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Abstract: We present a new adaptive method that robustly detects zero-velocity regions to accurately and precisely 
quantify (1) individual stride lengths (SLs), (2) individual stride velocities (SVs), (3) the average of SL, (4) 
the average of SV, and (5) the cadence during slow, normal, and fast overground walking conditions in 
young and healthy people. The measurements involved in the estimation of these spatial gait parameters are 
obtained using only one inertial measurement unit attached on a regular shoe at the level of the heel. This 
adaptive method reduced the integration drifts across consecutive strides and improved the accuracy and 
precision in the spatial gait parameter estimation. The validation of the proposed algorithm has been carried 
out using reference spatial gait parameters obtained from a kinematic reference system. The accuracy ± 
precision results were for SLs: 0.0 ± 4.7 cm, −0.7 ± 4.4 cm, and −5.8 ± 5.8 cm, during slow, normal, and 
fast walking conditions, respectively, corresponding to −0.1 ± 4.2 %, −0.5 ± 3.2 %, and −3.3 ± 3.0 % of the 
respective mean SL. The accuracy ± precision results were for SVs: 0.0 ± 2.9 cm/s, −0.7 ± 3.8 cm/s, and 
−6.7 ± 6.7 cm/s, during slow, normal, and fast walking conditions, respectively, corresponding to 
−0.6 ± 3.3 %, −0.1 ± 4.5 %, and −3.5 ± 3.1 % of the respective mean SV. These validation results show a 
good agreement between the proposed method and the reference, and demonstrate a fairly accurate and 
precise estimation of these spatial gait parameters. The proposed method paves the way for an objective 
quantification of spatial gait parameters in routine clinical practice.  

1 INTRODUCTION 

Stride length (SL) and stride velocity (SV) are gait 
parameters of importance in multiple health-related 
applications. For example, reduced gait speed in the 
early stage of Parkinson’s disease is primarily related 
to reduced SL (e.g., Morris et al., 1996; Hausdorff; 
2009); SL estimation could thus help neurologists in 
the early diagnosis of this disease. Conventional gait 
analysis techniques, such as optoelectronic motion 
capture systems, are often used as gold standards to 
quantify such spatial gait parameters with high 
accuracy (e.g., Woltring, et al., 1980; Schwartz et al., 
2015). Nevertheless, these systems are often 
expensive and can only be used in a controlled 
laboratory environment, which hinders their 
widespread use. Besides, systems based on inertial 

measurement units (IMUs) including miniaturized 
inertial sensors such as accelerometers and 
gyroscopes are becoming a reliable solution to handle 
the extraction of relevant gait features outside the 
laboratory environment (e.g., Aminian, et al. 2002; 
Del Din et al., 2016; Song et al., 2018). 

In this context, we have previously developed a 
signal-processing algorithm to automatically extract 
stride-to-stride temporal gait parameters and sub-
phase durations of a single stride. This algorithm was 
based on accelerometer signals recorded at the level 
of the heel and toe of the left/right foot during the 
overground walking of young and healthy subjects 
and older people (Boutaayamou et al., 2015; 
Boutaayamou et al., 2018). 

In this work, we extend this extraction algorithm 
to include the estimation of spatial gait parameters, 
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such as SL and SV. In order to minimize the 
integration drifts across consecutive strides and to 
improve the accuracy and precision in the estimation 
of these spatial gait parameters, we present a new 
adaptive method that robustly detects zero-velocity 
update regions to further apply adequate initial 
conditions in the integration of considered quantities. 
In this work, we use this adaptive method to quantify 
(1) individual SLs, (2) individual SVs, (3) the average 
of SL, (4) the average of SV, and (5) the cadence 
during slow, normal, and fast overground walking 
conditions. The measurements involved in the 
estimation of these spatial gait parameters are 
obtained using only one IMU attached on a regular 
shoe at the level of the heel. In addition, we consider a 
concurrent, stride-to-stride, validation of the proposed 
method/algorithm in young and healthy people. In this 
validation, we compare the results to reference spatial 
gait parameters (time-synchronously) provided by a 
kinematic 3D system. 

