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Abstract: View-invariant action recognition using a single RGB camera represents a very challenging topic due to the
lack of 3D information in RGB images. Lately, the recent advances in deep learning made it possible to
extract a 3D skeleton from a single RGB image. Taking advantage of this impressive progress, we propose a
simple framework for fast and view-invariant action recognition using a single RGB camera. The proposed
pipeline can be seen as the association of two key steps. The first step is the estimation of a 3D skeleton from
a single RGB image using a CNN-based pose estimator such as VNect. The second one aims at computing
view-invariant skeleton-based features based on the estimated 3D skeletons. Experiments are conducted on
two well-known benchmarks, namely, IXMAS and Northwestern-UCLA datasets. The obtained results prove
the validity of our concept, which suggests a new way to address the challenge of RGB-based view-invariant
action recognition.

1 INTRODUCTION

Understanding human motion from a video repre-
sents a fundamental research topic in computer vi-
sion due to the diversity of possible applications
such as video surveillance (Baptista et al., 2018),
Human-Computer Interaction (Song et al., 2012), co-
aching (Lea et al., 2015), etc. A huge number of met-
hods have been proposed and have proven their ability
to efficiently recognize human actions as reflected in
these two surveys (Aggarwal and Xia, 2014; Poppe,
2010). Usually, it is important to note that classical
approaches assume ideal conditions. For example,
in (Wang et al., 2011; Wang and Schmid, 2013; Fer-
nando et al., 2015), the subject performing the action
is considered to be facing the camera. However, in a
real-world scenario, camera positioning as well as hu-
man body orientation can vary, and consequently af-
fect the recognition task if the used method does not
take into account the viewpoint variability. In fact,
viewpoint invariance represents one of the most im-
portant challenges in human action recognition. Sol-
ving view-invariance requires relating a given acquisi-
tion of the subject to its 3D representation. While it is
a simple task with RGB-D cameras, it is less obvious
using RGB cameras, which only provide 2D informa-
tion, and no explicit 3D. The development of low-cost

RGB-D cameras has made possible the real-time ex-
traction of 3D information via depth maps and skele-
tons. This has significantly boosted the research on
viewpoint invariant action recognition (Haque et al.,
2016; Hsu et al., 2016; Xia et al., 2012). However, the
disadvantages of RGB-D based approaches are tied to
RGB-D sensors. First, the estimation of an accepta-
ble depth map and skeleton is limited within a specific
range. Second, RGB-D cameras show a high sensiti-
vity to external lighting conditions, making outdoor
applications potentially challenging. Both of these
reasons restrict their applicability in real-world sce-
narios such as in video surveillance.
There is therefore a need to solve the view-invariance
problem using RGB cameras. Among the most
successful state-of-the-art approaches are methods
based on knowledge transfer (Gupta et al., 2014;
Rahmani and Mian, 2015). To ensure view-
invariance, these methods find a view-independent la-
tent space where the features are mapped and then
compared. To achieve that, they use 3D synthetic
data computed by fitting cylinders to real data cap-
tured with a Motion Capture (MoCap) system, and by
projecting them to various viewpoints.

The aforementioned approaches make use of tra-
jectory shape descriptors (Wang et al., 2011). These
descriptors are, by definition, not view-invariant. In-

Ghorbel, E., Papadopoulos, K., Baptista, R., Pathak, H., Demisse, G., Aouada, D. and Ottersten, B.
A View-invariant Framework for Fast Skeleton-based Action Recognition using a Single RGB Camera.
DOI: 10.5220/0007524405730582
In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), pages 573-582
ISBN: 978-989-758-354-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

573



deed, motion shape in 2D can only be described as
points on the image grid; therefore, any radial mo-
tion information is mostly lost. In addition, some
actions include similar motion patterns from different
body parts, which can negatively impact the classifi-
cation (Papadopoulos et al., 2017).

