
A Secure Framework with Remote Configuration of Intellectual

Property

Nadir Khan1, Sven Nitzsche1 and Jürgen Becker2
1FZI Research Center for Information Technology, Karlsruhe, Germany

2Institute for Information Processing Technologies (ITIV) Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany

Keywords: Field Programming Gate Array (FPGA), Intellectual Property (IP), Secure Embedded Systems, IP

Protection, Dynamic Partial Reconfiguration, Cryptography, Trusted Execution Environments (TEE).

Abstract: In this work, an intellectual property (IP) licensing framework is proposed that is secure against IP theft

(cloning and redistribution). This security is provided by utilizing built-in features of modern field

programmable gate arrays (FPGAs), e.g. secure boot, state-of-the-art cryptography and trusted execution

environments (TEE). The scheme is also the least restrictive in comparison to other publications in this area.

Using this scheme, multiple IP core vendors (CVs) can configure their IPs remotely by connecting directly

to an FPGA. Devices are booted securely using an authenticated and encrypted boot loader that initiates an

authenticated and encrypted hypervisor, which in turn provides a TEE by partitioning the system resources

into secure and non-secure sections. At this stage, a secure operating system (OS) is loaded that handles all

the security critical functions such as communication with CVs, storage and analysis of bitstreams,

enforcement of license constraints and configuration of IPs. Then, a second, non-secure OS is loaded, which

provides an isolated execution environment with unrestricted access to non-secure resources. Hence, they

are not limited to predefined APIs. Both OSes can interact via the hypervisor. The implementation of this

framework is a work-in-progress and results presented within this paper are subject to change.

1 INTRODUCTION

Production costs for integrated circuits (ICs) are the

key cost factor for low-volume applications.

Programmable devices like FPGAs can be a cost

effective alternative in such cases. With recent

advances in technology, these devices are offering

enough resources to accommodate even large

designs, making them suitable for a variety of

industrial applications.

FPGAs are programmed using a digital bitstream

that can be easily distributed independent of the

physical device, which makes FPGAs an ideal

platform for circuit trading. For example, system

developers (SD) can outsource the development of

parts of a circuit to or license them from third

parties, who might be more experienced in a specific

area. This kind of approach can reduce development

costs and give system developers an edge over their

competitor in performance but also in time-to-

market. Such licensable circuit designs are called

intellectual property (IP) and are sold by a core

vendor (CV). In general, they can be delivered in

different digital formats like register-transfer level

(RTL) code, netlist or bitstream. However, RTL and

netlist representations need to be integrated by

system developers during development and thus

must be in a readable format, offering no protection

against extraction of the original design. Bitstream,

on the other hand, are processed directly on an

FPGA, without direct access by SDs. Therefore,

they are comparatively more secure against reverse

engineering (RE), as they can be distributed in a

proprietary format that is only known to the FPGAs

themselves. Since this resilience against reverse

engineering is only based on obscurity through the

proprietary format, extraction of information is still

possible with enough effort. Furthermore, all of

these formats are vulnerable to overuse and

redistribution.

In response to these problems, modern FPGAs

offer several built-in security features, i.e. an

internal decryption engine and a secure hardware

key vault, so that bitstreams may be delivered in

encrypted form and only be configured on an FPGA

that stores the corresponding decryption key.

564
Khan, N., Nitzsche, S. and Becker, J.
A Secure Framework with Remote Configuration of Intellectual Property.
DOI: 10.5220/0007576305640571
In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 564-571
ISBN: 978-989-758-359-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

However, programming the key into a device also

causes several problems. If SDs perform this task,

they get access to any IP, exposing them to overuse

or redistribution. Similarly, if a specific CV

programs the key, it would mean that either only

their IPs could be used (as only, they know the key)

or that all involved CVs have to agree on one key,

which in turn creates more security problems, i.e. a

CV can access another CVs intellectual property.

Additionally, it would introduce the logistical

overhead of sending devices to the CV.

To cover these problems, this work provides a

detailed investigation of existing licensing and

remote configuration approaches. Their security and

feasibility issues are discussed and a method for a

secure licensing infrastructure with remote

configuration capability is derived.