2 METHOD 

2.1 Participants and Overground 
Walking Setting 

Three healthy young volunteers without any known 
gait and lower limb pathology (one woman and two 
men; mean (min–max) age = 26 years (24–27 years); 
mean height = 1.79 m; mean weight = 74 kg) 
participated in the walking experiments. Each of them 
was equipped with a newly developed stand-alone 
IMU-based hardware system. This system integrated 
memory, microcontroller, battery, and four small 
IMU modules (2 cm × 0.7 cm × 0.5 cm) including 
three-axis gyroscopes (range: 2000 degree/second) 
and three-axis accelerometers (range: ±16 g). This 
IMU-based system can measure accelerations denoted 
by , , and , and angular velocity signals 
denoted by , , and  along IMUs’ sensitive 
axes as schematically illustrated in Figure 1.  

The participants wore their own regular shoes. 
Four IMUs were directly attached to the heel and toe 
of each shoe. Gait data were synchronously recorded 
at 200 Hz from these four IMUs. The participants 
were also equipped with four active markers. Each 
marker was attached on each IMU, i.e., the four 
markers were also attached to the shoes at the level of 
the heel and toe. A four-camera Codamotion system 
(Charnwood Dynamics; UK) recorded gait data from 
these active markers at 200 Hz. In this work, we 

quantify SLs, SVs, and the cadence – for each foot – 
from only the heel IMU measurements. 

Before starting the measurements, volunteers took 
sufficient time to get used to the instrumentation tools 
and to the experimental procedure. During the tests, 
they were asked to walk back and forth on a 10-meter 
long track in a wide, clear, and straight hallway, at 
their slow, normal, and fast speeds. Each participant 
performed (in the following order) 5 slow, 5 normal, 
and 5 fast walking tests. The total number of recorded 
gait tests is then 45 tests. The duration of a single gait 
test was 60 s. All of the walking tests were performed 
at the Laboratory of Human Motion Analysis 
(LAMH) of the University of Liège, Belgium. 

 

Figure 1: The newly developed stand-alone IMU-based 
hardware system is applied to left and right foot using four 
three-axis IMUs. The schematic illustration shows the 
position of the sensors, i.e., IMUs and the Codamotion 
active markers. Two of these sensors are attached to each 
shoe at the level of the heel and toe, respectively. The 
proposed algorithm quantifies SLs and SVs – for each foot 
– only from the heel IMU measurements. 

2.2 Adaptive Method for Detecting 
Zero-Velocity Update Regions 

The proposed extraction algorithm relies on the 
assumption of foot movements in sagittal plane. In 
order to accurately and precisely quantify individual 
SLs and SVs during overground slow, normal, and 
fast walking, it is important to robustly detect zero-
velocity update regions to further determine suitable 
initial conditions to be used in integration steps of 
considered quantities. The principal originality of this 
algorithm is the use of an adaptive method to robustly 
detect these zero-velocity update regions without the 
need of empirical threshold values. 

To reduce the number of sensors, we consider 
hereafter only heel IMU measurements in the sagittal 
plane. For clarity, we consider only one foot for the 
description of the algorithm. The algorithm would be 
applied in the same way for the left and right foot. 
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Figure 2: The proposed adaptive method is applied to the vertical heel acceleration and automatically detects set of points  
that are candidates to be zero-velocity points where initial conditions are updated for each stride  and for each partition . 

All measured heel accelerations and angular 
velocities are defined in the reference frame of the 
heel IMU denoted by XYZ as illustrated in Figure 1. 
We apply the proposed adaptive method to the 
vertical heel acceleration signal to further estimate 
SLs, SVs, and the cadence. 

We first use our previously developed 
segmentation method to parse heel acceleration data 
into flat (motionless periods) and non-flat phases 
(Boutaayamou et al., 2015). This segmentation 
method has the advantage that it only determines 
rough heel flat/non-flat phases and avoids to look 
directly for specific gait events. Moreover, we 
identify the heel strike (HS) timings adopting the 
method from (Boutaayamou et al., 2015). We denote 
time intervals corresponding to these flat phases by [ , , , ] during each stride . Time intervals , , ,  refer to the zero-velocity update regions. 