In this paper, instead of relying on a set of 2D pro-
jections of synthetic data, we propose to augment 2D
data by a third component. Motivated by the very re-
cent encouraging progress on pose estimation from
a single RGB image (Pavlakos et al., 2017; Mehta
et al., 2017; Yang et al., 2018), we introduce a no-
vel way of approaching the viewpoint invariant action
recognition problem using a single 2D or RGB ca-
mera. Our approach consists in estimating human
3D poses from 2D sequences, then directly using this
3D information with a robust 3D skeleton descrip-
tor. Using 3D skeleton-based descriptors makes the
approach fully view-invariant, since they involve 3D
points for describing the body structure. Such des-
criptors have been proven robust in multiple scena-
rios (Xia et al., 2012; Yang and Tian, 2012). The
main advantages of this framework are its simplicity
and its low computation time thanks to the use of
a high-level representation. In order to validate it,
we propose to use the Convolutional Neural Network
(CNN)-based approach referred to VNect for the esti-
mation of 3D skeletons from 2D videos (Mehta et al.,
2017). The VNect system was selected over rela-
ted ones (Pavlakos et al., 2017; Mehta et al., 2017;
Yang et al., 2018), because of its real-time perfor-
mance and its ability to ensure temporal coherence.
Two different view-invariant skeleton-based descrip-
tors are used to test this framework, namely, Kinema-
tic Spline Curves (KSC) (Ghorbel et al., 2018; Ghor-
bel et al., 2016) and Lie Algebra Representation of
body-Parts (LARP) (Vemulapalli et al., 2014). Fi-
nally, the experiments are conducted on two diffe-
rent cross-view action recognition benchmarks: the
Northwestern-UCLA (Wang et al., 2014) and the IX-
MAS (Weinland et al., 2006) datasets.

The main contributions of this paper may be sum-
marized as follows:

• A novel framework for fast view-invariant human
action recognition using a single RGB camera.

• Comparison of two different view-invariant
skeleton-based descriptors integrated into the pro-
posed framework.

• Extensive experimental evaluation on two well-
known datasets and a deep analysis of the obtai-
ned results.

The remainder of the paper is organized as follows:
In Section 2, relevant state-of-the-art approaches are

summarized. Section 3 presents the proposed frame-
work and details the used skeleton-based descriptors.
The experimental evaluation is described in Section 4,
along with a thorough discussion of the results. Fi-
nally, Section 5 concludes this work and presents di-
rections for future works.

2 RELATED WORK

As mentioned in Section 1, invariance to viewpoint
represents a major challenge in action recognition.
Viewpoint invariant human action recognition can be
categorized into two main classes: RGB-D and RGB
based approaches as overviewed below.An extensive
review may be found in the recent survey by Trong et
al. (Trong et al., 2017).

2.1 RGB-D-based Methods

The emergence of RGB-D cameras has importantly
facilitated the task of viewpoint invariant action re-
cognition thanks to the availability of 3D informa-
tion (Hsu et al., 2016; Rahmani et al., 2014). Indeed,
RGB-D cameras provide depth images that may be
directly used for defining view-invariant descriptors.

Depth images only provide partial 3D informa-
tion. In the context of action recognition, human 3D
skeletons estimated from depth images are considered
to be a more complete high level 3D representation,
which is view-invariant by nature. In addition, with
the rapid development of dedicated algorithms to es-
timate skeletons from depth maps such as (Shotton
et al., 2013), numerous view-invariant skeleton-based
approaches have been proposed. One of the pioneer-
ing works has been introduced in (Xia et al., 2012),
where a descriptor encoding a histogram of 3D joints
was proposed. Nevertheless, since the absolute posi-
tion of joints is used, these features are sensitive to
anthropometric variability. To resolve this issue and
preserve view-invariance, some approaches proposed
to describe actions using the distance between joints.
For instance, in (Yang and Tian, 2012), actions are de-
picted using a novel descriptor called eigenjoints. The
latter is computed by applying Principal Component
Analysis (PCA) on the spatial and temporal Euclidean
distances between joints.
To cope with viewpoint variability and increase accu-
racy, other approaches have modeled human actions
using more sophisticated geometric tools. In (Evan-
gelidis et al., 2014), authors proposed a novel view-
invariant representation by introducing a descriptor
based on the relative position of joint quadruples.
Also, Vemulapalli et al. suggested a new representa-

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

574



tion called Lie Algebra Representation of body-Parts
(LARP) by computing the geometric transformation
between each pair of skeleton body-parts (Vemula-
palli et al., 2014).

