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Abstract: Ultrasound technology is safe, relatively affordable, and capable of real-time performance. Recently, it has 
been employed to visualize tongue function for second language education, where visual feedback of tongue 
motion complements conventional audio feedback. It requires expertise for non-expert users to recognize 
tongue shape in noisy and low-contrast ultrasound images. To alleviate this problem, tongue dorsum can be 
tracked and visualized automatically. However, the rapidity and complexity of tongue gestures as well as 
ultrasound low-quality images have made it a challenging task for real-time applications. The progress of 
deep convolutional neural networks has been successfully exploited in various computer vision applications 
such that it provides a promising alternative for real-time automatic tongue contour tracking in ultrasound 
video. In this paper, a guided language training system is proposed which benefits from our automatic 
segmentation approach to highlight tongue contour region on ultrasound images and superimposing them on 
face profile of a language learner for better tongue localization. Assessments of the system revealed its 
flexibility and efficiency for training pronunciation of difficult words via tongue function visualization. 
Moreover, our tongue tracking technique demonstrates that it exceeds other methods in terms of 
performance and accuracy. 

1 INTRODUCTION 

Communicative performance, self-confidence, and 
social interaction of a speaker during a speech 
depends on many elements. Correct pronunciation 
and articulation of phonemes, words, and sentences 
are two of those factors. Importance and challenging 
part of this communication skill is even more 
obvious for many language learners especially when 
they cannot pronounce words difficult and rapid 
tongue movements.  

During articulation of words and sentences, 
tongue gestures are of great interest as an aid in 
Second language (L2) pronunciation learning and 
rehabilitation (Chen et al., 2018). When at rest, the 
tongue displays an unremarkable gross morphology, 
but dynamically it is a highly mobile, deformable, 
and precise organ, with rapid movements especially 
over its tip. Automatic tracking of tongue 
movements in recording ultrasound video of a long 
speech is considered to be very difficult due to the 
speckle noise in each frame, acoustic artifacts such 

as shadowing and mirroring, and low signal-to-noise 
ratio (Stone, 2005). Interpretation of ultrasound 
tongue frames might become even harder when 
tongue movements are fast, and the ultrasound frame 
rate is relatively low. This often results in missing 
parts in the observed contour (Loosvelt et al., 2014). 

Recent studies have revealed that visual 
feedback techniques such as ultrasound imaging can 
assist individuals to acquire new language 
pronunciation skills with higher efficiency 
(Bernhardt et al., 2005; Wilson et al., 2006; Gick et 
al., 2008; Abel et al., 2015). Ultrasound systems are 
fast, safe, portable, relatively inexpensive, and 
capable of real-time imaging. These capabilities 
allow researchers to indirectly study subtle and swift 
movements of the tongue during speech production 
in different applications (Denby et al., 2010; Preston 
et al., 2014; Geddes and Sakalidis, 2016).  

Mid-sagittal view of ultrasound imaging is 
usually adopted for illustration of tongue, as it 
displays relative back, height, and the slope of the 
tongue (Bernhardt et al., 2008). However, 
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localization and interpretation of tongue gestures in 
ultrasound images is not an easy task for non-expert 
users (see Figure 1, for the first time, one cannot 
recognize exact location of the tongue in ultrasound 
images). Therefore, highlighting tongue dorsum on 
ultrasound data, in form of a curved contour which 
is usually defined under the brightest and longest 
continues region (Zharkova, 2013; Lee et al., 2015), 
can significantly assist language learners to 
recognize the tongue shapes. 

 

 

Figure 1: The approximate position of the tongue when 
producing a vowel. Sounds vary depending on tongue’s 
position and shape which are not visible from outside. 
Tongue surface can be seen as a bright region on 
ultrasound image on the left. 

So far, few language training systems have been 
implemented utilizing ultrasound imaging 
(Hoopingarner, 2005; Gick et al., 2008). Language 
learners should first be involved in a pre-training 
stage which helps them to comprehend the location 
of the tongue in ultrasound videos data.  

Our study aim is to provide a system to facilitate 
second language pronunciation training by depicting 
tongue function in real-time and recorded videos. A 
face tracking method is utilized to find optimum 
position of the tongue on face profile then they are 
registered to create overplayed videos. Our language 
training system attempts to alleviate the problem of 
tongue localization in ultrasound data for non-expert 
users utilizing our tongue tracking approach that 
visualizes contour of the tongue, superimposed on 
ultrasound video frames.  