1.1 IP Licensing

Typically, multiple entities are involved in the

secure delivery of intellectual property. Throughout

this paper, the following naming conventions are

used, which are common among related works in the

area of IP licensing and remote configuration:

FPGA Vendor (FV): Producers of FPGAs and

system-on-chip (SoC) devices. These products are

commercially available with necessary

documentation and development tools and can be

used as off-the-shelf products.

Trusted Third Party (TTP): This role can be

played by any entity, notably an FV or a Hardware

Manufacturer (HM). Its responsibilities include

preparing devices for a licensing scheme,

programming keys, adjusting security settings or

handling encryption of IPs.

Core Vendor (CV): Producers of a specialized

licensable circuit.

System Developer (SD): System developers license

IPs from CVs and integrate them into their own

hardware design.

The relation between them is shown in Figure 1

along with the order of required tasks:

1. A TTP buys devices from an FV and prepares

them for IP licensing.

2. Necessary details (device type, location,

interfaces etc.) are shared with CVs so that they

can develop IPs accordingly.

3. Prepared FPGAs are delivered to SDs.

4. SDs acquire licenses from CVs for required IPs.

5. CVs provide SDs with the requested IPs via a

TTP that manages the security aspects of the

transaction.

Figure 1: Flow of a licensing scheme.

1.2 Remote Configuration

Remote configuration, in the context of IP licensing,

refers to the process of a CV remotely accessing the

device of an SD and configuring their IPs into it.

This direct access reduces the number of steps

required in the process of acquiring an IP and makes

the licensing scheme’s implementation easier. Since

IPs are configured on the device without further

processing, they must be in the bitstream format.

However, in the absence of appropriate security

features, overuse of the IP cannot be prohibited.

Therefore, a suitable licensing framework needs to

be present to provide CVs with measures against

threats like cloning, reverse engineering,

redistribution and tampering. Since both remote

configuration and IP licensing, are dependent on

each other, we will treat them holistically rather than

individually. Consequently, a secure IP licensing

methodology will be proposed and then a remote

configuration capability will be added on top of it.

2 RELATED WORK

2.1 IP Licensing

IP Licensing and remote configuration are both well-

researched areas. A commonly used approach by

researchers is the involvement of a trusted third

party (TTP). The primary reason for this

involvement is that it solves the conflict of pre-

programming a key into the non-volatile memory

(NVM) of a target device, as discussed before, with

the least impact on security.

The programmed key is then used by core

vendors to generate encrypted IPs, which are useable

only on the target device (Kean, 2002). However,

the drawback of this approach is that a high degree

of trust is put in the TTP as they have access to the

key and therefore all IPs.

FPGA Vendor System
Developer

Trusted Third
Party

Core Vendor

1

2

3

4

5

A Secure Framework with Remote Configuration of Intellectual Property

565

To avoid this, some researchers introduced an

additional security layer in the form of a Core

Installation Module (CIM) (Guneysu et al., 2007;

Maes et al., 2002; Zhang and Chang, 2014; Zhang

and Chang, 2015). These modules are developed by

CVs for the decryption of their IPs. They contain

another key, which is different from the pre-

programmed one and is only known to the CV. The

CIM bitstream itself is then delivered to TTPs that

encrypt it with the device root key and deliver it to

SDs. CIMs typically contain a custom decryption

logic. An example CIM is shown in Figure 2.

Such modules increase security because even if

the root key is leaked, adversaries have to reverse

engineer a CIM for the extraction of IP specific

keys, and only then single IPs can be decrypted. This

process has to be repeated for every IP, which makes

it an effort beyond financial gain in most cases.

Furthermore, cloning of CIMs can be avoided by

integrating device identifier checks into its logic.

Kumar et al. (K et al., 2017) proposed to avoid

the step of encrypting CIM (Maes et al., 2002).

Their scheme does not require any kind of third

party for programming internal keys or encrypting

CIMs, hence their scheme can work without the

involvement of a TTP. However, their work is based

on the assumption that a key cannot be extracted

from a plaintext bitstream and thereby completely

relies on obscurity introduced by the proprietary file

format.