The presented descriptors are implicitly unaf-
fected by the viewpoint variability as they are defined
using invariant features such as the distance between
joint, angles, transformation matrices, etc. Neverthe-
less, since the 3D skeleton contains the full 3D infor-
mation, an alignment pre-processing can be simply
applied before undertaking the descriptor computa-
tion. For example, we cite the work of (Ghorbel et al.,
2018), where the motion has been modeled by compu-
ting and interpolating kinematic features of joints. In
this case, the Kinematic Spline Curves (KSC) descrip-
tor is not view-invariant by nature; thus, the skeletons
are initially transferred to a canonical pose.

Although these representations have shown their
effectiveness in terms of computation time and accu-
racy, they are hardly applicable in various scenarios,
since the skeletons are estimated using RGB-D came-
ras. Indeed, the skeleton estimation accuracy decays
in the presence of a non-frontal view (Rahmani et al.,
2016) due to self-occlusions. Furthermore, as men-
tioned in Section 1, RGB-D cameras require specific
conditions to optimally work such as outdoor environ-
ment, closeness to the camera, moderate illumination,
etc. As a result, RGB-D based human action recogni-
tion has limited applications.

2.2 RGB-based Methods

Very recent efforts have been made to propose view-
invariant human action recognition methods using a
monocular RGB camera. However, the challenge is
that RGB images do not explicitly contain 3D infor-
mation and consequently traditional descriptors, such
as the Histogram of Oriented Gradients (HOG) (Dalal
and Triggs, 2005) and Motion Boundary Histograms
(MBH) (Dalal et al., 2006), are highly affected by the
introduction of additional views (Presti and Cascia,
2016). Thus, some RGB-based methods have been
specifically designed to overcome viewpoint varia-
tion (Gupta et al., 2014; Li et al., 2012; Zhang et al.,
2013; Wang et al., 2014; Li and Zickler, 2012; Rah-
mani and Mian, 2015; Weinland et al., 2006; Lv and
Nevatia, 2007).

One way of approaching the problem is to match
one viewpoint to another using geometric transforma-
tion as in (Weinland et al., 2007; Lv and Nevatia,
2007). However, this category of methods which are
usually based on 3D examplars require the use of la-
beled multi-view data. Another way consists in de-
signing spatio-temporal features which are insensitive

to viewpoint variation (Li et al., 2012; Parameswa-
ran and Chellappa, 2006; Rao et al., 2002). However,
their discriminative power has been shown to be limi-
ted (Rahmani and Mian, 2015).

The most popular RGB-based approaches are kno-
wledge transfer-based methods. The idea of know-
ledge transfer for view-invariant action recognition is
to map features from any view to a canonical one
by modeling the statistical properties between them.
For instance, Gupta et al.introduced a novel know-
ledge transfer approach using a collection of data
containing unlabeled MoCap sequences (Gupta et al.,
2014). Dense motion trajectories from RGB sequen-
ces are matched to projections of 3D trajectories ge-
nerated from synthetic data (cylinders fitted to Mo-
Cap data). However, the number of these projections
is finite, which means that not every viewing angle is
represented. In addition, it is highly possible that dif-
ferent but similar-looking (from a specific angle) 2D
motion patterns are incorrectly matched, since the 2D
descriptors used in this context are view-dependent.

In (Rahmani and Mian, 2015), dense motion tra-
jectories (Gupta et al., 2014) are computed using synt-
hetic data similar to (Gupta et al., 2014), and repre-
sented using a codebook. A histogram is then built
in order to be used as a final descriptor. This parti-
cular method is robust even when the testing view is
completely different from the training views. This is
due to the fact that the introduced Non-Linear Trans-
fer Model (NKTM) allows the approximation of non-
linear transformations. Despite their efficiency, the
two methods proposed in (Rahmani and Mian, 2015)
and in (Gupta et al., 2014) rely on 2D-based descrip-
tors that are not invariant to viewpoint changes.