2 LITERATURE REVIEW 

A variety of techniques have been tested for tongue 
contour tracking in ultrasound images such as active 
contour models (Ghrenassia et al., 2014; Laporte and 
Ménard, 2015; Xu et al., 2016), graph-based 
technique (Tang and Hamarneh, 2010), machine 
learning-based methods (Tang et al., 2012; Fabre et 
al., 2015), and many more (Laporte and Ménard, 

2018). Manual labeling is essential for at least 
initialization in those researches (Laporte and 
Ménard, 2018) such that tongue tracking in real-time 
is impossible also with using famous software 
packages like EdgeTrak. 

Up to now, research on deep learning methods 
has stirred a great deal of attention, and It shows that 
deep learning algorithms, particularly convolutional 
neural network (CNN) (Xu et al., 2017), are 
powerful enough for solving many problems in 
pattern recognition and data mining, including 
ultrasound tongue contour tracking (Laporte and 
Ménard, 2018). In similar studies (Fasel and Berry, 
2010; Berry and Fasel, 2011; Berry, 2012; Csapo 
and Lulich, 2015; Jaumard-Hakoun et al., 2016), 
tongue contour was extracted automatically using 
deep belief networks (DBNs) and deep auto-encoder 
(Ji et al., 2017). 

The accuracy of deep learning methods is highly 
related to the size of training dataset and the 
complexity of the deep network model. Hence, there 
is always a trade-off between the number of training 
samples, which is a big issue in many applications 
such as in medicine (Ronneberger et al., 2015; 
Litjens et al., 2017), and the number of parameters 
in the network, which it requires more computing 
and memory units. Results of deep learning 
techniques like U-net for medical image 
segmentation illustrate acceptable accuracy. 
However, due to the deep architecture with many 
layers, computational resources should be highly 
powerful in training and testing stages. For real-time 
applications such as ultrasound tongue contour 
tracking this performance, the issue is also more 
fundamental.  

In this paper, by inspiration from a famous 
architecture, so-called "fully convolutional network" 
(Badrinarayanan et al., 2015; Long et al., 2015; 
Ronneberger et al., 2015), we propose a new simpler 
architecture for real-time video tongue contour 
tracking for using in our designed language training 
system. The efficiency of our language training 
system was tested by conducting experiments to 
teach pronunciation of some difficult words.  

3 SYSTEM ARCHITECTURE 
AND METHODOLOGY 

Main modules of our language pronunciation 
training system are illustrated in Figure 2. In both 
modules, the ultrasound data, contain tongue contour 
information extracted by our proposed tracking 
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method, are overlaid automatically on a video 
recorded from face profile. In general, two 
superimposed videos are played on a computer's 
screen for a language learner, one from real-time 
recording of him/his tongue and the other from an 
instructor's tongue during speech. 
 

 

Figure 2: Schematic of our language training system. 
Language learner can see both off-line and real-time data 
on a computer screen. The off-line video is played with a 
small delay and language learner imitate that word. The 
learner comprehends the differences between two videos 
and tries to duplicate instructor's video. 

3.1 Tongue Tracking and Extraction 
Module 

Tongue contour tracking in ultrasound video is a 
unique problem such that according to our 
experiments, the diversity of tongue data is restricted 
to the flexibility and deformation states of the 
tongue muscle. We proposed a deep learning 
approach, employing CNN layers, capable to 
address the real-time performance issue due to its 
small architecture and training dataset (see Table 1). 

In SegNet architecture (Badrinarayanan et al., 
2015), two consecutive convolutional layers are for 
having a better receptive field, however, these extra 
layers in each stage of encoding and decoding apply 
a huge number of parameters to the network in 
inference stage. We found that omitting one 
convolutional layer in each stage of encoding and 
decoding, improves architecture performance in 
terms of speed though its accuracy is still 

comparable with the original model. In our 
architecture, we decreased many repeating 
convolutional and deconvolutional layers of SegNet 
as well as many activation functions by try and error 
experiments. We also added concatenation strategy 
from the U-net model (Ronneberger et al., 2015) for 
increasing accuracy of the predictions.  

Table 1: Our deep learning architecture (Conv: 
convolution, Concate: concatenation). 

