
Bridging XML and UML - An Automated Framework

Arthur Kühlwein1, Sebastian Reiter1, Wolfgang Rosenstiel2 and Oliver Bringmann2

1FZI Forschungszentrum Informatik, 76131 Karlsruhe, Germany
2Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany

Keywords: Extensible Markup Language, Unified Modeling Language, XML Schema Definition.

Abstract: A large variety of data is serialized and exchanged using XML. Model-driven activities can benefit from XML
data, as shown by various approaches to IP-XACT and UML integration. However, these approaches are
inherently time consuming, error-prone, and inflexible due to the manual effort involved. We propose an
automated framework for integrating arbitrary XML data into UML models using an automatically generated
UML profile corresponding to the structure of the XML data. User-defined XML-to-UML mappings further
enhance this integration. Our approach mitigates the aforementioned issues while providing the same benefits.

1 INTRODUCTION

During the last decade, model-driven engineering
(MDE) has increasingly gained traction in both re-
search and industry. Among modeling languages,
the Unified Modeling Language (UML) (OMG, 2015)
and its derivates are certainly the most prominent
representatives. UML allows modeling of software
structure and behavior and is widely used in the soft-
ware engineering domain. In MDE, it forms the ba-
sis for a large host of model-driven methodologies,
frameworks, and tools. To specialize the language for
specific domains, UML supports extending its meta-
model via so-called profiles. An example is the pro-
file for Modeling and Analysis of Real Time Sys-
tems (MARTE) (OMG, 2011), which targets embed-
ded real-time systems and augments the expressive-
ness of UML with detailed timing and hardware plat-
form specifications.

The Extensible Markup Language (XML) (W3C,
2008) is a widely used textual human- and machine-
readable data serialization and exchange format.
Well-formed XML data always conforms to a cer-
tain structure. Although not obligatory, this structure
can be made explicit in an XML Schema Definition
(XSD) (W3C, 2012a,b). If no XSD exists, one can be
automatically inferred from the structure of the XML
data (Bex et al., 2007).

A variety of information is represented in the
XML format, ranging from simple web service data1,

1Such as the Web Services Description Language

to complex network configurations2 and system de-
scriptions3. This includes ad-hoc formats used ex-
clusively within a company or even a single depart-
ment, but also standardized formats, such as the IEEE
1685 (IP-XACT) standard (IEEE, 2010), which pro-
vides detailed XML-based descriptions of intellectual
property (IP) and is widely used in industry.

There is much to be gained from bridging the
worlds of XML and UML by augmenting UML mod-
els with XML data.

In the embedded systems domain, a number
of proposals exist for leveraging synergies between
XML and UML. For example, approaches for using
IP-XACT together with UML and MARTE models
have been proposed, aiming at enhancing code gener-
ation, model-driven analyses, and HW/SW codesign.
While the framework is applicable to arbitrary XML
data, we utilize examples for bridging IP-XACT and
UML in order to facilitate comparison.

However, the existing approaches for briding IP-
XACT and UML still include varying degrees of man-
ual effort, making them inherently tedious, error-
prone, and time consuming, as well as hindering col-
laboration and communication among the users of
XML and UML, increasing development time. These
adverse effects are aggravated if the structure of the
XML format changes, which can potentially happen
frequently in the case of ad-hoc or in-house formats.

(WSDL)
2Such as libvirt’s Network XML Format, or the Network

Configuration Protocol (NETCONF)
3Such as AUTOSAR system configuration descriptions

378
Kühlwein, A., Reiter, S., Rosenstiel, W. and Bringmann, O.
Bridging XML and UML - An Automated Framework.
DOI: 10.5220/0007470403780385
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 378-385
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



In addition, validation of the XML data is not consid-
ered, i.e. whether the data in the XML conforms to
the constraints given in the corresponding XSD.

In this paper, we propose a framework for the au-
tomated integration of XML data of arbitrary XML
schemas into UML models, creating a unified UML
and XML data base. This single source of data can
serve as a pivot for collaboration, enabling quick
round-trip engineering and promoting codesign.

In particular, changes made to XML descrip-
tions, such as IP-XACT, can quickly be reflected
in the UML side, which opens up new possibilities
with respect to model-based activities, such as anal-
yses, model-to-model or model-to-text transforma-
tions, code generation in particular, and simulations.