For each interval [ , , , ] having a length greater 
than 20 samples, we consider partitions  of [ , , , ] into segments [ , , , ] of a length varying 
from 10 samples to the length of [ , , , ], with an 
overlap of 5 samples (see Figure 2). Given the 
sampling frequency of 200 Hz, a sample 
corresponds here to 5 milliseconds. For a given 
partition , we calculate the variance of the vertical 
heel acceleration signal in all associated segments 
and determine the segment having the minimum 
variance value, denoted by [ , , , ]. The midpoint 

of [ , , , ] is denoted by . 

Considering a given , , ,  − having a length 
greater than 20 samples − for stride , we emphasize 
that we obtain a set of points  that are candidates 
to be zero-velocity update points and not just one 
zero-velocity update point as reported in the 

literature (e.g., Mariani et al., 2010; Rebula et al., 
2013). Initial conditions are then updated at these 
points for each stride  and for each partition . 

For each interval [ , , , ] having a length strictly 
less than 20 samples, we consider the midpoint of [ , , , ] as a zero-velocity update point to be added 
to the list of points . 

The extraction algorithm relies on successive 
integrations in intervals [ , ]. For each stride  
and for each partition , we estimate the inclination 
of the foot in the sagittal plane, , by integrating 
the angular velocity in y-axis  (i.e., the yaw) in 
the time interval [ , ]. The drift of this 
integration is modeled as a straight line between  
and , and is subtracted from  to minimize this 
drift and to ensure the initial conditions of this 
integration: = ,  and  = , . 

Initial conditions ,  and ,  correspond to the 
inclination of the foot during the flat phases [ , , , ] and , , , , respectively. We use 
the accelerometer as an inclinometer in these flat 
phases to determine ,  as the mean value of tan ( / ) in [ , , , ], and ,  as the mean 

value of tan ( / ) in [ , , , ]. 
This is followed by a projection of the 

acceleration on the horizontal axis of the lab 
reference frame,	 = a 	cos + a 	sin . We 
obtain the horizontal velocity  by integrating  in [ , ]. Again, the drift of this integration is 
modeled as a straight line between  and , and 
is subtracted from  to minimize this drift and to 
ensure the initial conditions of this integration: = 0 m/s and = 0 m/s for each  
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Table 1: Mean and standard deviation (STD) of SLs, SVs, and cadence for each volunteer during slow (S), normal (N), and 
fast (F) walking speed conditions with the associated mean, STD, minimum (Min) and maximum (Max) values of the flat 
phase length (corresponding to the number of samples of 5 milliseconds). 

 

SL (cm) SV (m/s) Cadence Flat phase length 

Mean (STD) Mean (STD)  Mean (STD)     Min – Max 

Volunteer 1 

S 105.7 (8.3) 0.675 (0.069) 0.64 47 (10) 30 – 94 

N 118.8 (7.4) 0.906 (0.054) 0.76 34 (10) 21 – 72 

F 144.8 (7.2) 1.357 (0.078) 0.94 23 (6) 14 – 59 

Volunteer 2 

S 119.4 (7.1) 0.731 (0.045) 0.61 52 (9) 32 – 84 

N 161.0 (7.1) 1.402 (0.073) 0.87 21 (7) 13 – 44 

F 201.2 (7.7) 2.252 (0.103) 1.12 12 (2)   6 – 24 

Volunteer 3 

S 106.6 (11.7) 0.618 (0.138) 0.58 58 (19) 12 – 105 

N 141.3 (5.2) 1.210 (0.069) 0.86 37 (6) 13 – 80 

F 186.9 (7.9) 2.725 (0.188) 1.46 9 (2)   4 – 16 

 

and . The horizontal position of the heel, , is 
obtained by integrating  in [ , ], for each  
and . 

Finally, the stride length value of each stride , 
, is obtained by averaging all ( ) found for . 

For each stride , the stride velocity  is calculated 
as /( − ). The average values of  and 

 are thus estimated as the mean of  and , 
respectively. Moreover, the cadence is calculated as 
the average of 1/( − ); this average 
corresponds to the average number of strides 
performed during one second. 