More secure schemes with a reduced TTP

dependency are presented in (Guneysu et al., 2007)

and (Zhang and Chang, 2015), where Diffie-

Hellman Key Exchange (DHKE) algorithms

generate IP specific keys within the device itself

during runtime. This way all IP specific keys are

ephemeral, and thus TTPs and SDs cannot get access

to them by reverse engineering, unlike in previous

cases.

Figure 2: Core Installation Module using device identifier

(Zhang and Chang, 2014).

2.1.1 Readback

Despite of possible other limitations, all of

previously published schemes suffer from readback

attacks. SoC devices have a processing system (PS)

as a controlling entity that has full access to the

programming logic (PL). The PS can read any

previously configured data using the processor

configuration access port (PCAP) (Xilinx, 2017b),

and can extract secret information or even IP cores.

Non-SoC FPGAs suffers from this attack too,

because a user logic can perform readback via the

internal configuration access port (ICAP) and

deliver the data to an external interface. Any control

logic around ICAP for protection against readback

can be overwritten using dynamic partial

reconfiguration (DPR) and after that, an attack can

be performed easily. Readback of an initially

encrypted IP is done in (Adetomi et al., 2017),

where it is relocated to another location after initial

configuration. (Maes et al., 2002) and (Zhang and

Chang, 2014) actually identified readback attacks as

a possible threat and concluded that this feature

should be disabled. However, it was not made clear

that readback can be disabled only for external

sources and hence internal logic or running software

could still perform such an attack.

2.2 Remote Configuration

Remote configuration of IPs relies on the

infrastructure of a secure licensing framework and is

performed by establishing a connection between

CVs and the target devices via a common network

such as the Internet. One of the first published

approaches in this field proposed delivering

bitstreams in an encrypted form over an unsecure

channel (Drimer and Kuhn, 2009). The key has to be

pre-programmed by the CV, which causes logistical

overhead. Besides, the scheme is also prone to

tampering because no bitstream authentication is

considered. Furthermore, all IPs are encrypted with

the same key, which leads to exposure of all

previously transmitted IPs in case of a successful

attack. Finally, this scheme again suffers from the

key pre-programming conflict described in section 1.

Works that are more recent use asymmetric

cryptography and per-session keys (Braeken et al.,

2011; Vliegen et al., 2015; Kashyap and Chaves,

2014). In these schemes, a new key is generated for

every session based on a DHKE algorithm. Once a

bitstream transfer is completed, they are either

configured on the device directly or encrypted using

a random key and then stored on the NVM (Kashyap

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

566

and Chaves, 2014; Kashyap and Chaves, 2016). Even

though the latter approach has advantages like faster

reconfiguration time, it is prone to several key

extraction attacks because all keys are stored within

the programming logic itself. Except (Thanh et al.,

2012; Thanh et al., 2013), none of the proposed work

considers SoC-based FPGAs and therefore require the

implementation of all functions on the PL, which not

only introduces serious overhead but also makes them

prone to side-channel attacks (SCA) (Wollinger et al.,

2004). Available solutions, which make use of SoC

FPGAs to perform the key agreement tasks in

software (Thanh et al., 2012; Thanh et al., 2013), are

limited to using IPs from a single core vendor and do

not offer bitstream storage.

Based on the literature review, it is clear that

available remote configuration approaches do not

work within the context of IP licensing. In some

cases, access of SDs to their device is completely

blocked (Braeken et al., 2011) or SDs can only use

licensed IPs but no logic of their own on the PL

(Vliegen et al., 2013; Thanh et al., 2012; Thanh et

al., 2013). We conclude that remote configuration of

an IP is not possible in a secure and feasible way

with any of the exiting schemes, and a new solution

is required which provides the required

infrastructure.

3 SECURE REMOTE

CONFIGURATION SCHEME

We propose a new scheme, which aims to overcome

the described limitations such as readback and single

core vendor restrictions, based on remote

configuration for delivering IPs directly to target

devices. Before discussing the execution flow of the

scheme, basic functional blocks are explained in

section 3.1.

3.1 Basic Functionality and Security

3.1.1 Bitstream Format

IPs can be delivered in different formats as

explained in section 1. Among these formats, RTL

and netlist must be processed using vendor tools to

generate data that can be configured on the device.

