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Abstract: Autism spectrum disorder (ASD) is a lifelong condition generally characterized by social and 

communication impairments. The early diagnosis of ASD is highly desirable, and there is a need for 

developing assistive tools to support the diagnosis process in this regard. This paper presents an approach to 

help with the ASD diagnosis with a particular focus on children at early stages of development. Using 

Machine Learning, our approach aims to learn the eye-tracking patterns of ASD. The key idea is to 

transform eye-tracking scanpaths into a visual representation, and hence the diagnosis can be approached as 

an image classification task. Our experimental results evidently demonstrated that such visual 

representations could simplify the prediction problem, and attained a high accuracy as well. With simple 

neural network models and a relatively limited dataset, our approach could realize a quite promising 

accuracy of classification (AUC > 0.9).  

1 INTRODUCTION 

Autism Spectrum Disorder (ASD) is described as a 

pervasive developmental disorder characterized by a 

set of impairments including social communication 

problems, difficulties with reciprocal social 

interactions, and unusual patterns of repetitive 

behavior (Wing and Gould, 1979).  According to the 

U.S. Department of Health and Human Services, 

ASD has been considered to affect about 1% of the 

world’s population (DOH, 2018). Individuals 

diagnosed with ASD typically suffer from deficits in 

social communication and interaction across 

multiple contexts. Particularly, they could be 

incapable of making and maintaining eye contact, or 

keeping their focus on specific tasks. Such troubling 

symptoms can unfortunately place a considerable 

strain on their lives and their families. 

The diagnosis of ASD is highly desirable at early 

stages in terms of benefits for both child and the 

family. The diagnosis process usually involves a set 

of cognitive tests that could require hours of clinical 

examinations. In addition, the variation of symptoms 

makes the identification of ASD more complicated 

to decide. In this respect, computer-aided 

technologies have come into prominence in order to 

provide guidance through the course of examination 

and assessment. Examples include Magnetic 

Resonance Imaging (MRI), Electroencephalography, 

and eye-tracking that is the focus of this study. 

Eye-tracking is the process of capturing, tracking 

and measuring eye movements or the absolute point 

of gaze (POG), which refers to the point where the 

eye gaze is focused in the visual scene (Majaranta 

and Bulling, 2014). The eye-tracking technology 

received particular attention in the ASD context 

since abnormalities of gaze have been consistently 

recognized as the hallmark of autism in general. The 

Psychology literature is replete with studies that 

analyzed eye movements in response to verbal or 

visual cues as signs of ASD (e.g. Coonrod and 

Stone, 2004; Jones et al., 2014; Sepeta et al., 2012; 

Wallace et al., 2012).  

Furthermore, the coupling of eye-tracking 

instruments with modern AI techniques is leveraging 

further capabilities for advancing the diagnosis and 

its applications. Data-driven techniques, such as 

Machine Learning (ML), are increasingly embraced 

to provide a second opinion that is considered to be 

less biased and reproducible. This study follows on 

the path of integrating the eye-tracking technology 
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in tandem with ML to support the diagnosis of ASD. 

The study is part of interdisciplinary collaboration 

between research units of Psychology and AI. 

Our approach is distinctively based on the 

premise that visual representations of eye-tracking 

scanpaths can discriminate the gaze beahviour of 

autism. At its core, the key idea is to compactly 

render eye movements into an image-based format 

while maintaining the dynamic characteristics of eye 

motion (e.g. velocity, acceleration) using color 

gradients. In this manner, the prediction problem can 

be approached as an image classification task. The 

potential of our approach is evidently demonstrated 

in terms of promising classification accuracy though 

using largely simple ML models. 

2 RELATED WORK 

Plentiful studies sought to take advantage of eye-

tracking for the study and analysis of ASD. For 

instance, Vabalas and Freeth (2016) demonstrated 

interesting physiological elements based on eye-

tracking experiments. In face-to-face interactions, 

eye movements were different among individuals 

who fell on different positions on the spectrum of 

autism. Specifically, persons with high autistic traits 

were observed to have shorter and less frequent 

saccades. In another study, eye-tracking was used to 

identify ASD-diagnosed toddlers based on the 

duration of fixations and the number of saccades 

(Pierce et al., 2011). Their results showed that 

participants with ASD spent significantly more time 

fixating on dynamic geometric images compared to 

other groups.  

