
A Fine-grained General Purpose Secure Storage Facility for Trusted
Execution Environment

Luigi Catuogno and Clemente Galdi
Università Degli Studi di Salerno, Italy

Keywords: Trusted Execution Environments, BYOD, Secure Storage, Enterprise Rights Management.

Abstract: In this paper we address the problem of enforcing data access control over the storage area of a mobile device
running different and independent third party applications. To this end, we present the design of a general pur-
pose secure file system that allows to guarantee file-grained data confidentiality at OS level. Data encryption,
key management and policy enforcement are based on Trusted Execution Environment (TEE) facilities. We
describe a prototype implementation and discuss preliminary performance results.

1 INTRODUCTION

Modern ICT infrastructures and business models en-
tail the possibility that personal mobile devices ex-
ecute software and handle data owned by multiple
providers, e.g., front-end applications for subscrip-
tion services along with the user access credentials
and possible locally stored/cached contents.

Consider, in particular, the increasingly spreading
“Bring Your Own Device” (BYOD) paradigm, where
employers may leverage employees’ devices (having
installed the required applications and data) for the
sake of any corporate process. The fact that both em-
ployees’ and corporate applications and private data
coexist on the same platform, raises the need of pro-
tecting each from the others’ interferences. Locally
stored information pertaining to each service is gener-
ally considered private to its interface application and
is assumed not to be available to other applications.

Thus, for every service, related security policies
and agreements are locally enforced by the respec-
tive front-end application on the basis of both sub-
scriber’s and device’s credentials. However, access
to user’s personal data, e.g., photos and videos, that
are intended to be used with different legacy appli-
cations (e.g., camera, photo gallery, file manager), is
managed through the native OS-level mechanisms.

Nowadays several scenarios require advanced file
access control mechanisms that: (a) enable any appli-
cation to keep the data it owns isolated from the others
(b) enable any application to share such data accord-
ing to ad hoc access policies, possibly depending on
the context in which the device is used; (c) ensure that

the policy established for a file is enforced even if the
file is transferred to another device through the net-
work or with an SD card. Off-the-shelf OSes, rarely
support this kind of mechanisms.

Enterprise Right Management (ERM) systems
feature fine-grained access control on protected doc-
uments at fruition time. However, such systems rely
on centralized security authorities whereas data pro-
tection is mainly implemented at application level as
protected data fall in a limited number of types and
formats. Moreover, ERM systems are rather closed
solutions and rarely offer advanced interoperability
features.

GlobalPlatfom’s (GlobalPlatform, 2011) Trusted
Execution Environment (TEE) is forthcoming stan-
dard architecture for Trusted Computing on mobile
and embedded devices. Its specifications define a
double sided environment composed of a Rich Exe-
cution Environment which runs legacy Rich applica-
tions, and a Trusted Execution Environment in which
a Trusted OS takes place.

The TEE architecture feature strong resources iso-
lation for applications running in the Trusted OS
(Trusted Applications - TA). Through their TAs de-
ployed on the device, remote service providers are en-
abled to locally enforce access control over their data.
However, the TEE architecture provides a quite strict
model of file system.

In facts, the TEE’s Secure Storage facility is
mainly devoted to store generic “data objects” (keys,
certificates, etc.) rather than offering a full featured
file system-like interface to the file store. In addition,
every data object can be accessed exclusively by the

588
Catuogno, L. and Galdi, C.
A Fine-grained General Purpose Secure Storage Facility for Trusted Execution Environment.
DOI: 10.5220/0007578605880595
In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 588-595
ISBN: 978-989-758-359-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



TA that owns it, while other TAs can not.
Finally, TEEs lets multiple TAs handling and shar-

ing secure objects lying on secure removable storage
devices through the TEE Secure Elements API. How-
ever, this interface is conceived for the sake of provid-
ing an APDU-based transport layer to ISO IEC 7816-
4 modelled file systems (like smart cards). Both these
features are too strict to fulfil our requirements.

In this paper we present the design and the imple-
mentation of a full featured secure file system imple-
mented as an additional feature of the Trusted OS.

