
Application Configuration via UML Instance Specifications

Ansgar Radermacher, Shuai Li and Matteo Morelli
CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems, P. C. 174, Gif-sur-Yvette, 91191, France

Keywords: UML, Instance Modeling, Configuration.

Abstract: One way to design complex systems is to use a model driven approach. Model Driven Engineering (MDE)
promotes the use of models are primary artifact for analysis, design and implementation of a system. In
this paper, we focus on component-based models including classes (representing components), hierarchical
composition (classes with parts) and instance specifications. Instance specifications describe instances of a
system, i.e. provide values for (a subset of) the attributes of class attributes. However, the use of instance
specifications without additional tool support is tedious, since several references need to be setup. This paper
will show some mechanisms (notably tables) to ease the usability. There are also different ways to organise
instance specifications which have advantages and inconveniences. This paper lists them and provide hints in
which situation a certain variant could be used. Code generation from models needs to take instance configu-
ration into account, but application configuration via instances is still not fully supported by all tools. We will
show how code generated from instance specifications can look like. This code becomes more interesting for
adaptive applications that need to change between different configurations at runtime.

1 INTRODUCTION

The modeling of systems is often based on compos-
ite structures, i.e. a system contains several subsys-
tems or components which in turn can contain fur-
ther subsystems or components. In such a hierarchi-
cal structure, composite classes have parts which in
turn are typed with other classes. A typical case is a
top-level class describing the functional architecture
of a system. The system is made-up of several (possi-
bly composite) software components with configura-
tion parameters, which can be set to different values
depending on different analysis scenarios the designer
wants to study. How can such a system be configured?

In many domains, the configuration is specified
using Excel tables and then (more or less) manually
reflected in code or configuration files. But it is pos-
sible to do the configuration on the model level. This
has the advantage of enabling systematic and auto-
mated consistency validation of model information,
which is taken into account by code generation.

The use of UML mechanisms for configuration
purposes is part of an initiative to ease (and if pos-
sible automate) modeling tasks. For instance, some
configuration data can be computed from model in-
formation. If behavior descriptions in the the model
are for instance enriched with execution time infor-

mation, a schedulability analysis can decide whether
the system is schedulable and –if yes– automatically
calculate suitable task priorities that become part of
the system configuration.

Classes in UML have a set of properties that can
capture configuration values, either via a default value
or an instance specification that describes a possible
instance of this class. While UML has a quite com-
plete set of modeling mechanisms for instances, there
are different ways of using these which have differ-
ent advantages and disadvantages. Additional tooling
is required to ease the usability of instance specifica-
tions.

The organisation of the paper is the following.
Section 2 describes the meta-model of UML in-

stance specifications, their properties and use as de-
scribed in the standard. Section 3 sketches a simple
example application which we want to configure and
several ways to combine default values and instance
specifications. Section 4 shows tooling support, on
the one hand oriented to enhance usability, on the
other hand to show the impact of instance specifica-
tions on the code generation. Section 5 discusses re-
lated work. The conclusion and future work are pre-
sented in section 6.

Radermacher, A., Li, S. and Morelli, M.
Application Configuration via UML Instance Specifications.
DOI: 10.5220/0007583104950502
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 495-502
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

495

Figure 1: Meta-Model of UML instance specification (UML specification 2.5.1, section 9.8).

2 UML INSTANCE
SPECIFICATIONS

In this section, we describe an instance specification
in detail. The current UML 2.5.1 standard(OMG,
2017) describes instance specification as follows

“An InstanceSpecification represents the possi-
ble or actual existence of instances in a modeled
system and completely or partially describes
those instances.
A Slot specifies that an instance modeled by an
InstanceSpecification has a value or values for
a specific StructuralFeature, which shall be a
StructuralFeature that is related to a classifier of
the InstanceSpecification owning the Slot by be-
ing a direct attribute, inherited attribute, private
attribute in a generalization, or a memberEnd if
the classifier is an Association, but excluding re-
defined StructuralFeatures. The values in a Slot
shall conform to the defining StructuralFeature
of the Slot (in type, multiplicity, etc.). The val-
ues in a Slot are specified using ValueSpecifica-
tions.”
Figure 1 shows the meta-model definition of UML

instance specifications, as in section 9.8 of the UML
2.5.1 specification. An instance specification is part
of a package, it can play the role of a deployed artifact
(if it defines an artifact) and can also be a deployment
target.