Likewise, a longitudinal study examined the patterns 

of eye fixation for infants aged 2 to 6 months (Jones 

and Klin, 2013). They notably indicated that ASD-

diagnosed infants exhibited a mean decline in eye 

fixation, which was not observed for those who did 

not develop ASD afterwards. Moreover, another 

cohort study suggested the strong potential of eye-

tracking as an objective tool for quantifying autism 

risk and estimating the severity of symptoms 

(Frazier et al., 2016).  

More recent studies attempted to makes use of 

eye-tracking to build predictive ML models. To 

name a few, Pusiol et al. (2016) worked on the 

analysis of the eye focus on the face during 

conversations. This was specifically applied to 

developmental disorder (DD) children or Fragile X 

Syndrome (FXS) children. A set of classification 

models were experimented including Recurrent 

Neural Networks (RNN), Support Vector Machines 

(SVM), Naive Bayes, and Hidden Markov Model. 

With RNN, they were able to reach a high prediction 

accuracy of 86% and 91% for the classification of 

female and male FXS patients respectively. Another 

recent study applied ML on eye-tracking output in 

order to predict ASD (Carette et al., 2017). The ML 

model included features related to the saccade eye 

movement (e.g. amplitude, duration, acceleration). 

Their experiments aimed at detecting ASD among a 

set of 17 children aged 8 to 10 years. Despite using a 

limited dataset and a relatively simple model, they 

demonstrated promising potentials of ML 

application in this regard. 

Compared to earleir efforts, the main distinction 

of the present work is that it is purely reliant on the 

visual representation of eye-tracking recordings. We 

produce scanpath visualizations that represent the 

spatial coordinates of the eye movement along with 

its dyanmics. The approach allowed for simplifying 

the model training, and attained high accuracy as 

well. It is claimed that such approach has not been 

applied before in the context of ASD, to the best of 

our knowledge.  

3 DATA ACQUISTION 

3.1 Participants 

A group of 59 children took part in this study. It was 

highly desirable to have participants at an early stage 

of development, as the principal goal was towards 

supporting the early detection and diagnosis of ASD. 

Specifically, all participants were school-aged 

children of average age about 8 years. Figure 1 

provides a box plot showing the distribution of age.  

A group of typically developing (TD) children 

was recruited from a number of French schools in 

the region of Hauts-de-France. Parental reports of 

any possible concerns were carefully considered. 

Both informed consent from parents and assent from 

subjects were confirmed for all cases. Moreover, all 

procedures involving human participants were 

conducted in accordance with the ethical standards 

of the institutional and/or national research 

committee and with the 1964 Helsinki declaration 

and its later amendments or comparable ethical 

standards.  

The participants were broadly organized into two 

groups as: i) ASD-Diagnosed, or ii) Non-ASD. 

ASD-diagnosed children were examined in 

multidisciplinary ASD specialty clinics. The 

intensity of autism was estimated by psychologists 
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based on the Childhood Autism Rating Scale 

(CARS) (Schopler et al., 1980).  

Figure 2 gives the distribution of CARS score 

among ASD-diagnosed participants using a box plot. 

Further, Table 1 gives summary statistics of the 

participants (e.g. gender distribution, age mean). 

 

Figure 1: The age distribution in all participants. 

 

Figure 2: The distribution of CARS in ASD-diagnosed 

participants. 

Table 1: Summary statistics of participants. 

Number of Participants 59 

Gender Distribution (M / F) 38 (≈ 64%)                  

/ 21 (≈ 36%) 

Number of Non-ASD 30 

Number of ASD-Diagnosed 29 

Age (Mean / Median) years 7.88 / 8.1 

CARS (Mean / Median) 32.97 / 34.50 

3.2 Experimental Protocol 

The participants were invited to watch a set of 

videos, which included scenarios tailored 

specifically to stimulate the eye movement across 

the screen area. Participants could be seated on their 

own or on their parents’ lap at approximately 60-cm 

distance from the display screen. The experiments 

were conducted in a quiet room at the University 

premises. Physical white barriers were also used to 

reduce visual distractions. 

The scenarios varied in content and length in 

order to allow for analyzing the ocular activity of 

participants from different perspectives. In general, 

videos were designed to include visual elements that 

can be especially attractive to children (e.g. colorful 

balloons, cartoons). The position of elements can 

also change throughout the course of experiment. In 

addition, some videos could include a human 

presenter who speaks and attempts to turn the child’s 

attention to visible or invisible elements around. All 

conversations were performed in French as the 

native language of participants. Figure 3 presents a 

screenshot captured from one of the videos used in 

eye-tracking experiments. 