Our file system builds on top of standard TEE In-
ternal Core API specification and it is implemented
by means of a pool of Trusted Applications intended
to provide it as a service to other TAs, by means of the
so called Internal Client APIs. Our design approach
makes possible to deploy both the file system compo-
nents and forthcoming “client” Trusted Application
onboard of devices featuring legacy Trusted OSes.

Our prototype features a cryptographic filesystem
providing data encryption and access control at file-
level and serves multiple Trusted Applications (TA)
by means of a filesystem-like interface wrapped into
the TEE Internal API. The filesystem is implemented
in the Trusted OS. Data I/O and access control are per-
formed by means of a TA acting as stand-alone server
(the filesystem back-end). Access Control Policies
can be based on roles as well as “environmental” fac-
tors such as time, events and location. In addition, we
have developed an interface which enables legacy ap-
plications (a.k.a. Rich Applications or RA) to access
the secure storage transparently.

2 RELATED WORKS

Cryptographic file systems (Blaze, 1993; Cattaneo
et al., 2001; Kallahalla et al., 2003) enjoyed a cer-
tain success mainly in the first decade of the century.
In model “trusted client” versus “untrusted server”,
these projects pushed data encryption functionalities
beneath the virtual file system abstraction layer so
that data confidentiality could be ensured indepen-
dently from the type of data and the legacy applica-
tion which handled it. Their evolution (Yun et al.,
2009; Castiglione et al., 2014) leverages cloud-based
outsourced storage facilities or passive mobile storage
devices.

Mobile computing poses at least two main prob-
lems: sensitive data are stored on devices that might
be stolen or tampered with; mobile devices require
enriched specifications for access policies as they
store data belonging to multiple stakeholders.

The Proof-Carrying File System (PCFS) (Garg

and Pfenning, 2010; Geambasu et al., 2011; Peters
et al., 2015; Catuogno et al., 2014) leverages formal
proofs to enforce file access control policies. How-
ever, the PCFS features a quite complicated and error-
prone policy-making process and a rather invasive in-
terface.

A full featured cryptographic file system for An-
droid is presented and analysed in (Wang et al., 2012).
It essentially aims at protecting data stored on micro
SD cards exchanged amongst different devices and
does not natively support any trusted computing fa-
cility to protect encryption keys.

The synergy between Trusted Computing and vir-
tualisation technologies have boosted the develop-
ment of OS-level solutions which ensure data security
to multiple parties by means of workloads isolation.
The architecture in (Catuogno et al., 2016; Catuogno
et al., 2018) use biometric identification and key bind-
ing, in conjunction with workload isolation in order
to enforce the security of documents over a system
comprising multiple devices owned by different ac-
tors. The architecture of VPFS (Weinhold and Härtig,
2008) feature an insecure compartment, that executes
untrusted applications, and a trusted one, providing
trusted data management.

Our solution provides a full featured crypto-
graphic file system for applications running in both
trusted and untrusted compartments and is intended
to be fully compliant with the GlobalPlaftorm TEE
standard (GlobalPlatform, 2011).

2.1 Trusted Execution Environments

GlobalPlatform, a non-profit organization, issued a
set of standard specifications documents defining the
concept of Trusted Execution Environment (Glob-
alPlatform, 2011).

GlobalPlaform’s platform features a secure vir-
tualization infrastructure which puts side by side a
Trusted Execution Environment (TEE) and a Rich Ex-
ecution Environment (REE). The latter executes un-
trusted Rich Applications (RA), i.e., user applica-
tions, whereas the former executes Trusted Applica-
tions (TA) that provides on-demand access to privi-
leged resources and sensitive data to RAs, by means
of a client-server interface.

The Operating System running in the REE, the
Rich OS, can be considered as a legacy operating sys-
tem provided of a TEE Client API (GlobalPlatform,
2010) library which enables RAs to interact with
TAs. TEE Client APIs implement a session-oriented
communication protocol with the TEE Kernel, the
heart of the operating system running in the TEE,
which is in charge of handling the communication be-

A Fine-grained General Purpose Secure Storage Facility for Trusted Execution Environment

589



tween the two worlds. In particular, through the TEE
Client API, the RAs can use possibly available cryp-
tographic devices. Sessions are always started by RAs
that act as TEE Clients.

