine, 89(2):236–243.

Meyer, M. (2019). A browser-based development environ-
ment for javascript learning and teaching. Master the-
sis, Institute of Computer Science, LMU, Munich.

Popham, W. J. (1997). What’s wrong-and what’s right-with
rubrics. Educational leadership, 55:72–75.

Prince, M. (2004). Does active learning work? a review
of the research. Journal of engineering education,
93(3):223–231.

Sao Pedro, M. A., Gobert, J. D., and Baker, R. S. (2014).
The impacts of automatic scaffolding on students’ ac-
quisition of data collection inquiry skills. Roundtable
presentation at American Educational Research Asso-
ciation.

Stains, M., Harshman, J., Barker, M., Chasteen, S.,
Cole, R., DeChenne-Peters, S., Eagan, M., Esson,
J., Knight, J., Laski, F., et al. (2018). Anatomy of
STEM teaching in north american universities. Sci-
ence, 359(6383):1468–1470.

Stelzer, T., Brookes, D. T., Gladding, G., and Mestre, J. P.
(2010). Impact of multimedia learning modules on
an introductory course on electricity and magnetism.
American Journal of Physics, 78(7):755–759.

Stuart, J. and Rutherford, R. (1978). Medical stu-
dent concentration during lectures. The lancet,
312(8088):514–516.

Topping, K. (1998). Peer assessment between students in
colleges and universities. Review of educational Re-
search, 68(3):249–276.

Van Merriënboer, J. J., Kirschner, P. A., and Kester, L.
(2003). Taking the load off a learner’s mind: Instruc-
tional design for complex learning. Educational psy-
chologist, 38(1):5–13.

Vihavainen, A., Vikberg, T., Luukkainen, M., and Pärtel,
M. (2013). Scaffolding students’ learning using test
my code. In Proceedings of the 18th ACM conference
on Innovation and technology in computer science ed-
ucation, pages 117–122. ACM.

Williams, E. (1992). Student attitudes towards approaches
to learning and assessment. Assessment and evalua-
tion in higher education, 17(1):45–58.

Wood, D., Bruner, J. S., and Ross, G. (1976). The role of tu-
toring in problem solving. Journal of child psychology
and psychiatry, 17(2):89–100.

Yang, Y.-F. (2015). Automatic scaffolding and measure-
ment of concept mapping for efl students to write sum-
maries. Journal of Educational Technology & Society,
18(4).

Young, M. S., Robinson, S., and Alberts, P. (2009). Students
pay attention! combating the vigilance decrement to
improve learning during lectures. Active Learning in
Higher Education, 10(1):41–55.

Phased Classroom Instruction: A Case Study on Teaching Programming Languages

251