Network Architecture 

Layers Specification (Down-sampling) 

Conv 1 32 (filters: 3×3, stride: 1×1, activation: ReLU, 
padding: “Valid”)

Pool 1 Max-pooling with stride: 2×2 

Conv 2 64 (filters: 3×3, stride: 1×1, activation: ReLU, 
padding: “Valid”)

Pool 2 Max-pooling with stride: 2×2 

Conv 3 128 (filters: 3×3, stride: 1×1, activation: ReLU, 
padding: “Valid”)

Pool 3 Max-pooling with stride: 2×2 

Conv 4 256 (filters: 3×3, stride: 1×1, activation: ReLU, 
padding: “Valid”)

Pool 4 Max-pooling with stride: 2×2 

Conv 5 512 (filters: 3×3, stride: 1×1, activation: ReLU, 
padding: “Valid”)

Layers Specification (Up-sampling) 

Un-pool 1 Max-un-pooling repeats the rows and columns by 
size 2

Concate 1 Concatenate conv 4 outputs and un-pool 1 

Conv 6 256 (filters: 3×3, stride: 1×1, activation: ReLU, 
padding: “Valid”)

Un-pool 2 Max-un-pooling repeats the rows and columns by 
size 2

Concate 2 Concatenate conv 3 outputs and un-pool 2 

Conv 7 128 (filters: 3×3, stride: 1×1, activation: ReLU, 
padding: “Valid”)

Un-pool 3 Max-un-pooling repeats the rows and columns by 
size 2

Concate 3 Concatenate conv 2 outputs and un-pool 3 

Conv 8 64 (filters: 3×3, stride: 1×1, activation: ReLU, 
padding: “Valid”)

Un-pool 4 Max-un-pooling repeats the rows and columns by 
size 2

Concate 4 Concatenate conv 1 outputs and un-pool 4 

Conv 9 32 (filters: 3×3, stride: 1×1, activation: ReLU, 
padding: “Valid”)

Conv 10 1 (filters: 1×1, stride: 1×1, activation: Sigmoid, 
padding: “Valid”)

 
The popular tongue tracking software, EdgeTrak, 

is capable of providing tongue contours for a limited 
number of frames with the requirement of manual 
initialization near to the tongue region and tuning it 
during the extraction process. In contrast, our 
proposed model is significantly fast, needs a small 
dataset for training, and it can automatically 
delineate tongue contours in real-time from long 

GRAPP 2019 - 14th International Conference on Computer Graphics Theory and Applications

304



 

ultrasound videos without any manual initialization 
or tuning.  

As can be seen from Table 1, our proposed 
network consists of repeated 3×3 convolutions with 
no zero padding, each followed by a rectified linear 
unit (ReLU). A 2×2 max pooling operation with a 
stride of 2 is applied in each down-sampling step. In 
decoding path, from the lowest contracted layer to 
the output feature map, each layer consists of an up-
sampling of the feature map followed by a 2×2 
convolution that halves the number of feature 
channels, a concatenation with the correspondingly 
cropped feature map from the corresponding 
contracting path, and a 3×3 convolutions followed 
by a ReLU. Our model has only 10 convolutional 
layers (in contrast to 23 layers in U-net and 26 in 
SegNet). For the sake of fair comparison, we did not 
add data augmentation, a powerful strategy for 
increasing the size of training data, and batch 
normalization layers, a method for increasing the 
performance and stability.  

The result of the proposed method is a 
segmented region on the ultrasound image, so we 
need to extract contours for comparison with other 
tongue contour tracking techniques. First, we 
binarize the segmented tongue contour image with a 
threshold value and then invoke the skeleton 
extraction method to create thin curves out of the 
binary image (see Figure 3). 

 
Figure 3: samples of images in segmentation and 
extraction process: (a) one original image (b) true label or 
mask (c) predicted area (d) converted binary image (e) 
contour skeleton of the white region of (d), (f) 
superimposed image of original and extracted contour 
(green curve). 

3.2 Ultrasound Pronunciation Training 
System Module 

In order to test the potential utility of our language 
training system in second language, a preliminary 
investigation was conducted with two Chinese 
students as participants. Three English native 
speakers were considered as instructors and trained 
to read predefined words. As Figure 2 shows, 
recording procedures is a two-fold process. Off-line 
recording module (see Figure 4) which a native 
instructor sits in front of the system who reads a list 
of predefined difficult words. In our experiment, list 
of difficult words (see Table 2) was produced by 

conducting a survey using questionnaires, among 20 
Chinese students in University of Ottawa, asking 
about the words which they have more difficulties to 
pronounce in English. 
 