An attribute of an instance specification is the
classifier: a list of classifiers that a specification clas-
sifies. In most cases, an instance specification refer-
ences a single classifier, often a class or data type.

The set of slots describes values for structural fea-
tures (typically properties of a class or datatype) of
the instance. Not all properties of the InstanceSpec-
ification need be represented by Slots, in which case
the InstanceSpecification is a partial description. An
InstanceSpecification may represent an instance at a
point in time (a snapshot). Changes to the instance
may be modeled using multiple InstanceSpecifica-
tion, one for each snapshot. Section 9.8.3 of (OMG,
2017) states

“It is important to keep in mind that Instance-
Specification is a model element and should not
be confused with the instance that it is model-
ing. As an InstanceSpecification may only par-
tially determine the properties of an instance,
there may actually be multiple instances in the
modeled system that satisfy the requirements of
the InstanceSpecification. On the other hand,
an InstanceSpecification may model a situa-
tion which is not actually supposed to occur in
the modeled system, in which case no instance
meeting the requirements of the InstanceSpeci-
fication may ever actually occur in the system.”

An InstanceValue is a ValueSpecification that refer-
ences an InstanceSpecification. Any slots in the In-
stanceSpecification then provide values for the corre-
sponding StructuralFeatures of the instance by eval-
uating the ValueSpecifications associated with those
slots.

Please note that an InstanceValue does not own
the InstanceSpecification to which it refers; multiple
InstanceValues may refer to the same InstanceSpeci-
fication (OMG, 2017).

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

496

Instance specifications have to respect a set of
constraints, notably:

• An InstanceSpecification can act as a De-
ployedArtifact if it represents an instance of an
Artifact.

• Each slot must reference a different defining fea-
ture to avoid conflicting values for this feature

• The defining feature of each slot is a Struc-
turalFeature (directly or inherited) of a classifier
of the InstanceSpecification.

• An InstanceSpecification can act as a Deploy-
mentTarget if it represents an instance of a Node
and functions as a part in the internal structure of
an encompassing Node.

3 EXAMPLES

Let us look at a very simple example of a robotic com-
ponent. A mapper component has two configuration
attributes: a boolean indicating whether it is work-
ing indoor or not and a noOfScans attribute that indi-
cates the number of scans per second to be done. In
UML, the component is modeled as a class with at-
tributes. Figure 2 shows the associated class diagram
containing the attributes along with their default val-
ues. On the model level, the default values for the
two attributes are a LiteralBoolean and a LiteralInte-
ger, respectively. See also the Papyrus4Robotics web-
page1.

AcmeMapper

indoor: Boolean = true
 noOfScans: Integer = 5

Figure 2: A simple class with two attributes.

Now consider that the component is used in a spe-
cific system in which we want to configure one of the
values in a different way. Figure 3 shows a “system”
class with three parts. Each of the part is typed with a
different robotic component. The part m is typed with
the class AcmeMapper – m is thus an attribute with
aggregation kind “composite”.

We choose to provide a default value for m that
changes the noOfScans attributes of the AcmeMap-
per. Here, the default value is an InstanceValue el-
ement that points to a separate instance specification

1Getting started with Papyrus4Robotics: https://robmo
sys.eu/wiki/baseline:environment tools:getting started with
papyrus4robotics

SystemComponentArchitecture

 m: AcmeMapper

 pMap

 p: EmcaPlanner

 pPlan

 rMap

 useAdd

 a: Adder

 addSvc

MapMap

Figure 3: A component assembly by means of a composite
class.

for the AcmeMapper. Unlike the InstanceValue ref-
erence, the instance specification cannot be stored
within the default value, i.e. the user has to de-
cide (typically following a convention) in which pack-
age he wants to put the specification. In our case,
we choose to create a separate top-level package
instances in which we place the instance (and simi-
lar ones for the two other components in our system).