Doing that on the fly, inside the device, would

require enormous effort and cause time overhead in

the magnitude of several hours. On the other hand,

bitstream format is ready-to-use blocks that can be

configured directly. Hence, we only consider IPs to

be delivered in bitstream form.

3.1.2 Layered Rights Management

In SoC devices, typically the CPU acts as system

master and has complete control over the system

including PL (Xilinx, 2017a; Xilinx, 2017b; Intel,

2018a). Therefore, both PS and PL need to operate in

a secure state at all time to guarantee licensing

integrity. This can be achieved by introducing layered

rights management, where users are categorized as

either privileged or non-privileged (Intel, 2016, p.

159).

Non-privileged users have restricted control over

certain system components while privileged users

have full access. In the FPGA market, ARM

microprocessors are the de-facto standard when it

comes to the CPU part in SoC devices. Through the

ARM TrustZone feature, they support layered rights

on hardware level, meaning that buses, memories and

peripherals can be divided into secure and non-secure

components. TrustZone is supported by most SoC-

based FPGAs (Intel, 2017b; Intel, 2018a; Gosain and

Palanichamy, 2014). As discussed earlier, the

configuration interfaces can be used for readback

attacks. TrustZone can be used to counter this attack

by restricting non-privileged users’ access to

interfaces. To achieve this, a hypervisor can be used

that hosts a secure and a non-secure operating system

(OS). Both, hypervisor and secure OS are running in

privileged mode and are not accessible from the

outside (i.e. by a user). Meanwhile, the non-secure OS

runs in a non-privileged mode with restricted

capabilities. It can access secure resources via secure

OS and non-secure resources directly. This trusted

execution environment protects security-critical

software, firmware and hardware components, while

not restricting SDs to a set of predefined APIs (Sabt

and Achemlal, 2015).

 In a similar fashion, the PL can be divided into

secure and non-secure sections, as depicted in Figure

3. The secure section should include a controlling

interface that restricts ICAP usage to authorized

commands only. Unauthorized commands, such as

modification and/or readback of secure sections

and/or IPs, are blocked by this circuit.

Figure 3: PL showing secure/non-secure locations.

IP

SystemICAP

Controller

ICAP

IP

IP

Non-secureSecure

A Secure Framework with Remote Configuration of Intellectual Property

567

3.1.3 Bitstream Analysis

Applications running on the non-secure OS must

have the capability to perform configuration of IPs

and custom logic using software, so SDs can

configure their own design. Therefore, an API with

this capability will be provided to non-privileged

users. However, for security against unauthorized

configuration and readback, bitstream analysis is

required. It can be achieved by analysing the

bitstream’s frame addresses (FAs) which represent

the target locations in the PL. The FAs are compared

against a table stored in the secure OS that defines

secure, non-secure, custom logic or IP locations.

3.1.4 Secure Boot

After shipment, devices are in possession of SDs and

fully under their control. However, a malicious SD

would benefit greatly from breaking device security,

as this would allow them to clone IPs at will instead

of paying licensing fees. Consequently, SDs must be

treated as potential attackers and critical components

must be secured against attacks based on physical

access. For this purpose, the "secure boot" feature is

used, which is typically supported by modern

FPGAs (Intel, 2018c; Sanders, 2015). Secure boot

means that the complete boot chain, from loading

the FSBL to loading the secure OS, is encrypted and

authenticated using asymmetric cryptography. The

corresponding key and authentication certificate is

pre-programmed in the device before distribution. At

start-up, the device only decrypts an authenticated

boot loader with the previously programmed key,

which in turn contains the key for the next boot

stage, e.g. the hypervisor, and so on. With setting up

devices to perform secure boots only (Xilinx, 2017a,

p. 288; Intel 2017a, p. 35), it can be guaranteed that

no unauthorized software runs on the device outside

the control of the hypervisor.