On the TEE side, the Trusted OS executes each TA
independently from the others, guarantees their isola-
tion and allows each TA to access only its own data.
GlobalPlatform provides specification for every as-
pects of TA development, in particular: the TEE Inter-
nal APIs to define interaction between a TA and other
applications; the TEE Trusted User Interface APIs
to enable applications to interact with users through
a trusted path amongst the platform’s I/O devices;
and Secure Elements APIs to communicate with hard-
ware secured resources and devices, called Secure El-
ements such as smart card readers, NFC controllers,
crypto accelerators or hardware keys.

2.2 Commercial Mobile OSes

Mobile devices, such as tablets and smartphones,
have been considered for a long time “inherently”
single-user. With the continuous performance im-
provement for such devices, some currently available
operating systems have switched from the single-user
approach to a multi-user one.

Currently available Android and Windows Mobile
devices provide actual multi-user support at the op-
erating system level. Conversely, iOS virtually pro-
vides multi-user support via the cloud-based feature,
Shared Ipad (Apple Inc., 2016), that reconfigures the
device at login time.

A similar evolution has occurred regarding the file
encryption functionalities. Windows Mobile provides
a device encryption functionality (Microsoft Corp.,
2017). Current OS version allows to uniquely pair
SD cards to specific devices and to store personal or
corporate apps and data securely either in the internal
memory or on secured SDs. The Windows Informa-
tion Protection (WIP), by means of englighted apps,
transparently keeps corporate data protected and per-
sonal data private.

iOS. Apple devices include the Secure En-
clave (Apple Inc., 2018), a security dedicated copro-
cessor that provides full support for data protection
and key management. Each such device is equipped
with keys that are fused or compiled in the device at
manufacturing time and that are not directly acces-
sible. In this way, data stored in memory chips are
bound to a specific device. In addition to hardware
security support, iOS provides File Data Protection,
with each file encrypted with a random key that is it-
self encrypted using the file system key.

Android provides Full Disk Encryption (FDE)
and File Based Encryption (FBE). FDE encrypts the
whole user-data partition in a disk with a password
protected encryption key. The user needs to unlock
the whole disk partition before any data on it can be
accessed. FBE protects each file independently and
allows the FBE-aware apps to unlock each file inde-
pendently. Key management is executed by means of
a TEE. In all cases, data stored on external devices,
such as SD cards, cannot be encrypted and should be
stored in clear.

3 PRELIMINARIES

3.1 Entities and Roles

Our system features extended Role Based Access
Control to protected resources by entities living on
the device. An entity is an instance of an application
which runs on the device on behalf of a subscriber.
Entities are identified through the composition of a
Domain ID and at least one amongst:(a) the UUID of
the application; (b) the unique device identifier (e.g. a
hardware-bound serial number, the mac-address) the
application is running on; and (c) the subscriber cre-
dentials of the user is running the application.

Each entity can activate multiple roles. Our sys-
tem features a set of default roles including owner,
administrator, and guest, though it makes possible
the definition of new per-domain, per-device, per-file
roles.

Policy rules assign a set of permissions (read,
write, execute) to every role. Role enforcement lever-
ages public key encryption. To this end, every role is
associated to a public-secret keypair (role keypair in
short). Each file is associated to at least one propri-
etary roles and, possibly, additional roles. A propri-
etary role can both access the file content and mod-
ify its access policy while additional ones are only
allowed to access file contents.

At glance, we define a Domain as the scope within
unambiguous namespaces for entities and roles are es-
tablished. Every Domain member (such as any de-
vice, application, subscriber), registered by the Do-
main authority, is provided of appropriate unique
identifiers along with the related cryptographic cre-
dentials including digital certificates and possibly a
required set of domain-wide role key pairs.