By specifying mappings between XSD and UML
elements, UML models can be created from complex
XML data. Using our approach, UML can also be
used as a frontend for editing arbitrary XML data
with validation according to the constraints given in
the corresponding XSD.

The remainder of this paper is structured as fol-
lows. In Section 2, we discuss related work. Section 3
presents our main contribution, the automated frame-
work. In Section 4, we illustrate our contribution with
a typical industrial use case based on IP-XACT and
MARTE. Finally, we conclude our work in Section 5.

2 RELATED WORK

There exists a large body of research on the repre-
sentation of XML schemas in UML. For instance, see
(Bernauer et al., 2004) for an overview.

However, to the best of our knowledge, no prior
work addressing the integration of arbitrary XML
data into UML models exists. As mentioned in the
introduction, there have been numerous approaches
at integrating IP-XACT and UML in the field of
model-driven embedded software and hardware de-
velopment, since IP-XACT and UML, in particular
MARTE, have a complementary relationship with re-
spect to the information they provide. In the follow-
ing, we will outline these approaches.

Initial efforts created dedicated UML profiles
which enabled integrating IP-XACT data to some de-
gree. Arpinen et al. (2008) presented a codesign
framework based around their TUT-Profile. Their
framework allows structural hardware platform de-
signs created in UML to be exported to IP-XACT de-
signs. A similar approach was employed by Revol
et al. (2008), who developed the ESL profile, which
creates a bridge between the hardware resource model
of MARTE and IP-XACT. In their proposed method-

ology, the hardware platform is modeled by using
MARTE together with their profile. The model
can then be exported to IP-XACT designs and Sys-
temC code. Khan et al. (2008a, 2009) proposed
to use MARTE models to create IP-XACT descrip-
tions, which they enrich with timing information pro-
vided by MARTE. Khan et al. (2008b) embedded IP-
XACT descriptions in MARTE using a custom pro-
file. Schattowksy et al. (2009) created a comprehen-
sive UML profile for IP-XACT which effectively al-
lows UML to be used as a frontend for editing and
managing IP-XACT data. Weissnegger et al. (2017)
also extended MARTE with a custom profile for IP-
XACT data to create detailed models of hardware
platforms, from which they generate virtual proto-
types.

An approach similar to the one we propose was
presented by Tallec et al. (2011). IP-XACT descrip-
tions are extracted from SystemC code, which then
are used to synthesize MARTE models. Transforma-
tion of MARTE models back to IP-XACT descrip-
tions is proposed as well, in which additional infor-
mation provided by the MARTE model is stored in
IP-XACT vendor extensions. However, their trans-
formations do not use the entire IP-XACT standard,
abstracting away some information.

Herrera et al. (2012) introduced a framework
for the automatic generation of executable models
enabling early design space exploration. In their
proposed framework, IP-XACT descriptions of the
hardware platform are automatically generated from
MARTE models. Their framework does not integrate
IP-XACT data into the MARTE models.

Ochoa-Ruiz (2013) proposed a high-level method-
ology for IP-XACT and MARTE codesign that intro-
duces transformation rules between both standards.
However, his work does not cover all aspects of IP-
XACT and MARTE and abstracts from certain con-
cepts.

All these approaches have a number of drawbacks.
The custom profiles that enable IP-XACT and UML
codesign are hand-crafted and mostly based on older
versions of the IP-XACT standard. This implies that
refactoring these profiles to conform to the most re-
cent version of IP-XACT has to be done manually in
a tedious and error-prone process. Most approaches
only integrate parts of the IP-XACT standard or ab-
stract away from it, leaving out potentially important
information. In addition, the codesign direction of
a large portion of these approaches is unidirectional,
prohibiting round-trip engineering.

With our framework, custom profiles for XML
handling can be generated automatically and easily
adapted to evolutions of the underlying XSDs. The

Bridging XML and UML - An Automated Framework

379



generated profile reflects the XSD in its entirety. By
using our proposed XSD to UML mapping specifi-
cation, abstractions of XML elements in the UML
model can be created. Finally, our framework sup-
ports round-trip engineering by providing export of
integrated XML data from UML models.