Figure 4 shows the instance specification. It as-
signs a different value (15) to the noOfScans at-
tribute, i.e. overrides the default value on class level.
Note that this instance specification is partial in the
sense that it does not re-define a value for all attributes
of the class.

IS for AcmeMapper

noOfScans : Integer = 15

Figure 4: An instance specification for the AcmeMapper
class.

The scheme above works fine with a single hi-
erarchy level. In case of nested components, it
is also possible to override the default value at
multiple levels. If we now assume that class
SystemComponentArchitecture describes a sub-
system in a more generic architecture definition, we
can add a default value for the attribute within the
generic architecture (container) that describes first the
subsystem and then overrides the default value for the
part m with an additional slot.

In this case, the slots of the top-level instance
specification use an InstanceValue that in turn points
to an instance specification at the second level. As
shown in Figure 5, it is thus possible to describe to
override the default value for m with an instance spec-
ification that re-assigns the value 10 to the noOfScans
attribute. Please note, that we only show a subset of

Application Configuration via UML Instance Specifications

497

TopLevelS: TopLevelSystem

subsystem = SubIS

SubIS: SystemComponentArchitecture

m : AcmeMapper = IS' for AcmeMapper

IS' for AcmeMapper: AcmeMapper

noOfScans : Integer = 10

Figure 5: A set of hierarchical instance specifications.

the slot values to simplify the figure.
It is possible that some instances are shared.

Imagine that an additional component, e.g. the plan-
ner is accessed by multiple components. While it is
possible to make this explicit via ports and external
connections as shown in diagram 3, it is also possi-
ble to access a the planner via an internal attribute
as a shared component (an attribute with aggregation-
kind = shared). In case of the example, the planner
would be an internal shared attribute within the map-
per and adder. Figure 6 shows a variant of the mapper
component that accesses the planner via a shared in-
stance, graphically denoted by the dashed line. The
motivation for using shared components is to “inter-
nalize” commonly used components instead of have
a large number of connections in bigger systems that
all point to a set of common components. However, it
must be unambiguous to which component the shared
attributes refer to and that at least one instance exists.
The former is not a strict condition: while it becomes
ambiguous to which instance a shared attributes refers
to when we only take the class composition into ac-
count and multiple instances exist, an instance-value
in the set of instance specifications would explicitly
reference exactly one instance. The tree structure
formed as in Figure 5 becomes a graph structure with
shared elements. Yet, it might be useful to impose ad-
ditional rules that avoid the ambiguity already on the
class level, either by adding the constraint that there
must be exactly one non-shared attribute in the par-
ent composition structure for each shared attribute or
setting up precedence rules which reference should be
chosen.

Discussion. The nesting of instance specifications
is quite difficult to handle for a user, as we will see in
section 4. But besides of this aspects, another ques-
tion is to which extent default values should be used.
As we have seen in the previous section, we can al-
ways override a default value with an instance speci-

AcmeMapper'

 p: EmcaPlanner

Figure 6: Access to shared instance specifications.

fication referenced from a higher level.
In some cases, we want to reuse an existing com-

ponent assembly (represented by a composite class
such as SystemComponentArchitecture) in differ-
ent contexts. For attributes that are likely to keep their
configuration value, the assignment of default values
make sense. For others, it is preferably not to use a
default value but to require a configuration via an in-
stance specification.

Such a tree of instance specification has been
shown in the Figure 5. As already mentioned, it is not
possible to reflect the tree structure via a real nesting
of instance specifications since a value cannot directly
represent a new instance specification but point only
indirectly to another instance (via an InstanceValue).
While this has been done with the intention to favor
reuse of instance specifications, it requires a flat rep-
resentation of a tree-like structure (of which some el-
ements might be shared). One way of managing the
hierarchy is to use a suitable naming convention by
encoding for instance the tree path (separated e.g. via
“.”) in the path, e.g. topIS.subIS.m. In order of
being effective, tool support is required to update the
names whenever part names change or the hierarchy
changes.