Any device owner or operator (user in short)
is registered as subscriber and receives her sub-
sID along with her authentication credentials (e.g.
PIN/password, crypto-tokens, etc.). Devices can be
registered by placing identifiers and credentials on

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

590



board through different procedures that depend on the
platform technological characteristics. For example,
credentials could be saved on a SIM, or “burnt” as
a firmware update. Applications IDs and credentials
are assigned according to their registration “scope”:
either device-wide or domain-wide.

Role keypairs, IDs and credentials are stored lo-
cally on each device at registration time. For cer-
tain entities, this choice is inherently static. For ex-
ample device identifiers and credentials are deployed
by the equipment manufacturer in the factory; trusted
applications may be installed in the device firmware,
along with their private data, once and for all. On
the other hand, the choice of subscriber identities and
domain-wide roles to be active on any device is likely
to change over times. To this end, our architecture
provides a mechanism to securely import/export keys
and credentials from/to other devices.

3.2 File System Encryption

Policy enforcement leverages file system level en-
cryption in which every single file is encrypted with
a randomly generated file key. Only entities enjoy-
ing the required roles can “unlock” such key (through
a mechanism we describe later) and access the file
content. Per-file policy rules are included into file
metadata. The file system ensures data confidential-
ity, integrity and authenticity. Integrity is guaranteed
by means of message authentication codes (MAC). In
particular, the file key is used both to encrypt the file
content (along with its metadata) and to compute its
MAC fingerprint. Data authentication is provided by
means of digital signatures. Each entity is provided
of a set of private keys that can be used to sign the
content of each file it creates or modifies.

The cryptographic file system as a whole is im-
plemented as a local stand-alone file server. The file
server stores protected data (in encrypted form) on a
dedicated storage area lying on the device’s file sys-
tem or on an external storage device (e.g., SD cards,
USB sticks). Entities willing to access protected files
firstly authenticate themselves with the file server and
then issue their requests through a file-system-API
shaped IPC protocol. This component is introduced,
in details, in Section 4.4.3.

4 SYSTEM ARCHITECTURE

The system we propose can be seen as an Enter-
prise Right Management (ERM) system, i.e., a set
of tools, techniques and practices which concern

Figure 1: System architecture of maintainers’ devices.

of ensuring the confidentiality of sensitive informa-
tion regardless to where it is stored or is transferred
through (Catuogno et al., 2016). Figure 1 describes
the overall architecture. Since our architecture is
modelled on top of the TEEs specifications, the “ERM
interface” is split into two components: the front-end
application, which runs as Rich Application (RA and
its back-end counterpart, which is a Trusted Applica-
tions (TA) which lives in the Trusted OS along with
all its private data. With ERM workload, we denote
the ERM application “as a whole”, i.e., meaning both
its front-end and back-end.

Components of our architecture are also im-
plemented with Trusted Applications and protocols
which are compliant to the TEE specifications.

In the following sections we introduce each com-
ponent, its design highlights and the services it pro-
vides.

4.1 Front-end Applications

Operators access protected resources by means of
dedicated front-end applications running in the Rich
Environment. Such application may be of two differ-
ent kinds: TEE-aware and legacy ones.

TEE-aware applications are aware of the security
architecture and mechanisms deployed on the mobile
device. According to the TEE standard, each such
application consists of two parts, a first one running
in the Rich OS and its corresponding back-end coun-
terpart running in the Trust OS. The communication
between these two components occurs via the TEE
APIs. The back-end application interacts with the
trusted applications implementing our security archi-
tecture by means of TEE internal APIs. It is clear that,
such applications have to be specifically designed and
implemented using the TEE architecture as a refer-
ence.

Legacy applications, such as standard web
browsers and multimedia players, are developed by

A Fine-grained General Purpose Secure Storage Facility for Trusted Execution Environment

591



third parties. Such applications are completely un-
aware of the security mechanisms deployed on the de-
vice. Nevertheless, the proposed architecture makes
available protected data through a file system front-
end where legacy application can access them, once
the user/subscriber has been successfully authenti-
cated and authorized.

4.2 ERM User Services

4.2.1 The AA Interface

Users authentication is performed through trusted
channels such as PIN/password insertion dialogs
through TEE Trusted UIs or leveraging cryptographic
hardware based authentication systems. Once the user
is successfully authenticated, she starts her session
that lasts until she logs out. Throughout the session,
protected data available to the user are made available
through the file system front-end, and legacy appli-
cation access such files enjoying the privileges of the
user’s active roles.