In principle, a large number of these approaches
can at least in part be implemented or emulated us-
ing our framework, making it a meta-framework in a
sense. We illustrate this point in our use case in Sec-
tion 4.

3 AN AUTOMATED
FRAMEWORK FOR
INTEGRATING XML INTO
UML

In this section, we present our main contribution,
which is an automated framework for integrating
XML data into UML models. Fig. 1 gives a con-
ceptual overview of our framework.

XML files in specific formats, such as IP-XACT,
are created and edited by their corresponding tools.
Analogously, UML data, which may include elements
from standard or custom profiles is created and edited
by specific UML tools.

Both the XML and the UML data are assumed
to be well-formed, i.e. they conform to metamodels,
which can be either explicit or implicit. In the case of
XML this metamodel is described by an XSD. UML
models conform to the Meta Object Facility (MOF)
OMG (2016) architecture, in which UML profiles can
be considered a metamodel as well.

To forster a seamless usage between both formats,
import and export capabilites are required. Since we
regard UML as the core model, integration of XML
data into the UML model requires an import.

Given an XML file, its data is imported into a
UML model by creating a UML profile correspond-
ing to the XSD of the XML. New stereotyped UML
elements are then created in the model, corresponding
to the XML entities in the XML file. The stereotype
applications contain the data in the XML file.

We chose to apply the stereotypes to UML classes,
because they can be nested. This allows us to reflect
the XML element hierarchy in the UML model.

Optionally, an additional user-defined mapping
from XML data to existing UML elements can be pro-
vided. This enables the usage of the XML data with
existing metamodels and modeling methodologies. In
the remainder of this paper, we always refer to this

kind of user mapping if we use the term mapping, un-
less explicitly stated otherwise.

The UML elements containing the XML data can
be exported into valid XML again.

With the exception of the specification of the user-
defined mapping and the XML file, all of the afore-
mentioned steps are automated. In the following, we
will discuss the specific aspects of our framework in
detail.

3.1 XML Import

The data contained in the XML files is imported into
a UML model by means of an automated process.
Central to this process is the core mapping of XSD
to UML elements, which is used to generate a UML
profile that reflects the structure of the XSD. This core
mapping is outlined in Table 1.

XSD entities are mapped to stereotypes, attributes
of mapped stereotypes, primitive data types, or enu-
merations.

XSD elements are mapped to stereotypes. If the
element is contained by another element, i.e. not at
the root level of the XSD, an additional attribute in
the stereotype mapped to the containing element is
created. This attribute is of the type of the stereotype
mapped to the contained element.

XSD attributes are mapped to attributes of the
stereotype mapped to the containing element.

If an XSD complex type is derived from a sim-
ple type, a primitive data type is created in the UML
profile. Otherwise, a new stereotype is created.

XSD simple types with enumeration facets are
mapped to UML enumerations. Otherwise, they are

Table 1: Core XSD to UML mapping.

XSD Condition UML

element
root-level stereotype

otherwise stereotype and at-
tribute of containing
mapped stereotype

attribute attribute of contain-
ing mapped stereo-
type

complexType
derived from simple
type

primitive data type

otherwise stereotype

simpleType
has enumeration
facet

enumeration

otherwise primitive data type

constraints OCL constraints

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

380



Figure 1: Overview of our proposed automated framework for integrating XML into UML.

mapped to UML primitive data types.
XSD allows the specification of constraints on

XSD elements and their attributes, and any piece of
XML data that conforms to an XSD must adhere to
these constraints. In order to facilitate data validation,
constraints in the XSD are mapped to correspond-
ing Object Constraint Language (OCL) (OMG, 2014)
constraints on the mapped elements in the generated
UML profile.

Inheritance relationships between XSD elements
are reflected via generalizations between the corre-
sponding stereotypes in the profile.

For identification of the UML profile with the cor-
responding XSD, we assign the namespace Uniform
Resource Identifier (URI) of the UML profile to the
one targeted in the XSD. It is possible that a given
XML file does not conform to a particular XSD, in
which case the XSD can be automatically inferred
from the XML data.