Further stimuli were presented from the SMI 

Experiment Center Software. Stimuli represented 

multiple distinct types used in the eye gaze 

literature. Examples included static and dynamic 

naturalistic scenes with and without receptive 

language, joint attention stimuli, static face or 

objects and cartoons stimuli. The average duration 

of eye-tracking experiments was about 5 minutes. 

Participants were mainly examined for the 

quality of eye contact with the presenter, and the 

level of focus on other elements. A five-point 

calibration scheme was used. The calibration routine 

was followed by a set of verification procedures. 

 

Figure 3: Screenshot captured from one of the videos. 

3.3 Eye-tracking Records  

The SMI remote eye-tracker (Red-m 250Hz) was the 

main instrument used to perform the eye-tracking 

function. The device belongs to the category of 

screen-based eye-trackers. It can be conveniently 

placed at the bottom of the screen of a desktop PC or 

laptop. In our case, a 17-inch monitor of 1280x1024 

resolution was used. 

Three basic categories of eye movements are 

aimed to be captured by eye-trackers including: i) 

Fixation, ii) Saccade, and iii) Blink. A fixation is the 

brief moment that happens while pausing the gaze 

on an object in order that the brain can perform  
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Table 2: A snapshot of eye-tracking records. 

Recording 

Timestamp 

[ms] 

Category 

Right 

Category 

Left 

Point of 

Regard Right 

X [px] 

Point of 

Regard Right 

Y [px] 

Point of Regard 

Right Y [px] 

Point of 

Regard Left Y 

[px] 

8005654.069 Fixation Fixation 1033.9115 834.0902 1033.9115 834.0902 

8005673.953 Fixation Fixation 1030.3754 826.0894 1030.3754 826.0894 

8005693.85 Saccade Saccade 1027.337 826.3127 1027.337 826.3127 

8005713.7 Saccade Saccade 1015.0085 849.2188 1015.0085 849.2188 

8005733.589 Saccade Saccade 613.7673 418.1735 613.7673 418.1735 

 

the perception process. The average duration of 

fixation was estimated to be 330 milliseconds 

(Henderson, 2003). Further, the accurate perception 

requires constant scanning of the object with rapid 

eye movements, which are so-called saccades. 

Saccades include quick, ballistic jumps of 2o or 

longer that take about 30–120 milliseconds each 

(Jacob, 1995). On the other hand, a blink would 

often be a sign that the system has lost track of the 

eye gaze. 

Likewise, the initial records of our eye-tracking 

experiments essentially included the features 

described above. In addition, the eye-tracker 

provided the (x,y) coordinates that represented the 

participant's gaze direction into the screen. The 

coordinates were of special significance to 

implement our approach for drawing the virtual path 

of the viewer’s POG and the dynamics of movement 

as well (e.g. velocity, acceleration). 

Table 2 provides a simplified snapshot of the 

eye-tracking records. The records describe the 

category of movement and the POG for the left and 

right eyes over time. The table lists five records of 

eye movements including two fixations and three 

saccades. Due to limited space, many variables are 

not included in the table (e.g. pupil size, pupil 

diameter, pupil position). 

3.4 Visualization of Eye-tracking 
Scanpaths 

A scanpath represents the sequence of consecutive 

fixations and saccades as a trace through time and 

space that may overlap itself (Goldberg and 

Helfman, 2010). The premise of the study is based 

on learning the visual patterns of scanpaths. 

Specifically, the core idea was to compactly render 

the eye movements into a visual representation that 

can simplify and describe the path and dynamics of 

eye movement. 

To achieve this, we availed of the coordinates 

included in eye-tracking records, which represented 

the change in participant's gaze direction into the 

screen with respect to time. Based on the change in 

position along associated time, we were able to 

calculate the velocity of gaze movement. The 

acceleration of movement could be computed based 

on the change in velocity, and the jerk of movement 

could be accordingly computed based on the change 

in acceleration. As such, the variation of velocity, 

acceleration and jerk could describe properly the 

dynamics of eye motion. 

Subsequently, the path of eye motion along with 

computed dynamics were transformed into images. 