3 PROPOSED FRAMEWORK
FOR RGB-BASED
VIEW-INVARIANT ACTION
RECOGNITION

In this section, we present the proposed framework
to perform a fast view-invariant human recognition
from a single RGB camera. Inspired by the advan-
ces in human pose estimation and the performance
of skeleton-based approaches, we propose to first ge-
nerate 3D human skeletons from a monocular RGB
camera based on the recently introduced CNN-based
approaches. Then, the extracted skeletons are used to
compute skeleton-based features. Figure 1 illustrates
the proposed pipeline. In what follows, we detail the
different steps of this pipeline.
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Figure 1: Overview of the proposed pipeline for fast and view-invariant human action recognition from a monocular RGB
image: in both the training phase and the testing phase, skeletons are extracted from RGB images using the heatmaps and
locations maps generated by the VNect algorithm (Mehta et al., 2017). Then, based on the estimated skeleton, skeleton
features are computed e.g., LARP and KSC. Finally, in order to train a model of classification and use it to recognize actions,
linear SVM is used.

3.1 Pose Estimation from a Monocular
RGB Image

Given a sequence of RGB images
R = {R1, · · · ,Rt , · · · ,RN}, where N is the total
number of frames, the goal of a pose estimation
algorithm f (·) is to extract a 3D skeleton composed
of n joints. We denote the sequence of extracted
skeletons by P(t) = [P1(t),P2(t), ...,Pn(t)] such that

P(t) = f (Rt), (1)

where f (·) is a function that maps a single RGB
image to an estimated representation of the human
pose in three dimensions and where t ∈ [1, · · · ,N] de-
notes the frame index. Lately, with the recent success
of Deep Neural Networks, numerous methods have
been proposed to estimate 3D skeletons from a single
RGB image (Bogo et al., 2016; Tekin et al., 2016).
However, the resulting 3D estimated skeletons are
neither temporally stable nor computed online (Mehta
et al., 2017). Meanwhile, VNect proposed in (Mehta
et al., 2017) addresses both of these issues effectively.

As in (Mehta et al., 2016; Pavlakos et al., 2017),
VNect makes use of CNN models. However, authors
select a smaller architecture, Residual Netoworks
(ResNet) to achieve real-time performance. More im-
portantly, it is based on a network architecture with
fewer parameters, hence inference can be done in a
computationally efficient manner. This CNN pose re-
gression allows the estimation of 2D and 3D skeletons
using a monocular RGB camera. To that aim, for each
joint j, the network is trained to estimate a 2D heat-
map H j of body parts along with joint location maps
in each of the three dimensions, which we denote as

X j,Y j,Z j. The position of each joint j is therefore
estimated by extracting the maximum values from the
location maps of the associated heatmap H j.

The network is trained by considering the weigh-
ted L2 norm difference between estimated joint loca-
tion and the ground truth– the cost is summed over
each dimension. For instance, the loss of predicting
location x j, is given as

Loss = ‖HGT
j � (X j−XGT

j )‖2, (2)

where GT refers to the Ground Truth and � indicates
the Hadmord product.
The network is pre-trained using the annotated 3D and
2D human datasets (Ionescu et al., 2014; Mehta et al.,
2016; Andriluka et al., 2014).

In order to ensure temporal coherence, the estima-
ted joint positions are later smoothed. This is of great
importance in our case since our goal is to recognize
actions.

3.2 Feature Extraction

Using the estimated skeletons, we propose to in-
dependently integrate two different view-invariant
skeleton-based methods: LARP (Vemulapalli et al.,
2014) and KSC (Ghorbel et al., 2018). In (Vemula-
palli et al., 2014), the used features are view-invariant
by nature, while in (Ghorbel et al., 2018), a skeleton
alignment pre-processing is realized. In the following
two subsections, we describe both LARP and KSC.
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3.2.1 Lie Algebra Representation of Body-Parts
(LARP)

In (Vemulapalli et al., 2014), an efficient skeleton-
based action recognition approach is introduced. The
approach is based on describing the geometric rela-
tionship between different coupled body segments.
Let S(t) = (P(t),E(t)) be a set of skeleton sequen-
ces P(t) with n joints, and m rigid-oriented body
parts E(t). The skeleton sequence are described
in (1), while the rigid-body parts are defined as E(t) =
{e1(t),e2(t), · · · ,em(t)}. Each body part e1(t) is as-
signed a 3D local coordinate system. Then, between
each couple of local coordinate systems attached to
the body-parts ei(t) and e j(t), a 3D rigid transforma-
tion matrix Ti, j(t) is defined as:

Ti, j(t) =
[

Qi, j(t) ti, j(t)
0 1

]
, (3)

where Qm,n is a 3× 3 rotation matrix and ti, j(t) a
three-dimensional translation vector.