Using the UML profile, appropriately stereotyped
classes in the model are created from the XML data,
i.e. we map XML elements to stereotyped UML ele-
ments. For each XML element instance, we generate
a UML class with the appropriate stereotype. The at-
tributes and references of the stereotypes are set to the
values contained in the XML. The stereotyped classes
are nested according to the hierarchy of the corre-
sponding XSD elements. This import fully integrates
the XML data into the UML model, enabling access
to all contained data from within the model.

If required, this integration can be refined by pro-
viding a user-defined mapping between XML and
UML elements. Depending on the expressivity of the
mapping language, models can be created from arbi-
trarily complex XML data. For instance, one could

easily imagine UML network topology diagrams be-
ing created from a single XML network topology de-
scription, such as the one described by Balon (2008).

This mapping is strictly additive, meaning that the
mapped model elements are created in addition to the
model elements representing the imported XML data.
In other words, the model contains two additional sets
of model elements after the XML import: stereotyped
classes representing the XML data and model ele-
ments created according to the provided mapping.

Of course, the mapping could directly transform
the former elements, which would avoid data duplica-
tion and synchronization issues. However, this could
result in data loss and would make the export of the
integrated XML data more difficult, particularly when
the imported data is aggregated. We thus argue that an
additive mapping is better suited for our framework.

Once the XML data has been imported, the aug-
mented UML model can be used to drive advanced
model-based activities, such as code generation, anal-
yses, simulations, or verifications. Unless a custom
solution is implemented, these activities usually can-
not work with the model elements of the UML profile
generated from the XSD, but instead require model
elements from another profile. In this case, the map-
ping can be used to create the appropriate elements
from the XML data. For instance, we can map to
stereotypes from the MARTE profile, enabling tools
utilizing this profile to work with the XML data, as
demonstrated in Section 4.

3.2 XML Export

Because the import integrates the XML data com-
pletely, the UML elements containing the XML data

Bridging XML and UML - An Automated Framework

381



can be exported into XML that conforms to the XSD.
For this, the XML data is reconstructed from the
stereotypes and the values contained in them. This
enables round-trip engineering and codesign, and al-
lows UML to be used as a frontend for editing and
validating XML data.

In this case however, the original XML data and
its imported UML representation may become mis-
aligned when users perform a modification of one part
without synchronizing the other part appropriately.

3.3 Automation

As mentioned earlier, our framework is almost com-
pletely automated. The only part requiring manual
effort is the specification of the user-defined mapping
between XML and UML elements.

The generation of a UML profile that corresponds
to a given XSD is a relatively straightforward task.
For instance, detailed mappings between XSD and
the Ecore4 metamodel have been described in (EMF,
2004). From this Ecore representation of the XSD, a
UML profile can be easily generated.

In case an XML file does not conform to a par-
ticular XSD, many approaches exist for automatically
generating an XSD from the structure of the XML.
Such an approach is described in (Bex et al., 2007),
for instance.

The generation of UML elements from XML data
and the generation of XML data from its UML repre-
sentation can be easily automated as well.

3.4 Proof-of-Concept Implementation

To demonstrate the technical feasibility of our au-
tomated framework, we have created a proof-of-
concept implementation based on the Eclipse Mod-
eling Framework (EMF5) and the Papyrus Modeling
Environment6.

Given an XML file, the XML importer engine first
generates an Ecore model of the corresponding XSD
using the XSD conversion integrated into EMF. From
this Ecore model, a UML profile is built. If the XML
file does not conform to an XSD, it is automatically
generated using Wizools.org XSD Gen7.

This profile is then loaded and applied to the UML
model in the Papyrus Modeling Environment.

EMF automatically extracts value restrictions
from the XSD and converts them to corresponding
validation rules in the generated Ecore model. These

4https://wiki.eclipse.org/Ecore
5https://www.eclipse.org/modeling/emf/
6https://www.eclipse.org/papyrus/
7https://github.com/wiztools/xsd-gen

validation rules have the same power as OCL con-
straints and are recognized and enforced by the Pa-
pyrus Modeling Environment in the UML model. En-
forcing the validation rules guarantees that any modi-
fication of the XML data from within UML is confor-
mant to the XSD.