4.2.2 File System Front-end

The file system front-end allows legacy application
to handle protected data through file system-shaped
APIs. To this end, we use a virtual file system layer
that wraps the TEE Client APIs to properly interact
with the file system back-end in the Trusted OS.

Specifically, whenever an untrusted application
requires a file system operation on a secured file, the
file system front-end in the Rich OS forwards such re-
quest to an underlying translation module. Such mod-
ule will contain no relevant application logic but it
will just encode the requests in a proper way and send
it to a file system back-end running on the TEE side.
In our prototype, this component is implemented with
a FUSE file system layer (FUS, ).

4.3 ERM Workloads Layer

ERM back-end applications along with their private
data take place in the ERM Workloads layer. Such ap-
plications are designed to trustworthily interact with
their owners’ premises in order to carry out their
tasks. As TAs, ERM back-ends communicate with
the user and remote facilities through the TEE APIs
and the secure network protocols and are provided of
a private local storage for e.g. temporary data and
keying materials. Moreover, such applications handle
secured files lying in the File System Backend related
services by means the APIs they expose. Through
such interfaces, different ERM back-ends are enabled

to access and share their secure files with other TAs,
according to arbitrary policy rules. Legacy TAs may
co-exist with ERM workloads.

4.4 ERM Service layer

4.4.1 The Policy Manager

Our architecture features access control policies
which are based on a extended Role Based Access
Control (RBAC) approach which is thought to include
temporal, spatial (GPS based) and event-driven poli-
cies (Bonatti et al., 2015; Aich et al., 2009). Fine-
grained policy rules are attached to the file metadata.

The Policy Manager (PolicyMGR) maintains the
role-entity database. For each entity “living” on
the device, the role-entity database contains an
entry which relates its identifier with the list of
the roles it is enrolled into. The PolicyMGR
API provides the functions to query such database:
check role(entity-id, role-id) which returns
true whether (a) the entity has activated role-id or (b)
the entity is allowed to play that role due to some oc-
curring events or environmental conditions.

The function check policy(policy,role-id)
returns a bit-string denoting the granted access mode
(like the unix-like octal digit representing read, write
and execute permission) that the policy rules allow to
the role role-id.

Entries related to domain-wide identities and roles
are added to the role-entity database at registration
time and can not be modified by the device owner.
However, the device owner can create new “local”
roles and entities, concerning the definition of policy
rules for local files.

Each file is associated to the following meta-
data. A list of proprietary and additional roles,
r1, . . . ,rn; the actual plaintext size; the specifica-
tion of cryptographic algorithms, including their op-
erational parameters; the encryptions of the file
key under the public keys of authorized roles, i.e.,
Encr1(k) . . .Encrn(k); the encryption of the file ac-
cess policy under the file key k, Enck(Policy);
FILEMAC =MACk(File Content); LastRoleID of the
last role that modified the file along with her signature
on FILEMAC. The integrity of above data is guaran-
teed by MACk(Metadata) computed by LastRoleID.

4.4.2 The Key Manager

The Key Manager (KeyMGR) handles the crypto-
graphic keys on behalf of every entity and role present
in the system.

For the sake of access control enforcement, our
architecture holds a public-secret key pair for each

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

592



role defined by the domain authority. Access con-
trol leverages data symmetric encryption. Each file
is encrypted with a random key (the file key) Hence,
for each enabled role, the system attaches to the file a
copy of its file key, encrypted with the corresponding
public key.

When any entity accesses to a protected file, the
file system back-end requires the KeyMGR to decrypt
the file key, by using a private key associated to one
of the roles the requesting entity has activated. In ad-
dition, role keypairs are used to sign/verify file data
and metadata.

In order to fulfill such tasks, the KeyMGR API
provides the following functionalities: filekey en-
crypt/decrypt and data sign/verify.