3.1.5 Enabling Remote Configuration

Remote configuration is the establishment of a

network connection between a CV and a device,

which is used to configure the bitstream directly on

this device. The network connection must be secure,

so that threats like man-in-the-middle attacks can be

avoided. For this purpose, a protocol like Transport

Layer Security (TLS) including key exchange and

authentication can be used. Additionally, the

bitstream itself can be encrypted, too, but then the

required key needs to either be agreed upon or sent

via a secure channel, which would create more

problems. We are focusing on the delivery of

unencrypted bitstreams using a secure channel.

Since bitstream sizes are in the range of several

megabytes for modern devices, they cannot be

stored in on-chip memory, which typically has a

capacity of a few hundred kilobytes. Storing them

off-chip on the other hand makes them vulnerable to

bus probing and cold boot attacks. As described in

section 3.1.2, the ARM TrustZone feature can be

used to counter this type of attack. In the secure OS,

a software module needs to be implemented which

encrypts the bitstream with a random key on the fly.

This key can either be stored in another secure

software module (Software key-vault), a hardware

secure key storage component or the secure section

of the PL. Before encrypting the IPs for storage, they

are checked for unauthorized commands through

bitstream analysis, as explained in section 3.1.3.

Finally, IPs can be configured using PCAP. The

entire flow is shown in Figure 4.

3.1.6 Target Hardware

The proposed scheme can be implemented on most

available devices as long as they support dynamic

partial reconfiguration (DPR), an internal decryption

engine and a secure key vault. This includes most

devices from Xilinx and Intel and therefore a major

share of the SRAM-based FPGA market. Optimally,

a processing system is present on the device that

handles remote communication, bitstream

configuration and layered rights management. Such

SoC-FPGAs can be found on many modern devices

from low-cost to absolute high-end. Nevertheless,

this solution also works with non SoC-based FPGAs

by configuring a PS soft core on the PL as it has

been done in related publications (Vliegen et al.,

2015). However, there will be significant resource

overhead.

3.2 Execution Flow and
Implementation

The proposed scheme is implemented on a Xilinx

Zynq UltraScale+ (EK-U1-ZCU102-G), which is a

SoC-type device supporting all required features.

The scheme execution on this device begins with

booting it into a secure state. First, the Power

Management Unit (PMU) boots, powers all required

components and performs an integrity check on the

subsequent Configuration Security Unit (CSU)

firmware. Afterwards, control is passed to the CSU,

which sets security levels authenticates and decrypts

a First Stage Boot Loader (FSBL). It then hands

over control to the PS while it continues to run in the

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

568

background where it provides cryptographic

accelerators, key management and PCAP access. The

PS then executes the decrypted FSBL, which

initializes necessary components like buses and

organizes security states of system resources based on

ARM TrustZone. Finally, it authenticates and

decrypts the next boot stage, which could either be a

hypervisor or another boot loader stage. In favour of

maintainability and portability, we chose the latter

approach and load a Second Stage Boot Loader

(SSBL), which is then used to initialize the

hypervisor, while the FSBL only focuses on system

security initialization. Xen is used as hypervisor,

which is open source and available free of charge

(xenproject.org, 2018). It builds on top of TrustZone

and supports devices from both Xilinx and Intel. It

acts as a control and communication monitor for a

secure and a non-secure OS (User OS). Any OS can

be chosen for either category, however, for the given

implementation we chose "FreeRTOS" as secure OS

since it is lightweight, supports the necessary

communication features and devices from both Xilinx

and Intel (freertos.com, 2018). In addition, Xilinx'

Petalinux is used to create a non-secure user OS. It

comes with many drivers, has official tool support

and therefore allows a fast and reliable scheme

evaluation.

At this stage, the processing system is fully booted

and the PL can be configured. To expand the secure

state to the programmable logic, an initial (full)

bitstream is loaded that includes secure logic, i.e. for

ICAP control, and interconnects for SD and CV

designs. Once the initial bitstream is configured,

additional logic can be loaded. When initiating the

configuration of an SD’s custom design using the

corresponding APIs, its bitstream is first passed to the

Bitstream Analysis module, which ensures it does

not contain any unauthorized commands, e.g. writes

to a secure section. Finally, the bitstream is

configured to a corresponding slot by the

Configuration Manager module.