Users can specify the import location within the
UML model in our implementation. Once the pro-
file is applied to the UML model, our implementa-
tion adds a stereotype application corresponding to
the root-level element in the XML file to the selected
model element, and stereotyped classes correspond-
ing to the sub-elements in the XML file are created as
children of the selected model element. The attributes
of the applied stereotypes are then filled with the val-
ues from the XML data.

In our implementation, users have the option of
specifiying the mapping between the XML elements
and UML elements for the XML import. Our current
implementation facilitates this mapping using the Ep-
silon Transformation Language (ETL) (Kovolos et al.,
2008). The ETL transformation is executed after
the XML data has been imported, because the ETL
model-to-model transformation cannot work on the
XML data directly, but instead requires the generated
UML profile.

Export of the integrated XML data from UML to
XML is implemented using the standard XML serial-
ization of EMF.

4 USE CASE: IP-XACT AND
MARTE

In this section, we present a use case which will il-
lustrate two points. We show that we can import IP-
XACT data into a MARTE model using the proof-
of-concept implementation of our framework without
loss of data, demonstrating its technical feasiblity. We
also show how our framework is able to emulate some
of the existing approaches for integrating IP-XACT
and UML. In particular, we refer to (Schattowksy
et al., 2009), (Khan et al., 2008a), and (Khan et al.,
2008b), which propose manual approaches for inte-
grating IP-XACT and UML. Our framework is able
to create similar UML models.

Our use case represents a typical scenario in em-
bedded software development. At a large semicon-
ductor manufacturer, firmware for a new embedded
device is being developed. This device will contain
commercial off-the-shelf IPs from various external
manufacturers. A basic MARTE model of the device
has been created and IP-XACT descriptions of the IPs
have been supplied, which now need to be integrated

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

382



Figure 2: Augmenting our MARTE model with IP-XACT data.

into the model.
To integrate the external IPs into the UML model,

their IP-XACT descriptions are imported using our
framework. Fig. 2 illustrates this integration process.

For the XML import, users need to specify the
XML file containing the data and the XSD it con-
forms to. The appropriate UML profile is generated
accordingly. The profile is then applied to the UML
model, so the stereotypes from the generated profile
are available to the model. Finally, the corresponding
stereotyped UML elements are created from the XML
data.

As a result of the import in our example, a class
with a «component» stereotype is created in the model
(number 1 in Fig. 2), which holds the information
of the IP-XACT description.

This direct import is similar to the approach de-
scribed in (Schattowksy et al., 2009). For instance,
the «component» stereotype of the generated profile is
corresponding to the «IP-XACT_Component» stereo-
type of the profile proposed by the authors. The IP-
XACT data can now be edited using the UML editor
and exported into valid IP-XACT XML again (num-
ber 2 in Fig. 2). But in contrast to the aforemen-
tioned approach, data validation is provided by our
framework due to the EMF validation rules extracted
from the XSD. For instance, the well-formedness
rules for IP-XACT port names are enforced by the
data validation.

To fully integrate the IP into the MARTE model,
an ETL mapping has to be specified.

Utilizing this mapping, appropriate MARTE
model elements are created from the imported XML
data.

In our example, the mapping creates a MARTE
«HwComponent» for each IP-XACT «component».
The IP has a number of bus interfaces, which are also
included in the model. For this, the mapping is ex-
tended to create required interfaces for slave ports and
provided interfaces for master ports. This mapping
emulates some aspects of the approaches proposed in
(Khan et al., 2008a) and (Khan et al., 2008b).

The result of this mapping can be seen in number
3 in Fig. 2. To indicate that the «HwComponent»

has been created from the IP-XACT component, an
abstraction relationship is used.

The MARTE model now contains information
about the register map of the imported IP. From this
model, C headers for register access of the IP can be
generated, as illustrated in number 4 in Fig. 2.

The integration of the XML data into the UML
model is completely automated. The only part re-
quiring manual effort is the specification of the addi-
tional mapping. In contrast, the approaches outlined
in Section 2 would first require manual analysis of the
XSD in order to handcraft an appropriate UML pro-
file that is capable of reflecting the XML data. Then,
the XML data would need to be integrated using this
profile, either manually or with a bespoke importer
that reads the XML and generates the corresponding
stereotyped UML elements in the model.