To completely encode the geometric relation be-
tween em and en, both Tm,n and Tn,m are es-
timated. Subsequently, a sequence of skele-
tons varying over time is represented as C(t) =
[T1,2(t),T2,1(t), ...,Tn,m(t),Tm,n(t)].The set of rigid
transformation matrices define a direct product of
non-Euclidean observation space called the Special
Euclidean group SE(3). As a result, each represen-
tation of a skeleton is a point and skeleton sequence
is a curve in SE(3)2C2

m , with C2
m denoting the combi-

nation operation. Classification of the observed cur-
ves is done on the tangent space of the identity ma-
trix, using Support Vector Machine (SVM) algorithm.
Note that, a preliminary point matching is necessary
to achieve temporal alignment which, in (Vemulapalli
et al., 2014), is achieved via dynamic time warping
and Fourier temporal pyramid representation. The use
of 3D rigid transformation matrices between body-
parts as features ensures the view-invariance, since
they are independent from the view of acquisition.

3.2.2 Kinematic Spline Curves (KSC)

This second skeleton-based representation has been
introduced in (Ghorbel et al., 2018) and is mainly
characterized by its compromise between computa-
tional latency and accuracy. To do that, the chosen
components are carefully selected to ensure accuracy
and computational efficiency. The descriptor is based
on the computation of kinematic values, more specifi-
cally joint position P(t), joint velocity V(t) and joint
acceleration A(t).

Figure 2: Frame samples from the Northwestern-UCLA da-
taset: an example is given for each viewpoint V1, V2and V3.

The key idea of this approach is to define a kine-
matic curve of a skeleton sequence as

KF(t) = [P(t),V(t),A(t)]. (4)

Subsequently, a kinematic curve can be reparamete-
rized such that it is invariant to execution rate using
a novel method called Time Variable Replacement
(TVR) (Ghorbel et al., 2018). As its name indicates,
this method consists in changing the variable time by
another variable that is less influenced by the variabi-
lity in execution rate. It be written as

KF(φ(t)) = [P(Φ(t)),V(Φ(t)),A(Φ(t))]. (5)

The new parameter φ is constrained to be bijective,
increasing with respect to t, and have a physical rate-
invariant meaning. In our case, we use the Pose
Motion Signal Energy function proposed in (Ghor-
bel et al., 2018) to define φ. Subsequently, in order
to obtain a meaningful descriptor, the discrete data
point samples KF(φ(t)) are interpolated using a cu-
bic spline interpolation, then, uniformly sampled. Fi-
nally, the classification is carried out using a linear
SVM. It is important to note that the computation of
this descriptor includes also skeleton normalization
and skeleton alignment steps making it respectively
invariant to anthropometric and viewpoint changes.
The alignment is carried out by estimating a transfor-
mation matrix between each skeleton and a canonical
pose.

4 EXPERIMENTS

The proposed pipeline is tested on two different
cross-view human action recognition benchmarks:
the Northwestern-UCLA Multiview Action3D (Wang
et al., 2014) denoted by N-UCLA and the INRIA
Xmas Motion Acquisition Sequences dataset (Rah-
mani and Mian, 2015) denoted by IXMAS.

4.1 Datasets

4.1.1 Northwestern-UCLA Dataset

The Northwestern-UCLA dataset consists of videos
captured by using 3 different Kinect sensors from dif-
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ferent viewpoints. Thus, this dataset contains in total
3 modalities: RGB images, depth maps and skeleton
sequences and includes 10 action classes: pick with
one hand, pick up with two hands, drop trash, walk
around, sit down, stand up, donning, doffing, throw
and carry. Each action class is repeated by 10 sub-
jects from 1 to 6 times. The main challenge of this
dataset is that it contains very similar actions such as
pick with one hand and pick up with two hands. Fi-
gure 2 illustrates examples from this benchmark.

4.1.2 IXMAS Dataset

This dataset is captured using 5 synchronized RGB-
cameras placed in 5 different viewpoints: four from
the side and one from the top of the subject. IXMAS
dataset is constituted from 11 different action catego-
ries: check watch, cross arms, scratch head, sit down,
get up, turn around, walk, wave, punch, kick and pick
up. This dataset is challenging since it contains com-
plex viewpoints leading to self-occlusions. Such vie-
wpoints are illustrated in Figure 4 (top row).