 

Figure 4: An instructor is pronouncing a list of words and 
her face and voice are recorded by the camera as well as 
ultrasound video. Manually, cropped ultrasound video and 
the tongue contour extracted (green line) from that video 
are superimposed with the video from the camera. 

In the second module, similarly, one student 
keeps an ultrasound probe under his/her chin and 
reads the list of predefined words to learn their 
pronunciations (see Figure 5). Ultrasound video of 
the tongue, RGB video from speaker's face profile, 
and speech sound are captured in both modules. 
During the training process, the learner observes 
instructor video for each word and try to imitate the 
instructor's tongue in ultrasound video which is 
shown at the same time on screen with a sort of 
delay. While the learner is reading the words, tongue 
contour is superimposed and illustrated 
automatically in real-time on ultrasound image 
sequences. For overlaying videos, Haar feature 
detection algorithm is applied to the RGB video to 
find the area around the lips of the speaker. Then, 
segmented ultrasound image sequences are 
registered on the face profile. 

 

Figure 5: A learner is pronouncing a list of words after 
hearing the voice and watching the video from the 
instructor. The white color line is extracted from 
ultrasound data automatically. 
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Table 2: A set of English words and pairs with difficulty 
to pronounce for the Chinese language learner. 

Pairs 
Korea Stuff Tone Girl Pool 

Career Staff Tune Grow Pull 

Single word Little Studio Sugar   

4 EXPERIMENTAL RESULTS 

Due to the lack of similar language training system 
in the literature, we qualitatively compared our 
system with similar ideas (Hueber, 2013; Ouni, 
2014; Abel et al., 2015). From our experimental 
results, our language training system is highly user-
friendly due to the illustration of tongue contour 
instead of just depicting raw ultrasound image 
sequences. Real-time and automatic performance of 
our system allows linguistics to focus on training 
process instead of manual editing and interpretation 
of ultrasound images. 

Our tracking method can recognize tongue 
dorsum in different positions and orientations due to 
translation invariant characteristic of CNN's. In 
order to register ultrasound video on face profile 
video automatically, a face detection algorithm from 
OpenCV library (Haar cascade) is employed which 
can find the approximate place of the tongue on the 
face. Thus, students could use the system with more 
flexibility than previous studies without using any 
fixtures for fixing their head and ultrasound probe 
position. Our system does not require any 
initialization steps, and due to the simplicity of our 
deep network architecture, GPU facility is not 
necessary.  

We assessed the proposed deep learning model 
on a database comprises of 2190 images captured by 
our ultrasound machine (Tablet Ultrasonix with 
L14-5 linear probe) and 6631 images from the 
internet (Lawson et al., 2015). Each image has a size 
of (128 ×128), each of which comes with the same 
size corresponding annotated mask created by our 
annotation software package. The output segmented 
image has size (34×34). Output results are illustrated 
in the last row of Figure 6 where we randomly 
selected some frames for the sake of presentation.  

The database was divided into a training set and 
a validation set with an 80/20 percentage split ratio, 
respectively. We deployed our method by using the 
Keras library (Chollet and others, 2015) and 
TensorFlow backend (Abadi et al., 2016). Adam, an 
algorithm for first-order gradient-based optimization 
of stochastic objective functions was used with its 
default parameters (Kingma and Ba, 2014), in which 

a learning rate of 0.001, β1 of 0.9, and β2 of 0.999, as 
well as schedule decay of 0.05 after each epoch, 
were adopted to achieve a better convergence. 
Default parameter values from relevant publications 
(Badrinarayanan et al., 2015; Long et al., 2015; 
Ronneberger et al., 2015) have been used for other 
parameters such as the number of encoding and 
decoding layers, number of iterations, and batch 
sizes. 

 

 

Figure 6: Results of applying the proposed image 
segmentation and extraction method on video data. First 
row: Some randomly selected raw ultrasound frames 
(128×128), Second row: Corresponding masks for each 
frame in the first row (128×128), Third row: Predicted 
masks (34×34), Fourth row: Extracted contours using 
skeleton method on a resized version of third raw images 
(128×128) and then moved to lower part of the contour 
region to superimpose with the original frame. 