This entire process is time-consuming, tedious,

Bridging XML and UML - An Automated Framework

383



and error-prone.
It is also extremely inflexible, because this entire

process has to be started again if XML data in an-
other format is going to be included or in case the
XSD changes. While it can be argued that the fre-
quency of such changes is usually in the order of years
or even decades in case of heavily standardized for-
mats such as IP-XACT, other formats may undergo
changes more frequently.

Each time such a change occurs, existing ap-
proaches require the manual updating of the profile,
any custom code that is responsible for handling the
XML import, as well as code that works on the model,
such as code generators.

In our approach, the parts requiring manual effort
are now restricted to the specification of the mapping
and any code that works on the imported model. The
rest is handled automatically.

With respect to flexibility, our approach also al-
lows the quick integration of any data expressed
in a non-XML data format that can be automati-
cally transformed into XML. For instance, consider
the JavaScript Object Notation (JSON8), which is a
prominent alternative to XML and the data format
used by some electronic design automation tools. Us-
ing our framework, this data can be quickly integrated
into a UML model. The data is first converted to
XML9.

The corresponding XSD is then inferred, and the
data is imported into the model using our framework.
All these steps are performed automatically.

5 SUMMARY AND
CONCLUSIONS

We presented a framework for automatically integrat-
ing arbitrary XML data into UML models. XML data
is integrated by creating a UML profile that corre-
sponds to the XSD to which the XML conforms. In-
stances of the appropriately stereotyped classes are
then created in the UML model and their values are
set according to the XML data. Users have the op-
tion to refine this integration by specifying an XML
to UML mapping, which is automatically executed at
the end of the import. The integrated XML data can
be exported to valid XML from the UML model. Val-
idation of the XML data is ensured by corresponding
OCL constraints in the UML profile.

8https://www.json.org/
9A number of implementations exist, for example

https://github.com/lukas-krecan/json2xml

The integration of XML data in UML models of-
fers a number of benefits. For instance, advanced
model-based analyses and simulations, as well as
more comprehensive code generation can be per-
formed from a single UML model augmented with
XML data. Such a model can also serve as a pivot
for collaboration between users of XML- and UML-
based data, promoting communication and accelerat-
ing codesign. In addition, UML can be used as a fron-
tend for editing and validating XML data.

We demonstrated the technical feasibility of our
framework with a proof-of-concept implementation,
which we based on the Eclipse Modeling Framework,
the Papyrus Modeling Environment, and the Epsilon
Transformation Language. We also presented an in-
dustrial use case in which we integrate IP-XACT de-
scriptions into MARTE models using our framework,
illustrating its potential usage and the benefits it pro-
vides compared to existing approaches. Mainly, our
framework greatly reduces manual effort and provides
a much larger degree of flexibility.

Since the imported XML data can be edited in
UML, one major issue of our approach is data con-
sistency. The original XML data and its imported
UML representation may become misaligned in case
of modifications. In addition, if a mapping between
XML and UML is applied, the mapped data needs to
be kept consistent with the UML representation of the
XML data. We will investigate how the data consis-
tency issue can be addressed, since our current ap-
proach does not provide any consistency enforcement
mechanism.

In future work, we will also further explore po-
tential mappings between XML and UML, as we be-
lieve these mappings can pave the way for new pow-
erful model-driven methodologies that utilize UML
models augmented with XML data. This will include
mappings on the level of individual attributes and ref-
erences, as our current mappings are restricted to the
level of individual elements.

Our investigations will also address the question
of how this mapping can be extended to the generation
of the UML profile from the XSD, so in addition to
the stereotypes reflecting the XSD elements, the pro-
file may contain additional stereotypes that aggregate
or abstract from the data of the XSD elements in some
way. This kind of mapping would enable our frame-
work to fully emulate some of the approaches men-
tioned in Section 2, making it a true meta-framework.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

384



ACKNOWLEDGEMENTS

This work has been partially supported by the Ger-
man Federal Ministry of Education and Research
(BMBF) in the ITEA3 project COMPACT under
grant 01|S17028C. The authors are responsible for the
content of this publication.