The possibility of sharing is a powerful modeling
mechanism that simplifies the access to commonly
used components. But it needs to be used carefully
to avoid ambiguities.

The systematic use of (nested) instance specifi-
cations for configuration purposes can be compared
with an approach that is called deployment plan
(OMG, 2006) in the context of the CORBA compo-
nent model: a set of configuration values along with
deployment information. In some projects, we’ve al-
ready used a hierarchy of instance specifications to
describe the application components. In addition, an-
other set of instance specifications describes deploy-
ment targets, i.e. a set of hardware nodes containing
configurable attributes such as the amount of RAM or
ROM. Allocation information points from instances
of software components to instances of hardware
nodes.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

498

Figure 7: Use a table to configure default values.

4 TOOLING

This section is split into two parts. In the first, we
show ways to ease the modeling of default values and
associated instances. In the second, we show code
generation support from models containing instance
specifications.

4.1 Enhanced Usability of Instance
Specifications

The creation of instance specifications can be quite te-
dious, as already sketched in section 3. The user has
to specify the referenced classifier and then add a slot
for each attribute that needs to be configured. The slot
in turn requires the selection of the defining feature
reference and a value specification. If the attribute to
configure is a primitive type holding a numerical (in-
teger or real), boolean or string value, UML provides
appropriate value definitions such as LiteralInteger,
LiteralReal, LiteralBoolean or LiteralString. As al-
ready mentioned, composite data types require an ad-
ditional instance specification that is referenced from
an InstanceValue. The latter is also used for enumera-
tion literals (which are effectively instance specifica-
tions).

Additional tool support is required to ease the cre-
ation and visualization of instance values. Figure 7
shows a table that configures a set of default values
of a class, specially the AcmeMapper introduced in
section 3. This table is an extension of the Papyrus2

UML modeler that has been provided in the context
of a customization for the robotics domain (without
being actually specific for that domain). When the
class to configure is selected, all attributes are shown
(optionally only showing attributes that are tagged as
configuration attributes). The user can simply enter
a value in a string from and the tool will automati-
cally chose a suitable value definition depending on
the attribute type. Please note that this table is only an

2Eclipse Papyrus, see eclipse.org/papyrus

additional notation – the model still contains standard
UML instance and value specifications.

Figure 8 shows a quite similar table in case of se-
lecting a part in the component assembly, in this case
the part m representing an instance of the AcmeMapper
component. The table shows the configuration at-
tributes of the referenced component. If the part has
a default value referencing an instance specification,
the table checks whether one of the slots in the in-
stance specification overrides a default value on the
class level. An overridden value is shown with a yel-
low background. If the user edits a value, the asso-
ciated slot and value will be automatically created.
If the user enters a new value and no instance spec-
ification exists yet, it will be created first (using the
naming convention to place the instance specification
in a specific package) and the classifier reference is
setup accordingly. If the field value corresponds ei-
ther to the default value on the class level or is empty,
the corresponding slot in the instance specification is
removed.

These two tables simplify the configuration via in-
stance specifications considerably. An additional tool
support (which is part of the Payprus extension SW
designer3) manages the automatic creation of a tree-
like set of instance specifications from a composite
class with parts that are typed with other classes. Fig-
ure 9 shows different deployments of an application.
Each of these deployments is represented by a pack-
age containing a set of generated instance specifica-
tions. The naming of the instance specification name
reflects the hierarchical decomposition. The user has
the possibility to update the names of instance speci-
fications via a command in the context menu. This is
required after changes of part names or of the compo-
sitions hierarchy.

The instances also contain allocation information.
If an instance specification is selected, a table as in
Figure 8 is shown. We plan to use a hierarchical table
to enable an easy navigation to different levels within

3wiki.eclipse.org/Papyrus Software Designer

Application Configuration via UML Instance Specifications

499

Figure 8: Use a table to configure values for a part typed with a given component.