For every participant, a set of images could describe 

the visual patterns of gaze behavior. Specifically, an 

image is constructed as below: 

 A line is drawn for each transition from 

position (xt, yt) to (xt+1, yt+1), where t is a 

defined point of time during the experiment. 

 The change in color across the line 

represented the movement dynamics. The 

values of RGB components were tuned based 

on velocity, acceleration and jerk with respect 

to time. For instance, the values of velocity 

range from black (i.e. low) to red (i.e. high). 

In this manner, higher values of velocity shift 

gradually towards deeper red values. 

Likewise, the acceleration and jerk were set 

using color gradients of green and blue 

respectively. 

 The images produced were vertically 

mirrored since the origin was located at the 

bottom of the screen. 

All color values were capped to one-quarter of 

the diagonal length of the display screen. With this 

cap, images represented the eye movements 

including saccades (yellow or white, white 

representing very fast movements, exceeding the 

cap), and fixations as cyan. 
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Figure 4: Visualization of eye-tracking scanpaths. The left-sided image represents an ASD-diagnosed participant, while the 

other is for non-ASD. 

In addition, images were constrained to contain 

the same level of information approximately. 

Specifically, a threshold was applied to limit the 

number of points to be drawn. The threshold was 

aimed to be high enough to sufficiently describe the 

pattern of gaze behavior. However, overly high 

values could increase the possibility of producing 

cluttered visualizations. Therefore, several tests were 

conducted to choose an appropriate value for the 

threshold. With a threshold ranging from 100 to 150, 

images seemed to include fewer lines, which turned 

out to poorly discriminate the two classes of 

participants. Eventually, it was decided to set the 

threshold at 200, which largely struck an adequate 

balance, and could capture the key features of eye 

motion. The visualizations were produced using 

Python along with the popular Matplotlib library 

(Hunter, 2007).  

Figure 4 presents examples of scanpaths 

visualizations corresponding to ASD and non-ASD 

participants. As it appears, the center of both images 

includes areas of high density, which probably 

represent one of the main points of focus in the 

video scenario. The visualizations may also 

highlight other points of focus x at the right side of 

the screen. These focus points are drawn as cyan 

(i.e. low velocity, but high acceleration and jerk), 

while other widely diffused lines seem yellow (i.e. 

high velocity, medium acceleration and jerk). 

The figures can also describe the distinction of 

the gaze movement in both cases. For example, it 

can be noticed that the ASD-diagnosed participant 

had a tendency to look at the bottom of the screen, 

where the eye-tracking device was placed.  

The visualizations resulted in an image dataset 

containing 547 images. Specifically, 328 images for 

the non-ASD participants, and 219 images for others 

(i.e. ASD-diagnosed). The default image dimension 

was set as 640x480. A more comprehensive 

presentation of the process of data acquisition and 

transformation was elaborated in an earlier 

publication (Carette et al., 2018). Further, the dataset 

along with metadata files were recently published 

and made publicly available on the Figshare data 

repository (Figshare, 2018). It is conceived that the 

dataset itself could be useful for developing further 

applications or discovering interesting insights using 

data mining or other AI techniques.  

4 DATA AUGMENTATION AND 

PRE-PROCESSING 

4.1 Image Augmentation 

Image augmentation is a common technique to 

enlarge datasets, and help models generalize better 

and reduce the possibility of overfitting. The basic 

idea of augmentation is to produce synthetic samples 

using a random set of image transformations (e.g.  

rotation, shearing). Augmentation was recognized to 

improve the prediction accuracy in image 

classification applications (e.g. Xu et al., 2016; 

Perez and Wang, 2017). 

Similarly, we applied augmentation to produce 

variations of the eye- scanpath visualizations. The 

dataset was augmented with additional 2,735 

samples, where five synthetic images were generated 

for each visualization. The data augmentation 

process was greatly simplified thanks to the Keras 

library (Chollet, 2015), which includes an easy-to-

use API for that purpose. 
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Figure 5: The procedures of dimensionality reduction. 

4.2 Dimensionality Reduction 

The reduction of problem dimensionality is a vital 

part in the development of ML models. The 

dimensionality refers to the number of variables (i.e. 

features) under consideration. In our case, the initial 

dimensionality was 640*480*3 (i.e. image size* 

RGB components). This translates into more than 

900K features to be considered, which can 

complicate the model training and largely increases 

the possibility of overfitting as well. 