REFERENCES

Arpinen, T., Salminen, E., Hännikäinen, M., and Hämäläi-
nen, T. D. (2008). Model-driven Approach for Auto-
matic SPIRIT IP Integration. In PProceedings of the
Fifth International UML-SoC DAC Workshop.

Balon, S. (2008). A standard XML Format for a Network
Topology Representation. http://totem.run.monte
fiore.ulg.ac.be/doc/UserGuide/node4.html.

Bernauer, M., Kappel, G., and Kramler, G. (2004). Rep-
resenting XML Schema in UML – A Comparison of
Approaches. In ICWE 2004: Web Engineering, pages
440–444.

Bex, G. J., Neven, F., and Vansummeren, S. (2007). Infer-
ring XML Schema Definitions from XML Data. In
Proceeedings of the 33rd International Conference on
Very Large Data Bases, pages 998–1009.

EMF (2004). XML Schema to Ecore Mapping. https://
www.eclipse.org/modeling/emf/docs/overviews/XML
SchemaToEcoreMapping.pdf.

Herrera, F., Posadas, H., Villar, E., and Calvo, D. (2012).
Enhanced IP-XACT Platform Descriptions for auto-
matic Generation from UML/MARTE of fast Perfor-
mance Models for DSE. In 15th Euromicro Confer-
ence on Digital System Design, pages 692–699.

IEEE (2010). IEEE Standard for IP-XACT, Standard Struc-
ture for Packaging, Integrating, and Reusing IP within
Tool Flows. Technical report.

Khan, A., Mallet, F., André, C., and Simone, R. (2008a).
MARTE Timing Requirement and SPIRIT IP-XACT.

Khan, A., Mallet, F., André, C., and Simone, R. (2008b).
Modeling SPIRIT IP-XACT with UML MARTE.

Khan, A., Mallet, F., André, C., and Simone, R. (2009). IP-
XACT Components with abstract Time Characteriza-
tion. In 2009 Forum on Specification & Design Lan-
guages, pages 1–6.

Kovolos, D. S., Paige, R. F., and Polack, F. A. C. (2008).
The Epsilon Transformation Language. In ICMT
2008: Theory and Practice of Model Transformations,
pages 46–60.

Ochoa-Ruiz, G. (2013). A high-level Methodology for auto-
matically generating dynamically reconfigurable Sys-
tems using IP-XACT and the UML MARTE Profile.
PhD thesis, Université de Bourgogne.

OMG (2011). UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems. Techni-
cal report.

OMG (2014). Object Constraint Language. Technical re-
port.

OMG (2015). OMG Unified Modeling LanguageTM(OMG
UML). Technical report.

OMG (2016). OMG Meta Object Facility (MOF) Core
Specification. Technical report.

Revol, S., Taha, S., Terrier, F., Clouard, A., Gerard, S.,
Radermacher, A., and Dekeyser, J.-L. (2008). Uni-
fying HW Analysis and SoC Design Flows by Bridg-
ing Two Key Standards: UML and IP-XACT. In Dis-
tributed Embedded Systems: Design, Middleware and
Resources, pages 69–78.

Schattowksy, T., Xie, T., and Müller, W. (2009). A UML
frontend for IP-XACT-based IP management. In Pro-
ceedings of the Conference on Design, Automation
and Test in Europe, pages 238–243.

Tallec, J.-F. L., DeAntoni, J., Simone, R., Ferrero, B.,
Mallet, F., and Maillet-Contoz, L. (2011). Combin-
ing SystemC, IP-XACT and UML/MARTE in Model-
based SoC Design. In Workshop on Model Based En-
gineering for Embedded Systems Design.

W3C (2008). Extensible Markup Language (XML) 1.0
(Fifth Edition). Technical report.

W3C (2012a). W3C XML Schema Definition Language
(XSD) 1.1 Part 1: Structures. Technical report.

W3C (2012b). W3C XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes. Technical report.

Weissnegger, R., Pistauer, M., Schachner, M., Kreiner, C.,
Römer, K., and Steger, C. (2017). SaVeSoC - Safety
aware Virtual Prototype Generation and Evaluation of
a System on Chip. In Proceedings of the Sympo-
sium on Model-driven Approaches for Simulation En-
gineering.

Bridging XML and UML - An Automated Framework

385