Figure 9: Multiple deployments.

the tree structure.
Compared to the diagrams shown for instance in

Figure 5, tables scale much better: a table with hun-
dreds of entries is still quite easy to handle, whereas a
diagram should not represent more than a dozen in-
stance specifications. As the relationships between
instances are typically tree like (optionally with some
sharing) the graphical representation does not provide
an added value and (hierarchical) tables are a good
representation of the underlying configuration data.
Thus, tools change the way a user perceives the in-
stance specification metaclass and its relations (e.g.
composition of instance specifications).

4.2 Code Generation from Instance
Specifications

The specification of configuration data needs to be re-
flected in the generated code. In case of Papyrus SW
designer, code generation for C++ and Java is sup-
ported. Default values are directly initialized in the

Listing 1: Attribute configuration in boot-strap code in C++.

void BootLoader : : i n i t () {
/ / c o n f i g u r e a t t r i b u t e s
m a i n I n s t a n c e . pu l lConThread . p r i o r i t y

= 5 ;
m a i n I n s t a n c e . f i f o c o n n e c t o r . m s i z e =

3 0 ;
m a i n I n s t a n c e . c r e a t e C o n n e c t i o n s () ;
. . .

generated class definitions. In case of a deployment
plan, boot-strap code for each deployment target is
generated. This code contains the instance configura-
tion. In this case, the configuration of all non-default
attributes is done by this top-level boot-strap code.
The code in listing 1 shows the attribute configuration
for one of the deployments in Figure 9.

This example is interesting, since one of the con-
figuration attributes has a specific semantics – thread
priorities could be the result of a scheduling analysis
at the model level. The advantage of doing the con-
figuration at the model level is that the relevant infor-
mation is centralized within the model.

5 RELATED WORK

Instance specifications are a powerful modeling in-
strument. Their use is not new, but surprisingly lit-
tle work has been done to describe systematically
how these can be use to configure applications. Most
work is part of either tutorials and tool descriptions.
The tool MagicDraw from NoMagic provides accel-
erations based on drag & drop to assign a classi-
fier to an instance specification or to assign a de-
fault value to a property (NoMagic, 2019a). How-
ever, there is no support for automatically creating a
set of instance specifications from a composition of
classifiers. If a larger number of instance specifica-
tions needs to be managed, NoMagic recommends the
use instance tables as well to enhance usability, see

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

500

(NoMagic, 2019b). Instance tables are also used by
another Papyrus extension, the MOKA (CEA, 2019)
tool that enables the direct execution of (fUML) mod-
els. The documentation for Rhapsody contains in-
formation about instance modeling (IBM, 2019), but
does not give any hints on how to use these systemat-
ically. Rhapsody simplifies the assignment of values
via popup dialogs in which values could be entered
directly instead of explicitly having to chose the re-
spective UML element (such as LiteralString or Lit-
eralInteger).

The work done in (Agarwal et al., 2000) states
that traditional class-based models are not sufficient
in case of enterprise models, but need to be accompa-
nied by instance models. The management of these
instance models needs to be facilitates by tools. How-
ever, the work is not specific for UML models and
does not cover the possibilities of UML instance spec-
ifications. Whole-part relationships have been ex-
amined by (Guizzardi et al., 2002), the paper deals
with the aggregation vs. composition aspects between
classes and instances. While the paper is specific for
UML (the relatively old version 1.4), it does not par-
ticularly deal with instances. Sharing of instances is
an important concept in the FRACTAL component
model (Bruneton et al., 2006).

Many tools generate code from UML models, but
most do not mention specific support for generating
code from instance models. In case of Rhapsody, de-
fault values are either initialized via assignment or in
the constructor.

(Ciccozzi et al., 2012) presented a mechanism to
support full code generation from UML models. The
approach that has been used in the European project
CHESS, contains a dedicated model of component
and port instances, taking multiplicity information
into account. The latter assures that a port of a compo-
nent instance interacting with others has the matching
multiplicity (e.g. two, if the component instance inter-
acts with two others) and to generate the appropriate
code. Assuring that multiplicity information matches
is the subject of (Mammar and Laleau, 2014) which
attacks this issue in a more formal way using the B
language.