For requesting and configuring an IP from a CV,

a similar API is defined in the secure OS. The full

flow is shown in Figure 4. First, to download an IP, a

secure remote communication channel to the CV's

server is established using the Remote Access

module. This request is only granted if a valid

license was bought for the respective device. Device

identification in this case is done by using the unique

96-bit serial number that is available on the Xilinx

Zynq UltraScale+. Once an IP is downloaded, it

passes the same process of bitstream analysis and

configuration as for a custom design. Configuration

times in both cases will be significantly shorter than

for the initial bitstream.

4 SECURITY ANALYSIS

Security of the proposed work is provided by a trust

chain based on pre-programmed keys and

certificates in the device. A TTP performs this pre-

programming; hence, our scheme also relies on a

TTP. Since FPGA vendors produce the devices, it

would be straightforward for them to take the role of

the TTP and program keys before distributing the

devices. In addition, they would also be responsible

for publishing the matching software, i.e. boot

loader, hypervisor and secure OS. Since trust is

already placed by using their devices, no further

trust dependencies would be introduced.

Figure 4 Remote Configuration Scheme flow.

Request

IP

Send request

& device ID

Verify license

for device

Return IP

& license

IP

SystemIP IP

IP

CPU FPGA

Core Vendor

Server

IPIP

Bitsream

Analysis
Remote

Access
APP

API

Monitor

Configuration

Manager

Secure OSUser OS

A Secure Framework with Remote Configuration of Intellectual Property

569

All cryptographic primitives used in the scheme,

i.e. AES and RSA, are considered computationally

secure. Furthermore, these algorithms are

recommended for long-term security by

government-funded organizations (German Federal

Office for Information Security, 2018; US National

Institute of Standards and Technology, 2001).

Nevertheless, some successful side channel attacks

like differential power analysis have been conducted

on older devices before, e.g. Xilinx’ Virtex-II/4/5

series (Moradi et al., 2011a; Moradi et al., 2011b)

and on PS (Ramsay, 2017). However, even if an

attack were successful in extracting the AES device

key, it would not be sufficient to boot a tampered

OS, as any boot software also needs to be

authenticated, and the required private certificate

never leaves the TTP. Thus, it cannot be extracted

from the device. One possible attack vector would

be to decrypt the boot loader using the retrieved

AES key, then extract the key for decrypting the

hypervisor from the plaintext boot loader, again use

this to decrypt the hypervisor and finally extract the

key for the secure OS. Once the secure OS is

available in plaintext, the private certificate for

establishing a secure communication channel with

CVs can be extracted from it and used to spoof the

device during communication. Several approaches to

prevent this attack scenario are currently analysed

and will be implemented in the future, for instance a

run-time calculated identifier could be sent along

with the certificate. This identifier could be a hash of

specific sections of the secure on-chip memory.

However, attacking the secure boot chain is highly

complicated and further requires extracting the AES

root key from a device’s hardware key vault in the

first place, which is highly unlikely on modern

devices. Furthermore, if successful, this attack

would only affect a single device and the effort for

applying it to other devices stays constant.

Therefore, we consider it a minor threat only. When

such a security breach is identified, CVs can add the

device ID and certificate to a black list, which means

all future requests for these devices will be declined.

Since this scheme relies on a trusted execution

environment, we also consider the security of the

implementation at hand, i.e. ARM TrustZone. So

far, very few successful attacks have been published.

One of them is the Rowhammer attack, where secure

areas of DDR memory are accessed by a non-secure

system master (Carru, 2017). In this attack,

neighbouring rows of memory cells are rapidly

accessed, which causes bit flips in the secure

memory cells. However, not only is the complexity

of this attack very high, as it requires inside

knowledge of the secure memory mapping, but it

can also be countered by simply keeping secure

memory rows consecutive or by using the on-chip

memory for secret data instead of DDR.

Another attack monitors cache access behaviour

to extract secrets of an application (Zhang et al.,

2016). It is executed by filling the cache with data of

a non-secure application and then triggering a secure

application. Thus, the secure application's data will

be cached during its execution, which will replace

previously cached data. After this, the non-secure

application data is read again. By measuring

memory access times, an attacker can get

information on data access patterns of the secure

application. If the attacker furthermore has detailed

knowledge of the secure application, he can predict

certain secrets like keys from this information.