Role keys are physically stored (indexed by role-
id) in the Key Repository, which is a private storage
area cryptographically bound to the KeyMGR, and
never leave this component during normal operations.
KeyMGR’s API includes the functions needed to han-
dle keys and keypairs generation, import/export and
disposal. The role/role keys lifecycle within domains,
KeyMGR’s API includes the functions to handle key-
pair generation, import/export and disposal.

The device user generates new “local” roles (and
their respective role key pairs) in order to setup any
ad-hoc policy rule to govern the access to a locally
created file. To this end, the KeyMGR enables the
user to engage in a secure protocol for the generation
of a local role key-pair and triggers the PolicyMGR
to add the new role-id to role-entity database (along
with its enrolled entities).

The import functionality can occur at different
times and has the effect of adding new role/role key
pairs to the Key Repository. At device registration
time, domain and device authorities can populate the
Key Repository with the key pairs related to every
pre-defined roles according to every installed appli-
cation and pre-loaded files and data. In addition, at
any time, the user can import a newly generated key
pair from an external source. External sources include
mainly Secure Elements as defined by the GlobalPlat-
form standard, such as a smart-card, or nearby trusted
devices, connected through NFC.

Key pairs generation can be accomplished accord-
ing different strategies. In the simplest one, the ap-
plication vendor provides at least the keypair for the
domain-wide reserved role of a given application.
This guarantees the highest possible portability of en-
crypted contexts. On the other hand it also allows, in
principle, the vendor to access the data generated by
every single installation of its application.

Frequently protected files are transferred between
device (e.g., through the network or by means of SD

cards). Whenever none of the roles enabled to access
the files are present on the receiving device, it is nec-
essary to transfer the related key pairs between the
devices. In this case, the endpoints have to establish a
trusted channel through which the key are exported.

Local role key pair disposal occurs whenever ev-
ery entity operating on the device should no longer
enabled to play the corresponding role.

4.4.3 The File System Back-end

The file system back-end (FSB) is the TA which acts
as a stand-alone file-server and Policy Enforcement
Point (PEP). To this end, the FSB exhibits a num-
ber of interfaces implemented by means of the entry
points defined in the TEE internal API. Trusted ap-
plications (including ERM backends) access the en-
crypted storage by using a library which resembles
usual file system calls (open, read, write, etc.), along
with the functions devoted to entity authentication and
authorization. Such a library wraps the TA client API
and is intended to provide a high level interface to the
FSB for third party TA application developers.

Access requests for encrypted files make the
ERM system services components interact each oth-
ers through the APIs introduced above.

The FSB features a file system-like interface to en-
crypted data stored on its private storage. Through
this layer, data are organized and made available as
logical files. The way in which any logical file, along
with its metadata and status information is structured,
handled and made available underneath of such an in-
terface, depends on the nature of the underlying OS
(the Trusted OS).

5 PROTOTYPE
IMPLEMENTATION

Our PEP/FS works on top of a ext4 filesystem, which
is the last representative in a family of filesystems of
widespread use on Linux systems.

In our architecture, we assume that information
related to any logical file is split amongst at least two
different low level files, one for its contents and one
(or more) for its metadata.

For the purpose of managing open files, the FSB
maintains two different data structure: the open files
table (OFT) and the Virtual File Descriptor table
(VFD).

The OFT contains an entry for each logical file
currently in use by at least one entity. When an entity
opens a file, the FSB creates a new entry in the OFT.
Each entry features: (a) the logical file descriptor; (b)

A Fine-grained General Purpose Secure Storage Facility for Trusted Execution Environment

593



the data structure that references the file’s low level
counterparts; and (c) file’s metadata and status infor-
mation (including e.g. the reference counter which
reports the number of entity which opened the file).

The VFD features an entry for each entity that
has opened a file and maintains it until such an en-
tity closes the file. Each entry (whose reference is
the virtual file descriptor the open returns) links the
entity with the logical file in use and contains: (a) a
reference to the entry of the OFT that represents the
logical file; (b) file key k; (c) entity’s current role-id
and credentials; and (d) access mode information.