In case of Papyrus SW designer already men-
tioned in section ref sec:tooling, the support is
twofold: it supports the initialization of default val-
ues as well as an initialization via boot-strap code that
might override the default values. The tool also takes
multiplicity information into account and has a val-
idation rules that check whether these are matching.
An extension of this tool supporting the (re-) config-
uration of instances at run-time is presented in (Hus-
sein et al., 2017). A UML state-machines captures

the different application states along with transitions
that are triggered by adaptation events. Each state is
coupled with a deployment plan, i.e. a set of instance
specification that correspond to this state.

6 CONCLUSION

In this paper, we have shown how to use UML in-
stance specifications to configure a system. While
UML instance specifications are quite powerful, their
usage needs additional tool support to improve usabil-
ity. Tables are a suitable and saleable way to configure
instances – and ease the transition for developers that
are use to configuration via Excel tables. While not
being new, there is surprisingly little work that list
different ways to organize these instances, e.g. the
use of default values, the possibility override these or
the sharing of instance specifications. Putting the ap-
plication configuration into the model enables a first
validation on the model level.

We have also shown that UML lacks the possi-
bility of nesting of instance specification. While in-
stances values can point to other instance specifica-
tions, the instance specifications can now own other
instance specifications.

Code generation support is required, if the gener-
ated code should actually take the configuration val-
ues into account. This becomes more interesting, if
we take re-configurable applications into account that
are able to change between different configurations.

The work underlying this paper has been partially
funded by the RobMoSys project from the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 732410.

REFERENCES

Agarwal, R., Bruno, G., and Torchiano, M. (2000). Instance
modeling – beyond object-oriented modeling. In Pro-
ceedings of the 3rd International Conference on Infor-
mation Technology (CIT 2000).

Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., and
Stefani, J.-B. (2006). The FRACTAL component
model and its support in Java. Software-practice and
Experience, 36:1257–1284.

CEA (last visited 2019). Papyrus MOKA User Guide.
https://wiki.eclipse.org/Papyrus/UserGuide/ModelEx
ecution.

Ciccozzi, F., Cicchetti, A., and Sjödin, M. (2012). Full Code
Generation from UML Models for Complex Embed-
ded Systems. In Second International Software Tech-
nology Exchange Workshop (STEW) 2012.

Application Configuration via UML Instance Specifications

501

Guizzardi, G., Herre, H., and Wagner, G. (2002). Towards
Ontological Foundations for UML Conceptual Mod-
els. In Meersman, R. and Tari, Z., editors, On the
Move to Meaningful Internet Systems 2002: CoopIS,
DOA, and ODBASE, pages 1100–1117, Berlin, Hei-
delberg. Springer.

Hussein, M., Nouacer, R., and Radermacher, A. (2017).
Safe adaptation of vehicle software systems. Journal
Microprocessors & Microsystems, 52:272–286.

IBM (last visited 2019). Instance specifications in UML.
https://www.ibm.com/support/knowledgecenter/SS8P
J7 9.5.0/com.ibm.xtools.modeler.doc/topics/cinstance
spec.html.

Mammar, A. and Laleau, R. (2014). A Proved Approach
for Building Correct Instances of UML Associations:
Multiplicities Satisfaction. In 21st Asia-Pacific Soft-
ware Engineering Conference, volume 1, pages 438–
445.

NoMagic (last visited 2019a). Instance Specification.
https://docs.nomagic.com/display/MD183/Instance+
Specification.

NoMagic (last visited 2019b). Instance Table. https://
docs.nomagic.com/display/MD183/Instance+table.

OMG (2006). Deployment and Configuration of Compo-
nent Based Distributed Applications, v4.0. OMG doc-
ument formal/2006-04-02.

OMG (2017). Unified Modeling Language (OMG UML),
Version 2.5.1. OMG Document formal/2017-12-05.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

502