Again, this kind of attack requires detailed system

knowledge and is hence highly unlikely. A possible

countermeasure would be to restrict cache to secure

OS only, though this would significantly slow down

the non-secure OS. Consequently, this measure

should only be applied for very high security

systems, which perform sensitive cryptographic

tasks like AES encryption and where the used

algorithm is publicly available. For common use-

cases, this attack scenario can be ignored.

Overall, we believe that the security of the

presented scheme is sufficient with minimal attack

surface exposed and any known attack will only

work in a specialised environment such as a

laboratory.

5 CONCLUSION

In this paper, we proposed an IP licensing

framework with the capability of remotely

configuring devices. An intellectual property design,

in a proprietary obfuscated format, is delivered from

CVs to the device directly using a secure channel,

while the device itself runs in a secure execution

environment. In addition, an extensive security

analysis of previous as well as the proposed scheme

is presented, and it is shown that this scheme is

secure, least restrictive for SDs in term of device

resource usage and has no resource overhead. This is

a work-in-progress, and feasibility and security will

be further improved, as described throughout the

paper.

A flow based on this scheme will provide extra

guarantees against IP theft; this could get more CVs

invested, which we believe can increase growth in

the IP licensing market.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

570

REFERENCES

Kean, T. (2002). Cryptographic rights management of

FPGA intellectual property cores. FPGA '02, ACM,

Monterey, CA, USA, pp. 113–118

Guneysu, T., Moller, B., Paar, C. (2007). Dynamic

Intellectual Property Protection for Reconfigurable

Devices. FPT, IEEE, Piscataway, NJ, pp. 169-176.

Maes, R., Schellekens, D., Verbauwhede, I. (2002). A

Pay-per-Use Licensing Scheme for Hardware IP Cores

in Recent SRAM-Based FPGAs. IEEE

Trans.Inform.Forensic Secur. 7, pp. 98–108.

Zhang, L., Chang, C.-H. (2014). A Pragmatic Per-Device

Licensing Scheme for Hardware IP Cores on SRAM-

Based FPGAs. IEEE TIFS. 9, pp. 1893–1905.

Zhang, L., Chang, C.-H. (2015). Public Key Protocol for

Usage-based Licensing of FPGA IP Cores, 2015 IEEE

ISCAS, Lisbon, pp. 25-28.

K., S. K., Sahoo, S., et al. (2017). A Flexible Pay-per-

Device Licensing Scheme for FPGA IP Cores. 2017

ISVLSI, Bochum, pp. 677–682.

Xilinx, (2017b). Zynq-7000 All Programmable SoC.

Technical Reference Manual.

Adetomi, A., Enemali, G., Arslan, T. (2017). Towards an

Efficient IP Protection in Dynamically Reconfigurable

FPGAs. EST, IEEE, pp. 150-156.

Drimer, S., Kuhn, M. G. (2009). A Protocol for Secure

Remote Updates of FPGA Configurations. ARC 2009,

Springer, Berlin, pp 50-6.

Braeken, A., Genoe, J., et al. (2011). Secure remote

reconfiguration of an FPGA-based embedded system.

ReCoSoc 2011, IEEE, Montpellier, pp. 1-6.

Vliegen, J., Mentens, N., Verbauwhede, I. (2015). Secure,

Remote, Dynamic Reconfiguration of FPGAs. ACM

Trans. Reconfigurable Technol. Syst. 7, pp. 1–19.

Kashyap, H., Chaves, R. (2014). Secure partial dynamic

reconfiguration with unsecured external memory. 24th

FPL, IEEE. pp. 1-7.

Kashyap, H., Chaves, R. (2016). Compact and On-the-Fly

Secure Dynamic Reconfiguration for Volatile FPGAs.

ACM Trans. Reconfigurable Tech. Syst. 9, pp. 1–22.

Thanh, T., Nam, P. N., Vu, T. H., van Cuong, N. (2012).

A framework for secure remote updating of bitstream

on runtime reconfigurable embedded platforms. ICCE,

IEEE, Hue, Vietnam, pp. 471-476.