4.2 Experimental Settings and
Implementation Details

All the experiments were run on an i7 Dell Latitude
laptop with 16GB RAM and implemented in Matlab.
For both datasets, we follow the same experimental
protocol used in (Rahmani and Mian, 2015). For the
case of the Northwestern dataset, two viewpoints are
used for the training and the third for the testing. In
total, 3 experiments are performed. Moreover, each
test on IXMAS dataset involves every combination of
viewpoint pairs for training and testing, resulting in
20 experiments in total.

In this work, we consider two types of experi-
ments: VNect+KSC and VNect+LARP. VNect+KSC
refers to our framework combined with the KSC des-
criptor, while VNect+LARP denotes our framework
merged with the LARP descriptor. We compare our
framework with the recent RGB-based methods de-
noted in the rest of the paper by Hanklets (Li et al.,
2012), Dis- criminative Virtual Views (DVV) (Li
and Zickler, 2012), AND-OR Graph (AOG) (Wang
et al., 2014), Continuous Virtual Pat (CVP) (Zhang
et al., 2013), Non-linear Circulant Temporal Enco-
ding (nCTE) (Gupta et al., 2014) and Non-linear
Knowledge Transfer Model (NKTM) (Rahmani and
Mian, 2015).

Table 1: Accuracy of recognition (%) on the Northwestern-
UCLA dataset: We report the accuracy obtained for each
test (when two viewpoints are used for training (Source) and
one viewpoint for testing (Target)) and the average accuracy
for the three tests (Mean).
{Source} | {Target} {1,2}| 3 {1,3}| 2 {2,3}| 1 Mean
Hankelets (Li et al., 2012) 45.2 - - -
dvv1 (Li and Zickler, 2012) 58.5 55.2 39.3 51.0
CVP (Zhang et al., 2013) 60.6 55.8 39.5 52.0
AOG (Wang et al., 2014) 73.3 - - -
nCTE (Gupta et al., 2014) 68.8 68.3 52.1 63.0
NKTM (Rahmani and Mian, 2015) 75.8 73.3 59.1 69.4
VNect+LARP (ours) 70.0 70.5 52.9 64.47
VNect+KSC (ours) 86.29 79.72 66.53 77.51

4.3 Results and Discussion

The results on the Northwestern-UCLA dataset
are reported in Table 1 and prove that our met-
hod (VNect+KSC) outperforms state-of-the-art met-
hods. Indeed, an increase of around 8% compa-
red to the most competitive approach can be no-
ted (NKTM (Rahmani and Mian, 2015)). Moreo-
ver, Figure 3 shows that for almost all action classes,
VNect+KSC outperforms nCTE(Gupta et al., 2014)
and NKTM(Rahmani and Mian, 2015). On the other
hand, despite the fact that VNect+LARP shows a lo-
wer accuracy by 5% compared to NKTM, this appro-
ach stands among the best performing ones, showing
promising results.