2.3 Concurrent Validation and 
Evaluation Methods 

We extracted reference spatial gait parameters from 
the kinematic 3D Codamotion system to validate 
concurrently, stride-to-stride, those extracted using 
our algorithm, namely: (1) individual SLs, (2) 
individual SVs, (3) the average of SL, (4) the 
average of SV, and (5) the cadence. 

Prior calculating these reference parameters, we 
extracted reference HSs from measured heel 
coordinates using the kinematic method reported in 
(Boutaayamou et al., 2014). We extracted then 
reference individual SLs from the horizontal heel 
position signal. For each stride i, reference 
individual SVs are determined as /( −). Reference average values of  and  are 
thus estimated as the mean of  and , 
respectively. Reference cadence is calculated as the 
average of 1/( − ). 

We evaluated the level of agreement between 
our method and the reference method in the 
extraction of spatial gait parameters by quantifying  
• The mean and standard deviation (STD) of 

differences and relative differences, 
• The mean and STD of absolute differences and 

relative absolute differences, 
• The root-mean-square (RMS) of differences and 

relative differences, 
for (1) individual SLs, (2) individual SVs, (3) 
averages of SL, (4) averages of SV, and (5) the 
cadence. The extraction accuracy and precision are 
given by the mean and STD of differences, 
respectively. 

3 RESULTS 

In this work, we focused on the results of gait tests 
performed at speeds less than 11 km/h. We thus 
excluded the last four fast walking tests of 
volunteer 3 who walked at speeds ranging from 
11.262 to 12.475 km/h. 

A total of 551 gait cycles/strides – performed at 
speeds less than 11 km/h – have been synchronously 
recorded by both IMU-based system and reference 
system. These strides have been obtained during 
slow, normal, and fast walking conditions in young 
and healthy volunteers with:  
• Mean (STD) of SL = 110.8 cm (6.0 cm), mean 

(STD) of SV = 0.675 m/s (0.051 m/s), and 
cadence = 0.61 strides/s in slow walking 
condition (n = 172 strides),  
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Table 2: Concurrent, stride-to-stride, validation results of the quantification of individual SLs and SVs, and averages of SL 
and SV using our method (IMU) and the reference method (Ref) during slow (S), normal (N), fast (F) walking speed 
conditions in young and healthy volunteers. These results are given as mean and standard deviation (STD) of differences 
and relative differences, mean and STD of absolute differences (Abs) and relative absolute differences, and root-mean-
square (RMS) of differences and relative differences. 

 Individual SLs and SVs(a) Averages of SL and SV(b) 

 Differences(c): 
SL (cm); SV(cm/s) 

Relative 
differences(c) (%) 

Differences:  
SL (cm); SV(cm/s) 

Relative  
differences (%) 

 Mean       Abs     RMS 
 (STD)    (STD)    

Mean 
(STD) 

Abs 
(STD)

RMS Mean 
(STD) 

Abs 
(STD)

RMS Mean 
(STD) 

Abs 
(STD) 

RMS

SL 

S 
0.0 

(4.7) 
3.7 

(2.8) 
4.6 −0.1 

(4.2) 
3.4 

(2.6) 
4.2 −0.1 

(2.3)  
1.9 

(1.3) 
2.2  −0.1 

(2.0)  
1.7 

(1.1)  
2.0 

N 
−0.7 
(4.4) 

3.5 
(2.7) 

4.4 −0.5 
(3.2) 

2.5 
(2.1) 

3.3 −0.7 
(1.2)  

1.0 
(0.9) 

1.3 −0.5 
(0.8)  

0.7 
(0.6)  

0.9 

F 
−5.8 
(5.8) 

6.8 
(4.6) 

8.2 −3.3 
(3.0) 

3.8 
(2.3) 

4.4 −5.6 
(1.4)  

5.6 
(1.4) 

5.8 −3.2 
(0.9)  

3.2 
(0.9)  

3.3 

SV 

S 
0.0 

(2.9) 
2.3 

(1.8) 
2.9 −0.1 

(4.5) 
3.5 

(2.8) 
4.4 0.0  

(1.3)  
1.1 

(0.7) 
1.3 −0.1 

(2.0)  
1.6 

(1.1)  
1.9 

N 
−0.7 
(3.8) 

3.0 
(2.4) 