Thanh, T., Vu, T. H., van Cuong, N., Nam, P. N. (2013).

A protocol for secure remote update of run-time

partially reconfigurable systems based on FPGA.

ICCAIS 2013, IEEE, Nha Trang, 2013, pp. 295-299.

Wollinger, T., Guajardo, J., Paar, C. (2004). Security on

FPGAs. ACM Trans. on Embedded Computing Sys

(TECS), vol 3, pp. 534–574.

Vliegen, J., Mentcns, N., Verbauwhede, I. (2013). A

single-chip solution for the secure remote

configuration of FPGAs using bitstream compression.

ReConFig, IEEE, Cancun, Mexico, pp. 1-6.

Xilinx, (2017a). Zynq UltraScale+ Device Technical

Reference Manual.

Intel, (2018a). Intel Stratix 10 Hard Processor System

Technical Reference Manual.

Intel, (2016). Intel 64 and IA-32 Architectures Software

Developer’s Manual.

Intel, (2017b). Intel Arria 10 - Hard Processor System -

Technical Reference Manual.

Gosain, Y., Palanichamy, P. (2014). TrustZone

Technology Support in Zynq-7000 All Programmable

SoCs. WP429, Xilinx.

Intel, (2018c). Using the Design Security Features in Intel

FPGAs.

Sanders, L. (2015). Secure Boot of Zynq-7000 All

Programmable SoC. XAPP1175, Xilinx.

Intel, (2017a). Intel Arria-10 SoC-Secure Boot User

Guide.

toppers.com, (2018). TOPPERS's official website. [online]

Available at: http://www.toppers.jp/en/safeg.html

[Accessed 27 Oct. 2018].

xenproject.org (2018). Linux Foundation

COLLABORATIVE PROJECTS website. [online]

Available at: http://www-

archive.xenproject.org/products/xenhyp.html

[Accessed 15 Nov. 2018].

freertos.com, (2018). FreeRTOS's website. [online]

Available at: https://www.freertos.org/ [Accessed 27

Oct. 2018].

Xilinx, (2018b). Zynq UltraScale+ MPSoC Data Sheet:

DC and AC Switching Characteristics.

Xilinx, (2018c). UltraScale Architecture Configuration:

User Guide.

Federal Office for Information Security (2018).

Cryptographic Mechanisms: Recommendations and

Key Lengths BSI TR-02102-1, Bonn.

National Institute of Standards and Technology (2001).

Federal Information Processing Standards Publication

197 FIPS 197, Gaithersburg, USA.

Moradi, A., Barenghi, A., Kasper, T., Paar, C. (2011). On

the Vulnerability of FPGA Bitstream Encryption

Against Power Analysis Attacks. CCS '11, ACM, New

York, NY, pp 111-124.

Moradi, A., Kasper, M., Paar, C. (2011). On the

Portability of Side-Channel Attacks - An Analysis of

the Xilinx Virtex 4 and Virtex 5 Bitstream Encryption

Mechanism. IACR Cryptology ePrint Archive, pp. 391.

Ramsay, C., Lohuis, J. (2017). TEMPEST attacks against

AES. Fox-IT.

Carru, P. (2017). Attack TrustZone with Rowhammer

eshard.

Zhang, N., Sun, K., et al. (2016). TruSpy: Cache Side-

Channel Information Leakage from the Secure World

on ARM Devices. IACR Cryptology ePrint Archive,

pp. 980.

Gotzfried, J., Müller, T. (2013). ARMORED: CPU-Bound

Encryption for Android-Driven ARM Devices. ARES,

IEEE, Regensburg, Germany, pp. 161-168.

Müller, T., Freiling, F., Dewald, A. (2011). TRESOR

Runs Encryption Securely Outside RAM. 20th

USENIX, Francisco, California, pp 17.

Sabt, M., Achemlal, M., Bouabdallah, A. (2015). Trusted

Execution Environment: What It is, and What It is

Not, IEEE Trustcom/BigDataSE/ISPA, Helsinki, pp.

57-64.

A Secure Framework with Remote Configuration of Intellectual Property

571