The results for the IXMAS dataset are presen-
ted in Tables 2 and 3. Our proposed approach
(VNect+KSC) achieves the third best mean recogni-
tion accuracy, achieving 58.12% (against 72.5% for
NKTM (Rahmani and Mian, 2015) and 67.4% for
NCTE(Gupta et al., 2014)). However, as depicted in
Table 2, for every viewpoint pair, our approach shows
a competitive performance, except for the ones which
include viewpoint V4. For example, tests 2 | 0 and
2 | 3 outperform earlier works and respectively reach
an accuracy of 85.2% and 88.5%, while tests 0 | 4 and
2 | 4 present very low results (respectively 15.5% and
16.4%). This poor performance is the result of er-
roneous and noisy skeleton estimation coming from
the pose estimator. Figure 4 illustrates an example of
the extraction of skeletons from different viewpoints
using VNect. This figure highlights the fact that all
skeletons are visually coherent except for the one ex-
tracted from V4 which represents the top viewpoint.
The presence of self-occlusions in V4 is crucial for
the performance of VNect, since it makes the skeleton
estimation by nature more challenging. Nevertheless,
this constraint can be generalized to other approaches,
affecting their performance, as well. By investigating
more on this question, we discovered that VNect is
not trained on extreme viewpoints such as V4. Thus,
we underline a very interesting research issue to study
in the future.
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Table 2: Accuracy of recognition (%) on the IXMAS dataset: the different tests are detailed. Each time, one viewpoint is used
for training (Source) and another one for testing (Target).
{Source} | {Target} 0| 1 0| 2 0| 3 0| 4 1| 0 1| 2 1| 3 1| 4 2| 0 2| 1 2| 3 2| 4 3| 0 3| 1 3| 2 3| 4 4| 0 4| 1 4| 2 4| 3
Hankelets (Li et al., 2012) 83.7 59.2 57.4 33.6 84.3 61.6 62.8 26.9 62.5 65.2 72.0 60.1 57.1 61.5 71.0 31.2 39.6 32.8 68.1 37.4
DVV (Li and Zickler, 2012) 72.4 13.3 53.0 28.8 64.9 27.9 53.6 21.8 36.4 40.6 41.8 37.3 58.2 58.5 24.2 22.4 30.6 24.9 27.9 24.6
CVP (Zhang et al., 2013) 78.5 19.5 60.4 33.4 67.9 29.8 55.5 27.0 41.0 44.9 47.0 41.0 64.3 62.2 24.3 26.1 34.9 28.2 29.8 27.6
nCTE (Gupta et al., 2014) 94.8 69.1 83.9 39.1 90.6 79.7 79.1 30.6 72.1 86.1 77.3 62.7 82.4 79.7 70.9 37.9 48.8 40.9 70.3 49.4
NKTM (Rahmani and Mian, 2015) 92.7 84.2 83.9 44.2 95.5 77.6 86.1 40.9 82.4 79.4 85.8 71.5 82.4 80.9 82.7 44.2 57.1 48.5 78.8 51.2
VNect+LARP (ours) 46.6 42.1 53.9 9.7 50.6 37.5 47.3 10.0 43.4 33.0 53.6 11.8 51.2 37.8 53.6 9.1 10.9 8.7 10.9 7.9
VNect+KSC (ours) 86.7 80.6 82.4 15.5 91.5 79.4 81.8 15.8 85.2 77.0 88.5 16.4 83.0 77.9 82.4 12.1 28.1 24.8 29.1 24.2

Figure 3: Action recognition accuracy for each action on the
Northwestern-UCLA dataset: comparison of our method
with NKTM(Rahmani and Mian, 2015) and nCTE(Gupta
et al., 2014).

Table 3: Average accuracy of recognition (%) on the IX-
MAS dataset: the first value (Mean with V4) reports the
average of all the tests done, while the second value (Mean
without V4) computes the average of all texts excepting the
ones involving V4.
{Source} | {Target} Mean with V4 Mean without V4

Hankelets (Li et al., 2012) 56.4 61.41
DVV (Li and Zickler, 2012) 38.2 36.2
CVP (Zhang et al., 2013) 42.2 49.60
NCTE (Gupta et al., 2014) 67.4 80.45
NKTM (Rahmani and Mian, 2015) 72.5 84.46
LARP-VNect (ours) 31.50 45.91
KSC-VNect (ours) 58.12 83.03

For this reason, we propose to evaluate the pro-
posed concept by keeping in mind that the current
version of VNect is not adapted yet to the estima-
tion of skeletons from top views. Thus, we compute
the average accuracy by ignoring the tests where V4
has been considered. The results reported in Table 3
show that our approach competes with state-of-the-
art by achieving 83.03% of recognition. It shows the
second highest accuracy after NKTM (Rahmani and
Mian, 2015) approach (reaching 84.46%) with only
1% of difference.

4.3.1 RGB-based Skeletons vs. RGB-D-based
Skeletons

In order to compare the quality of skeletons extracted
from VNect compared to the ones provided by RGB-

Table 4: Accuracy of recognition (%) on the Northwestern
dataset using the KSC descriptor: the performances obtai-
ned when using the skeletons provided by RGB-cameras
and the ones extracted using VNect algorithm are compa-
red. We report the accuracy obtained for each test (when
two viewpoints are used for training and one viewpoint for
testing) and the average accuracy (Mean).