To simplify the learning process, a set of image 

processing techniques was applied in sequence as 

follows. First, all images were consistently scaled 

down to 100x100 dimensions. It was expected that 

such resizing would not lead to much loss of 

information since most images contained a large 

blank space of unused pixels. The impact of new 

dimensions was also examined in the initial ML 

experiments. 

Second, the images were converted into a 

grayscale format for further simplification. 

The grayscale transformation reduces the image 

representation by eliminating the hue and saturation 

information while retaining the luminance. 

Specifically, the grayscale values were computed by 

forming a weighted sum of the R, G, and B 

components as in the equation below. This 

contributed to reducing the visual representation 

from 100x100x3 to 100x100x1. It turned out that the 

grayscale spectrum was mostly sufficient to 

discriminate the eye-tracking patterns in terms of 

velocity, acceleration, and jerk. 

Luminance=0.299*R + 0.587*G + 0.114*B  

Where R, G and B represent the values of the Red, 

Green and Blue components, and the coefficients are 

used to calculate luminance (ITU, 2017). 

Eventually, Principal Component Analysis 

(PCA) was implemented to transform grayscale 

images into a more compressed format. Using 

orthogonal transformations, PCA attempts to convert 

a possibly correlated set of data (e.g. signals or 

images) into a linearly uncorrelated set of reduced 

dimensions. PCA is one of the most popular 

techniques for dimensionality reduction that has 

been widely applied in problems dealing with data 

of high dimensionality such as image compression 

(Du and Fowler, 2007), and face recognition (Draper 

et al., 2003). In our case, the 10K feature set was 

transformed into 50 components. This significantly 

reduced the dimensionally into less than 1% of the 

original dataset. The number of components was 

empirically decided based on the model accuracy. 

Figure 5 summarizes the pre-processing procedures 

along with the dimensions output from each step. 

5 EXPERIMENTAL RESULTS 

The experimental results are divided into three 

sections as follows. Initially, we aimed to develop a 

binary classifier that can basically predict the two 

categories of participants. Subsequently, the 

accuracy of a multi-label classification model was 

experimented. Further, a simple web-based tool is 

presented as a practical demo that can be used 

during the diagnosis process. 

5.1 Binary Classifier 

We conducted our experiments using several ML 

models. Initially, non-neural network approaches 

were tested including: Naive Bayes, Logistic 

Regression, SVM, and Random Forests. Those 

models were implemented using the Scikit-Learn 

library (Pedregosa et al., 2011). Generally, the 

accuracy realized by that category of models was 

relatively fair (AUC ≈ 0.7).  

Subsequently, the model was experimented using 

various Artificial Neural Network (ANN) structures 

as follows. Initially, the simplest model structure 

included a single hidden layer of 50 neurons. The 

complexity of the model was gradually increased by 

adding more neurons (e.g. 200, 500). 
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Figure 6: ROC curves of the binary classification models. 

Subsequently, another hidden layer was included 

in the model. The two layers consisted of 80 and 40 

neurons respectively. It turned out the there was no 

need to introduce further complexity in the model 

based on the prediction accuracy as given in the next 

section. Table 3 lists the ANN architectures included 

in our experiments. The ML experiments were 

implemented using the Keras library (Chollet, 2015) 

with Python. The models were trained based on 10 

rounds of cross-validation including 100 epochs and 

20% dropout.  

The classification accuracy is analyzed based on 

the Receiver Operating Characteristics (ROC) curve. 

The ROC curve plots the relationship between the 

true positive rate and the false positive rate across a 

full range of possible thresholds. Figure 6 plots the 

ROC curves for the set of ANNs experimented. The 

figure also shows the approximate value of the area 

under the curve along with its standard deviation 

over the 10-fold cross-validation. 

At it appears, the neural network models 

obviously outperform other approaches. All neural 

networks provided a notable prediction accuracy that 

went beyond 90%. Specifically, the single-layer 

model of 200 could yield the best performance 

(≈92.0%).  

However, it is noteworthy that there was no 

substantial improvement by growing the model 

complexity either by increasing the number of 

neurons or stacking more hidden layers. Thus, we 

can say that a single-layer neural network was 

sufficient in our case, which is a promising outcome 

using a relatively limited dataset. 

Table 3: ANN architectures. 