We used binary cross-entropy as the loss 
function. To evaluate the performance of the 
proposed method, we also calculated the dice 
coefficient. Prediction and the labeled data are 
compared in terms of MSD as defined in (Jaumard-
Hakoun et al., 2016). Our experimental results are 
compared with the results of deep belief network 
(DBN) (Jaumard-Hakoun et al., 2016) which is the 
only previous method known to use deep learning in 
tongue image analysis. Table 3 shows the 
comparison for the Dice-coefficient validation error 
related to the number of epochs. In our system, the 
error declines to around 0.2 when the number of 
epochs is around 100 and then levels out. The DBN 
error remains around 0.4 even though the number of 
epochs increases. Results of our proposed model are 
shown in Figure 6 such that, for the sake of 
illustration, frames were selected randomly during 
the training stage. Images in the third row are 
predicted maps from our proposed model which are 
like the true labels in the second row. 

Our proposed method outperformed other 
methods regarding MSD criteria as shown in Table 
4. The MSD value in terms of pixels was 1.43 pixels 
for our proposed method, with a conversion of 1 px 
= 0.638 mm, giving an average MSD of 0.91 mm, 
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while the DBN model achieved 1.0 mm (1 px = 
0.295 mm). For the active contour tracking method 
mentioned in (Li et al., 2005), the average MSD is 
1.05 mm. It is important to mention that the two 
human experts participating in active contour 
tracking experiment produced two different 
annotation results having an average MSD of 0.73 
mm (Li et al., 2005), which may thus be reasonably 
considered the ultimate minimum MSD of training 
based automated methods.  

We ran our model on a Windows PC with a 7-
Core CPU at 3.4GHz and 16GB of memory. In the 
testing stage, our approach provided the 
segmentation results of 175 frames in 2.343 seconds, 
which equals 74.7 fps. The testing performance goes 
down to 29.8 fps when we add tongue contour 
extraction. Previous publications have not discussed 
speed, possibly due to the nature of semi-automatic 
or manual work. Alternatively, they may have not 
achieved a high speed.  

Table 3: Comparison of our method and previous work in 
Dice-coefficient validation error. Our method out-
performs DBN when the number of epochs reaches 50 and 
levels off at 100 epochs at around half the error of the 
DBN system. 

Number of epochs 5 50 100 250 

Proposed method 0.446 0.243 0.212 0.212

DBN (Jaumard-Hakoun et al., 2016) 0.41 0.38 N/A 0.4 

Table 4: The comparison of our model with others in term 
of average MSD. Our proposed model shows better 
accuracy than other state-of-the-art methods on tongue 
dorsum extraction. 

Methods Ours DBN Active Contour 

Average MSD (mm) 0.91 1.0 1.05 

5 CONCLUSION 

While the potential benefits of articulatory feedback 
using ultrasound data for language pronunciation 
have long been acknowledged, until recently, with 
the advancement of deep learning techniques, real-
time applications are feasible for easier guided 
language training. The pilot experiment of language 
learning system using ultrasound imaging outlined 
in the present paper shows that it is so much 
promising to add different facilities to ultrasound 
video in order to enhance the learning process. 

In automatic tongue tracking section of our 
system, a trained deep convolutional neural network 
architecture has been applied to extract and illustrate 

tongue contours on real-time ultrasound videos. 
Automatic registration of ultrasound and RGB 
videos using Haar feature extraction algorithm, 
added flexibility to the language training system by 
omitting fixtures for the head and probe. The choice 
of network structure was selected and modified in 
the course of several experiments, decreasing the 
number of network layers and removing unnecessary 
steps for this application to speed up the process 
while keeping the high accuracy.  

Extraction of tongue contours from delineated 
frames was successfully exploited using the skeleton 
technique. The proposed system does not need 
initialization or re-initialization (unlike EdgeTrak) 
for each frame and it is an end-to-end approach. The 
experimental results displayed the accuracy and 
speed of the proposed method for real-time 
automatic tongue tracking and we can assert that 
convolutional neural networks are superior to their 
counterparts such as deep belief networks. This kind 
of system shows its potential abilities for solving 
other ultrasound problems and being applied to other 
organs. 
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