In order to change its current role, an entity in-
vokes the FSB claim function, providing the subject
virtual file descriptor and the new role. The FSB, in
turn, issues a check role call to the PolicyMGR for the
new role and, if successful, updates the current role of
the VFD.

The FSB provide some ad hoc APIs to allow pro-
prietary roles to modify the file’s access policy rules.
To this end, the entity opens the file and pushes
the policy changes into the policy metadata then re-
encrypts it with the file key and signs it. Our system is
intended to be neutral with respect to the policy repre-
sentation format. We envision the employment of any
standard format such as extensions of XACML.

We build our prototype system using the Open-
TEE which is a software emulator of a GlobalPlat-
form compliant TEE environment for the Linux oper-
ating system. Open-TEE provides a framework that
can be used to develop and test prototypes of TEE-
enabled applications, keeping apart the problems and
challenges raised by the real hardware target plat-
form. However, Open-TEE ensures a high level of
source-compatibility with real-world TEE develop-
ment frameworks.

The Open-TEE environment is composed of two
stand-alone servers and a set of dynamic libraries
which implements the GlobalPlatform APIs. Rich
Applications are native Linux Applications written in
C/C++, whereas Trusted Applications are dynamic
shared objects registered with the launcher and exe-
cuted in separated threads. It is clear that Open-TEE
only reproduces the development environment but
does not fulfills any security requirement addressed
by GlobalPlatform specifications.

6 PERFORMANCE EVALUATION

We have run preliminary performance measurements
of our prototype implementation. There are a number
of variables that come into play when evaluating the
performance of our solution. Some examples are the

Figure 2: Comparison proposed file system vs Plain ext4
for random read operations.

complexity of the access policy, the presence of the
(optional) en/decryption operations, the block size,
the complexity related to the translation of metadata
into metadata storage interfaces of the underlying file
system.

We highlight that the purposes of these exper-
iments are validating the approach and verifying
whether the TEE framework APIs are suitable for the
implementation of our architecture. In the following,
we briefly summarize some performance results we
achieved in our early experiments.

Currently, such results are clearly far even from
the ones of the ext4 file system for a number of rea-
sons. The first one is that we build on top of such
a file system and, thus, our measurements consist of
the time needed by our software structure and by the
time needed by the ext4 file system to actually exe-
cute the operations. Secondly, we highlight that the
Open-TEE environment has not been written by fo-
cusing on efficiency but as a proof of concept of the
architecture.

Due to space constraints, we only report some of
the experiments with have done. As stated above, we
have implemented our system on an ext4 file filesys-
tem by its extended attributes for storing file meta-
data. The complexity of the access policies is an-
other variable that strongly depends on the specific
policy. Since we needed to evaluate the usability of
our system, we have run the first experiments using
’flat’ spatio-temporal policies, i.e., allow everytime-
everywhere. We note that complex access policies
verification may have a huge impact on the open op-
eration. On the other hand, once the file is opened, the
status of the policy condition can be asynchronously
monitored by the PDP in order to reduce the response
time for each subsequent request.

We have run the following tests:

• Read/Randomized Read: This test measures the
performance of reading an existing file (at ran-
domly selected locations).

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

594



• Write/Randomized Write: This test measures the
performance of writing a new file (at randomly se-
lected locations).

Each test only considers the time needed to exe-
cute read/write operations in files and does not con-
sider the time needed to open or close the file. In
Figures 2 we report the performance of our filesys-
tem (compared with a plain ext4 file system) in the
random read operations into files with size ranging
from 64KB to 512MB. The performance of the read
and write operations are similar to the corresponding
randomized versions and are omitted.

7 CONCLUSIONS

In this paper propose the design of a full fea-
tured cryptographic file system, intended as general
purpose facility for Trusted Execution Environment
(TEE)-compliant platforms.

Data may either lie on a device internal stor-
age (and bound to that device) or can be transferred
amongst different devices (e.g., by means of micro SD
cards rather than trusted communication channel). In
this case, a protocol to transfer access privileges to the
receiving device is provided.

The file system is fully compliant to the TEE stan-
dard specifications. As far as we know, this is the
first project of this kind which offers this feature. We
present a prototype based on OpenTEE and the FUSE
filesystem. Although preliminary experiments are
likely to significant improvements and optimizations,
they look quite promising and make the approach
worthy of further investigation.