 Model Architecture 

Hidden Layers Number of 

Neurons 

Experiment #1 

Single-Layer 

50 

Experiment #2 200 

Experiment #3 500 

Experiment #4 Two-Layer (80, 40) 

5.2 Multi-Label Classifier 

A finer classification of ASD-diagnosed participants 

was applied to allow for training a multi-label 

model. We followed the basic grouping that describe 
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Figure 7: Confusion matrix of the multi-label classifier. 

the severity of autism symptoms based on the CARS 
score (Schopler et al., 1985). Specifically, ASD 
participants were organized into smaller groups as 
follows: i) Low, ii) Mild, and iii) Severe. Table 4 
gives the specific categoreis of ASD participants 
based on the CARS score. 

Table 4: Classification of ASD participants. 

ASD Category Range of CARS Score 

Low CARS < 30 

Mild 30<= CARS < 36 

Severe CARS >= 36 

The multi-label classification model was trained 

using neural networks only. We experimented 

single-layer model of 200 neurons and two-layer 

model as before. The average accuracy of the single-

layer model was still higher (≈83%) compared to 

about 81%. 

Though the accuracy relatively declined, the 

approach still proved very good performance. Figure 

7 provides a confusion matrix that visulaizes the 

normalized classification accuracy (single-layer 

model). The model turned out to discriminate the 

non-ASD labels very well compared to others. The 

prediction accuracy of ASD labels was 20% lower 

(at least), especially for the severe-ASD examples. 

 

 

5.3 Demo Application  

A demo application was developed to serve as a 

practical illustration of our approach. The 

application links the three components altogether 

including eye-tracking, visualization and ML to 

support the diagnosis of ASD. The application 

includes three layers as: i) Presentation, and ii) Web 

services, and iii) Prediction.  

The presentation layer performs the basic user 

interface functionality and interactivity. The 

presentation elements were delivered using 

ASP.NET along with JavaScript. The layers of web 

services and prediction were fully implemented by 

the Azure ML Studio. Specifically, Azure ML is 

employed to host the classification model and the 

Python implementation used to produce 

visualizations. The Azure ML platform provides an 

ideal environment for data analytics with the ability 

to deploy ML models as web services. In this 

manner, ML models can be conveniently used 

through web services using request/response calls. 

Figure 8 sketches the application architecture. 

The application goes through three steps as 

follows. First, the user is asked to upload the eye-

tracking data. The data records should describe the 

coordinates of the viewer’s gaze into the screen 

along with associated time as shown earlier in 

Table2. Second, the application produces a 
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Figure 8: The demo application architecture. 

visualization of the eye-tracking records. The 

visualization is constructed through calling a web 

service hosted on the Azure ML Studio. The web 

service executes a Python module deployed to create 

visualizations of the eye movement and its 

dynamics.  

Eventually, the application calls the prediction 

web service, which returns the prediction from the 

trained classification model. All communication 

with the web services is conducted through standard 

HTTP requests/response. The application can be 

accessed online via <https://goo.gl/i4N7Zj>. 

6 LIMITATIONS 

Even though the results presented in this study are 

promising, a set of limitations need to be highlighted 

as follows. The primary limitation could be the 

relatively small number of participants.  

Another relevant issue of concern is the duration 

of video scenarios, which was fairly short. Perhaps 

longer scenarios could have allowed for a richer 

visual representation of the gaze behavior of ASD. 

Despite limitations, the study is still believed to 

serve as a kernel for further interesting applications 

of the proposed approach. 

7 CONCLUSIONS 

The coupling of eye-tracking, visualization and ML 

can hold a strong potential for the development of an 

objective tool to assist the diagnosis of ASD. The 

ML experiments confirmed the core idea behind our 

approach, which hinges on the visual representation 

of eye-tracking scanpaths. The classification 

accuracy indicated that visualizations were able to 

successfully pack the information of eye motion and 

its underlying dynamics.  

From a practical standpoint, it is noteworthy that 

we could reach that high accuracy with largely 

simple ML models. Using simple ANN Classifiers, 

the prediction accuracy could go beyond 90%. This 

should be compared positively to related efforts that 

used different sets of features and more complex 

models (e.g.  Wan et al., 2018; Carette et al., 2017). 

It is conceived that our approach might be 

applicable to comparable diagnostic problems. In a 

broader sense, the visualization of eye-tracking 

scanpaths could possibly be utilized for assisting the 

diagnosis of similar psychological disorders.  
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