{Source} | {Target} {1,2}| 3 {1,3}| 2 {2,3}| 1 Mean
skeleton-RGB-D 80.5 72.6 61.0 71.1
skeleton-VNect 86.3 79.7 66.5 77.5

D cameras for the task of action recognition, we pro-
pose to compute the KSC descriptor using both the
VNect-generated skeletons and the RGB-D skeletons.

Results obtained on the Northwestern-UCLA da-
taset are reported in Table 4. Skeleton-RGB-D and
skeleton-VNect refer to the results obtained by ap-
plying respectively the KSC descriptor to the skele-
tons provided by the Kinect and the skeletons pro-
vided by the VNect. The reported results show that
action recognition can be more robust using VNect-
generated skeleton sequences. In fact, using VNect
skeletons, the mean accuracy increased by 7.4% com-
pared to the utilization of the provided RGB-D skele-
ton sequences. The reason for that is the fact that the
extraction of skeletons from RGB-D cameras is less
accurate when the human body is not totally visible.
With the variation of human body orientation with re-
spect to the camera, self-occlusions occur, impacting
negatively the skeleton estimation.

4.3.2 LARP vs. KSC

The results performed on the Northwestren dataset
as well as on the IXMAS dataset show the superio-
rity of KSC descriptor for viewpoint action recogni-
tion when combined with VNect skeletons. Indeed,
KSC+VNect presents an average accuracy of 77.51%
against 64.47% for VNect+LARP on the Northwes-
tern UCLA dataset. On IXMAS dataset, KSC out-
performs LARP, as well, by achieving an average
accuracy of 83.03% against 58.12% when ignoring
V4 and of 45.91% against 31.5% when considering it.
The interpretation of this result lies on the fact that
KSC+VNect is less sensitive to noise than LARP.
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Figure 4: Illustration of skeleton extraction from the IXMAS dataset using VNect system: it can be noted that for the four first
views (V0,V1,V2,V3), the quality of the estimated is visually acceptable. However, the quality of the last view V4 is completely
biased. This fact is confirmed by our experiments.

Table 5: Computation time in minutes on the Northwe-
stren dataset by using V1 and V2 for training and V3 for tes-
ting. All the reported computation time includes descriptor
calculation. *The reported values for AOG (Wang et al.,
2014), NCTE (Gupta et al., 2014), NKTM (Rahmani and
Mian, 2015) have been reported from the paper (Rahmani
and Mian, 2015) and therefore the computation time has not
been computed on the same computer.

Method Training + Testing
AOG* (Wang et al., 2014) 1020
NCTE* (Gupta et al., 2014) 612

NKTM* (Rahmani and Mian, 2015) 38
VNect+KSC 6

4.3.3 Computation Time and Memory

The main advantage of our framework is its low com-
putation time. The training plus testing process takes
only 6 minutes, as presented in Table 5. This shows
that our framework can be considered as a real-time
system.

On the other hand, the proposed framework, when
using VNect for the skeleton estimation step, requires
to consume only 58.5MB of further memory which is
comparable to the memory needed to store the lear-
ned R-NKTM and the general codebook (57MB) in
(Rahmani and Mian, 2015) and which is significantly
lower than the memory needed to store the samples
(30 GB) in (Gupta et al., 2014).

5 CONCLUSION AND FUTURE
WORK

In this work, a simple but original framework has
been proposed to resolve the issue of cross-view
action recognition based on a single monocular RGB
camera. For this purpose, a novel concept aiming

at augmenting 2D images by a third dimension is
proposed taking advantage of the recent advances in
3D pose estimation from a monocular RGB camera
and the effectiveness of skeleton-based descriptors.
A 3D skeleton is first estimated from a single 2D
image using a CNN-based approach. Then, a view-
invariant skeleton-based method is applied to the es-
timated skeletons. To prove the validity of our frame-
work, the recently introduced VNect system has been
chosen to extract 3D skeletons from RGB images. Af-
ter that, two different view-invariant skeleton-based
approaches have been tested: KSC (Ghorbel et al.,
2018) and LARP (Vemulapalli et al., 2014). The ex-
periments on two datasets have shown the superiority
of KSC when integrated into that framework. The
obtained results are competitive with respect to re-
cent state-of-the-art approaches on both datasets, ex-
cept for the cases where an extreme viewpoint (the top
viewpoint) is considered. This suggests that it would
be important to extend 3D pose estimator to extreme
viewpoints.
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