3.8 −0.6 
(3.3) 

2.6 
(2.2) 

3.4 −0.7 
(0.9)  

0.9 
(0.7) 

1.1 −0.6 
(0.8)  

0.7 
(0.6)  

0.9 

F 
−6.7 
(6.7) 

7.7 
(5.4) 

9.4 −3.5 
(3.1) 

4.0 
(2.4) 

4.7 −6.4 
(1.8)  

6.4 
(1.8) 

6.7 −3.4 
(1.0)  

3.4 
(1.0)  

3.5 

(a) Total number of individual strides = 551, with n=172, 193, and 186 strides, for S, N, and F, respectively. 
(b) Total number of gait tests = 41, with n=15, 15, and 11 averages, for S, N, and F, respectively. 
(c) The differences and relative differences are defined here as IMU−Ref and 100 × (IMU−Ref)/Ref, respectively. 

Table 3: Results of the comparison between global average values (STD) of SL and SV, and the cadence obtained by our 
IMU-based system and those obtained by the reference system. 

  
IMU-based system Reference system Mean differences Mean relative absolute 

differences (%) 

SL (cm) 

S 110.7 (7.4) 110.8 (6.0) −0.1 0.05 

N 140.3 (17.9) 140.9 (17.7) −0.7 0.46 

F 174.2 (29.0) 179.8 (29.2) −5.6 3.12 

SV (m/s) 

S 0.675 (0.061) 0.675 (0.051)   0.000 0.02 

N 1.172 (0.213) 1.179 (0.212) −0.007 0.57 

F 1.886 (0.533) 1.950 (0.543) −0.064 3.30 

Cadence 
(strides/s) 

S 0.61 (0.04) 0.61 (0.04) −0.001 0.09 
N 0.83 (0.05) 0.83 (0.05) −0.001 0.13 
F 1.07 (0.16) 1.07 (0.16) −0.002 0.22 

 

 
• Mean (STD) of SL = 140.9 cm (17.7 cm), mean 

(STD) of SV = 1.179 cm/s (0.212 cm/s), and 
cadence = 0.83 strides/s in normal walking 
condition (n = 193 strides),  

• Mean (STD) of SL = 179.8 cm (29.2 cm), mean 
(STD) of SV = 1.950 cm/s (0.543 cm/s), and 

cadence = 1.07 strides/s in fast walking 
condition (n = 186 strides). 
Table 1 provides spatial gait parameter values 

for each volunteers, with the associated values of the 
flat phase length during these three walking speed 
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conditions. A flat phase length corresponds to the 
number of samples of 5 milliseconds. 

Tables 2 shows the concurrent, stride-to-stride, 
validation results of the extraction of individual SLs 
and SVs during these three walking speed conditions. 
These results correspond to the application of the 
proposed adaptive zero-velocity update region 
method to the vertical heel acceleration signal. 

The accuracy (precision) of the extraction of 
individual SLs was 0.0 cm (4.7 cm), −0.7 cm 
(4.4 cm), and −5.8 cm (5.8 cm) during slow, normal, 
and fats walking condition, respectively, 
corresponding to −0.1 % (4.2 %), −0.5 % (3.2 %), 
and −3.3 % (3.0 %) of the respective mean SL. 

The accuracy (precision) of the extraction of 
individual SVs was 0.0 cm/s (2.9 cm/s), −0.7 cm/s 
(3.8 cm/s), and −6.7 cm/s (6.7 cm/s) during slow, 
normal, and fats walking condition, respectively, 
corresponding to −0.1 % (4.5 %), −0.6 % (3.3 %), 
and −3.5 % (3.1 %) of the respective mean SV. 

Moreover, individual SLs could be quantified 
with a mean (STD) of absolute differences of 3.7 cm 
(2.8 cm), 3.5 cm (2.7 cm), and 6.8 cm (4.6 cm) for 
slow, normal, and fast walking conditions, 
respectively, corresponding to 3.4 % (2.6 %), 2.5 % 
(2.1 %), and 3.8 % (2.3 %) of the respective mean SL. 