REFERENCES

FUSE: Filesystem in Userspace. http://fuse.sourceforge.
net.

Aich, S., Mondal, S., Sural, S., and Majumdar, A. (2009).
Role based access control with spatiotemporal context
for mobile applications. In Trans. on Computational
Science IV, volume 5430 of LNCS, pages 177–199.

Apple Inc. (2016). Apple Shared Ipad. https://developer.
apple.com/education/shared-ipad/.

Apple Inc. (2018). iOS Security Guide - White
Paper. https://www.apple.com/business/docs/iOS
Security Guide.pdf.

Blaze, M. (1993). A cryptographic file system for unix. In
Proceedings of the 1st ACM conference on Computer
and communications security, pages 9–16. ACM.

Bonatti, P., Galdi, C., and Torres, D. (2015). Event-driven
RBAC. Journal of Computer Security, 23(6):709–757.

Castiglione, A., Catuogno, L., Del Sorbo, A., Fiore, U., and
Palmieri, F. (2014). A secure file sharing service for
distributed computing environments. The Journal of
Supercomputing, 67(3):691–710.

Cattaneo, G., Catuogno, L., Sorbo, A. D., and Persiano, P.
(2001). The design and implementation of a trans-
parent cryptographic file system for unix. In USENIX
Annual Technical Conference, pages 199–212.

Catuogno, L., Galdi, C., and Riccio, D. (2016). Flexible and
robust enterprise right management. In IEEE Sympo-
sium on Computers and Communication, ISCC 2016,
Messina, Italy, June 27-30, 2016, pages 1257–1262.

Catuogno, L., Galdi, C., and Riccio, D. (2018). Off-line en-
terprise rights management leveraging biometric key
binding and secure hardware. Journal of Ambient In-
telligence and Humanized Computing.

Catuogno, L., Löhr, H., Winandy, M., and Sadeghi, A.-R.
(2014). A trusted versioning file system for passive
mobile storage devices. Journal of Network and Com-
puter Applications, 38:65–75.

Garg, D. and Pfenning, F. (2010). A proof-carrying file sys-
tem. In Security and Privacy (SP), 2010 IEEE Sym-
posium on, pages 349–364. IEEE.

Geambasu, R., John, J. P., Gribble, S. D., Kohno, T., and
Levy, H. M. (2011). Keypad: an auditing file system
for theft-prone devices. In Proceedings of the sixth
conference on Computer systems, pages 1–16. ACM.

GlobalPlatform (2010). TEE Client API Specification v1.0.
http://globalplatform.org.

GlobalPlatform (2011). TEE System Architecture v1.0.
http://globalplatform.org.

Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., and
Fu, K. (2003). Plutus: Scalable secure file sharing on
untrusted storage. In Prof. of the USENIX Conference
on File and Storage Technologies, pages 29–42.

Microsoft Corp. (2017). Windows 10 mo-
bile deployment and management guide.
https://docs.microsoft.com/en-us/windows/
client-management/windows-10-mobile-and-mdm.

Peters, T., Gondree, M., and Peterson, Z. N. J. (2015).
DEFY: A deniable, encrypted file system for log-
structured storage. In 22nd Network and Distributed
System Security Symposium, NDSS. The Internet Soc.

Wang, Z., Murmuria, R., and Stavrou, A. (2012). Imple-
menting and optimizing an encryption filesystem on
android. In Proc. of IEEE Mobile Data Management,
pages 52–62.

Weinhold, C. and Härtig, H. (2008). Vpfs: Building a vir-
tual private file system with a small trusted comput-
ing base. ACM SIGOPS Operating Systems Review,
42(4):81–93.

Yun, A., Shi, C., and Kim, Y. (2009). On protecting in-
tegrity and confidentiality of cryptographic file system
for outsourced storage. In Proc. of the ACM workshop
on Cloud computing security, pages 67–76.

A Fine-grained General Purpose Secure Storage Facility for Trusted Execution Environment

595