Individual SVs could be also quantified with a 
mean (STD) of absolute differences of 2.3 cm/s 
(1.8 cm/s), 3.0 cm/s (2.4 cm/s), and 7.7 cm/s 
(5.4 cm/s) for slow, normal, and fast walking 
conditions, respectively, corresponding to 3.5 % 
(2.8 %), 2.6  % (2.2 %), and 4.0 % (2.4 %) of the 
respective mean SV. 

RMS differences between SLs quantified by both 
MU-based system and reference system were 4.6 cm, 
4.4 cm, and 8.2 cm for slow, normal, and fast walking 
conditions, respectively, corresponding to 4.2 %, 
3.3 %, and 4.4 % of the respective mean SL. 

RMS differences between SVs quantified by 
both MU-based system and reference system were 
2.9 cm/s, 3.8 cm/s, and 9.4 cm/s for slow, normal, 
and fast walking conditions, respectively, 
corresponding to 4.4 %, 3.4 %, and 4.7 % of the 
respective mean SV. 

Table 2 provides also quantitative values of the 
averages of SL and SV obtained for the 41 gait tests 
including 15, 15, and 11 tests in slow, normal, and 
fast walking conditions, respectively. As mentioned 
above, we emphasize that we considered the results 
of 11 fast walking tests instead of 15 ones since we 
excluded four gait tests performed – by volunteer 3 – 
at speeds greater than 11 km/h; such walking speeds 
are not the focus of this work. 

Tables 3 shows the validation results of the 
quantification of global average values of SL and 
SV, and the cadence during the three walking speed 
conditions in young and healthy volunteers. We 
quantified the average value of SL with a mean of 
differences (mean of relative absolute differences) of 
−0.1 cm (0.05 %), −0.7 cm (0.46 %), and −5.6 cm 
(3.12 %) for slow, normal, and fast walking 
conditions, respectively. We quantified also the 
average value of SV with a mean of differences 
(mean of relative absolute differences) of 0.000 m/s 
(0.02 %), −0.007 m/s (0.57 %), and −0.064 m/s 
(3.30 %) for slow, normal, and fast walking 
conditions, respectively. In addition, we quantified 
the cadence with a mean of differences (mean of 
relative absolute differences) of −0.001 strides/s 
(0.09 %), −0.001 strides/s (0.13 %), and −0.002 
strides/s (0.22 %) for slow, normal, and fast walking 
conditions, respectively. 

4 DISCUSSION 

We have presented a new adaptive method that 
robustly detects zero-velocity update regions for 
accurately and precisely quantifying (1) individual 
SLs, (2) individual SVs, (3) the average of SL, (4) 
the average of SV, and (5) the cadence during slow, 
normal, and fast overground walking conditions in 
young and healthy people. Data involved in this 
quantification are the measurements obtained with 
only one IMU attached on a regular shoe at the level 
of the heel. This adaptive method aimed to reduce 
the integration drifts across consecutive strides and 
to improve the accuracy and precision in the spatial 
gait parameter estimation. 

A concurrent, stride-to-stride, validation of the 
proposed algorithm has been carried out using 
reference spatial gait parameters obtained from a 
kinematic reference system (used as gold standard). 
The experimental results show a good agreement 
between our algorithm and the reference, and 
demonstrate a fairly accurate and precise 
quantification of the spatial gait parameters. 

The detection accuracy ± precision of individual 
SLs using the present algorithm ranged from 
−0.7 ± 4.4 cm to 0.0 ± 4.7 cm for walking speeds 
ranging from 2.43 ± 0.25 km/h to 5.05 ± 0.26 km/h, 
corresponding to a range of −0.5 ± 3.2 % to 
−0.1 ± 4.2 % of the respective mean SL. Moreover, 
we quantified individual SLs with an 
accuracy ± precision of −5.8 ± 5.8 cm for walking 
speeds ranging from 4.88 ± 0.28 km/h to 
9.81 ± 0.68 km/h. 
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In addition, the detection accuracy± precision of 
individual SVs using the present algorithm ranged 
from −0.7 ± 3.8 cm/s to 0.0 ± 2.9 cm/s for walking 
speeds ranging from 2.43 ± 0.25 km/h to 
5.05 ± 0.26 km/h, corresponding to a range of 
−0.6 ± 3.3 % to −0.1 ± 4.5 % of the respective mean 
SV. Moreover, we quantified individual SVs with an 
accuracy± precision of −6.7 ± 6.7 cm/s for walking 
speeds ranging from 4.88 ± 0.28 km/h to 
9.81 ± 0.68 km/h, corresponding to −3.5 ± 3.1 % of 
the respective mean SV. 

We compared theses obtained results to 
previously published results for the estimation of SL 
and SV during each walking speed condition in 
young and healthy volunteers as follows: 

• Slow walking speed: compared to RMS values 
reported in (Song et al., 2018) (i.e., 8.2 cm for 
SL, 5.9 cm/s for SV), the present method 
improves these values by approximatively a 
factor of 2 (i.e., 4.6 cm for SL, 2.9 cm/s for SV), 

• Normal walking speed: compared to the results 
reported in (Mariani et al., 2010) (i.e., 2.4 ± 7.5 
cm (2.1 ± 6.8%) for SL; 2.2 ± 6.2 cm/s 
(2.4 ± 6.1 %) for SV), in (Aminian et al., 2002) 
(i.e., RMS = 7.cm (7.2%) for SL and 
RMS = 6 cm/s (6.7 %) for SV), in (Rampp et al., 
2015), the accuracy, precision and RMS are 
improved by the present method (i.e., 
−0.7 ± 4.4 cm (−0.5 ± 3.2%) and RMS = 4.4 cm 
(3.3 %) for SL; −0.7 ± 3.8 cm/s (−0.6 ± 3.3 %) 
and RMS = 3.8 cm/s (3.4 %) for SV). 

• Fast walking speed: compared to RMS values 
reported in (Song et al., 2018) (i.e., 21.4 cm for 
SL and 12.9 cm/s for SV), the present method 
improves these values (i.e., 8.2 cm for SL and 
9.4 cm/s for SV). 

Compared to commercial trunk accelerometer 
systems (e.g., Auvinet et al., 1999), which only 
provide global gait features, the proposed system 
(hardware and algorithm) is capable to extract stride-
to-stride spatial gait parameters. The stride-to-stride 
extraction may be a huge advantage in the gait 
analysis of some specific population such as 
Parkinson’s disease patients who experience 
freezing of gait, a sudden and brief episodic 
alteration of strides regulation. 

We emphasize that the proposed IMU-based 
hardware system can time-synchronously record 
signals from up to four IMU sensors. The proposed 
algorithm can thus quantify the left/right step length, 
the symmetry, and the regularity of the spatial gait 
parameters. 

The proposed IMU-based system can measure 
spatial gait parameters in a very large number of 
strides without the need of controlled laboratory 
conditions. We believe that this novel IMU-based 
system offers perspectives for use in a routine 
clinical practice to deal with abnormal gait (e.g., gait 
of patients with Parkinson’s disease). 

5 CONCLUSION 

We presented a new adaptive method that robustly 
detects zero-velocity regions for accurately and 
precisely quantifying (1) individual SLs, (2) 
individual SVs, (3) the average of SL, (4) the 
average of SV, and (5) the cadence during slow, 
normal, and fast overground walking conditions in 
young and healthy people. This method reduces the 
number of foot-mounted IMUs for estimating spatial 
gait parameters. The advantages of this method can 
be summarized as follows: 

• Only two IMUs are required, i.e., one for each 
shoe at the level of the heel. This contributes to a 
simplification of the proposed wearable IMU-
based system, thus resulting in reducing the costs 
and time needed to attach the system on the body. 

• This method is concurrently validated for 
consecutive strides during slow, normal, and fast 
overground walking conditions. The validation 
used reference spatial gait parameters provided 
by a kinematic system (used as gold standard). 

• Compared to previous studies, the proposed 
method improves the accuracy, precision and 
RMS of the estimation of SLs and SVs during 
slow, normal, and fast overground walking 
conditions in young and healthy people. 

The proposed method paves the way for an 
objective quantification of spatial gait parameters in 
routine clinical practice. This opens new perspectives 
for use in clinical contexts to deal with abnormal gait 
(e.g., gait of patients with Parkinson’s disease). 
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