
Monotonic and Non-monotonic Context Delegation

Mouiad AL-Wahah and Csilla Farkas
College of Engineering and Computing, University of South Carolina, 301 Main St, Columbia, SC, U.S.A.

Keywords: Description Logic, Monotonic, Non-monotonic, OWL Ontology, Context Delegation, Access Control,
Authorization.

Abstract: Delegating access privileges is a common practice of access control mechanisms. Delegation is usually used
for distributing responsibilities of task management among entities. Delegation comes in two forms, GRANT
and TRANSFER. In GRANT delegation, a successful delegation operation allows delegated privileges to be
available to both the delegator and delegatee. In TRANSFER delegation, delegated privileges are no longer
available to the delegator. Although several delegation approaches have been proposed, current models do not
consider the issue of context delegation in context-based access control policies. We present two ontology-
based context delegation approaches. Monotonic context delegation, which adopts GRANT version of del-
egation, and non-monotonic for TRANSFER version of delegation. The approach presented here provides
a dynamic and adaptive privilege delegation for access control policies. We employ Description logic (DL)
and Logic Programming (LP) technologies for modeling contexts, delegation and CBAC privileges. We have
designed three lightweight Web Ontology Language (OWL) ontologies, CTX, CBAC, and DEL, for context,
Context-Based Access Control (CBAC), and delegation, respectively. We show that semantic-based techniques
can be used to support adaptive and dynamic context delegation for CBAC policies. We provide the formal
framework of the approaches and show that they are sound, consistent and preserve least-privilege principle.

1 INTRODUCTION

In dynamic environments like pervasive systems,
ubiquitous computing, ambient intelligence, and
more recently, Internet of Things (IoT), there is an as-
sociation between a system and its environment and
the system always adapts to its ever-changing envi-
ronment. This situation makes the Context-Based Ac-
cess Control (CBAC) the method of choice for such
environments.

The fundamental idea behind delegation is that
some active entity in a system, the delegator, dele-
gates privileges to another active entity, the delega-
tee, to carry out some functions on behalf of the for-
mer. Delegation comes in two forms (Crampton and
Khambhammettu, 2008), GRANT and TRANSFER.
In GRANT delegation, a successful delegation oper-
ation allows delegated permissions to be available to
both the delegator and delegatee. In TRANSFER del-
egation, the delegated permissions are no longer avail-
able to the delegator.

There is a significant previous work on Context-
Based Access Control (CBAC) (Bhatti et al., 2005;
Toninelli et al., 2006; Kulkarni and Tripathi, 2008;
Shen and Cheng, 2011; Corradi et al., 2004; Trnka

and Cerny, 2016; Kagal et al., 2006; Gusmeroli et al.,
2013). However, support to delegate CBAC privi-
leges is limited. For example, approaches described
in (Bhatti et al., 2005; Toninelli et al., 2006; Kulkarni
and Tripathi, 2008; Shen and Cheng, 2011; Bellav-
ista and Montanari, 2017) do not provide any delega-
tion services. Most of the existing delegation meth-
ods are based on traditional access control models,
such as Role-Based Access Control (RBAC) models
(Trnka and Cerny, 2016; Zhang et al., 2001). Methods
such as attribute-based delegation (Servos and Os-
born, 2016; Servos and Osborn, 2017) and capability-
based delegation (Kagal et al., 2006; Gusmeroli et al.,
2013) requires that the underlying access control pol-
icy is changed. Moreover, none of the methods ad-
dress the issue of context delegation when the ac-
cess authorization is a context-dependent. Further-
more, only a few approaches have extensively stud-
ied TRANSFER delegation due to the complexity of
enforcing TRANSFER delegation mechanisms. This
paper extends the work presented by the same authors
in (AL-Wahah and Farkas, 2018).

The main contributions of our approach are: 1)
Our method provides dynamic and adaptive context

Al-Wahah, M. and Farkas, C.
Monotonic and Non-monotonic Context Delegation.
DOI: 10.5220/0007400904490460
In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 449-460
ISBN: 978-989-758-359-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

449

delegation that does not modify the original access
control policy in case of monotonic delegation. For
non-monotonic delegation, the approach incurs only
selective changes to the underlying access control pol-
icy. Dynamic adaptability is provided through pol-
icy adjustment operations that keep the policy rules
on update with the latest context changes. Adap-
tation is needed, in our approach, in situations: (i)
When context of the requester/resource/environment
changes, that change should be reflected on the access
control policy. (ii) In TRANSFER delegation, the
delegated permissions have to be moved (temporar-
ily or permanently) from the delegator to the delega-
tee and this needs the policy to be updated to cope
with this situation. 2) Our approach can be adopted
by existing CBAC systems which do not provide del-
egation services. 3) Our semantic-based delegation
model supports capabilities such as checking the ac-
cess control and delegation policies for conflict and
consistency, explaining inferences and helping to in-
stantiate and validate the variables in dynamic envi-
ronments. 4) We provide the formal proof that context
delegation and its delegation-supported authorization
enforcement are sound, consistent and preserve the
least privilege principle.

The rest of this paper is organized as follows: In
section 2, we present the context-based access control
system modeling. Section 3 is dedicated to semantic-
based context delegation. In section 4, we present
the properties of our approach and the proofs of these
properties, and finally in section 5, we conclude with
suggestions for future work.

2 CBAC SYSTEM MODELING

In this section, we give a brief overview of the
Context-Based access control. ”Context” has been
defined by Dey et al. (Dey et al., 2001) as ”any infor-
mation that is useful for characterizing the state or the
activity of an entity or the world in which this entity
operates.” In CBAC, the system administrator (or re-
source owner) specifies a set of contexts and defines
for each context c the set of applicable permissions.
When an entity (a user) operates under a certain con-
text, (s)he acquires the set of permissions (if any) that
are associated with the active context. When (s)he
changes the active context, the previous permissions
are automatically revoked, and the new permissions
acquired (Corradi et al., 2004). Hence, Context plays
the role of a bridge between the requester and the ac-
cess permissions. If a requester has a context c at the
time in which the request is made and that c is as-
sociated with permission p, then (s)he can access a

resource using permission p.

2.1 Context-based Access Control
Model

Access requests are evaluated based on the contexts
associated with the subject and the requested. The re-
quest is matched with context metadata that specify
and activate the policy rule that to be enforced. We
use rule-based Logic Programming (LP) to encode
context and policy rules.
Definition 1. (Access Control Policy (ACP) Rules.)
Access control policy rule is given as a 6-
tuple 〈s,sc,r,rc, p,ac〉, where s ∈ Sub ject, r ∈
Resource, sc, rc ∈ Context, where sc is the
subject’s context and rc is the resource context,
p ∈ Permission={”Deny”,”Permit”}, and ac ∈
Action={read, write,delegate,revoke}. Each rule is
instantiated by an access request, using the model on-
tologies and rules, and is evaluated at runtime to reach
a decision.
Definition 2. (Access Request (AR).) An Access re-
quest is given as a triple 〈s,r,ac〉, where s ∈ Sub ject,
r ∈ Resource, ac ∈ Action.

For example, an access request denoted as ar =
〈s,r,”read”〉, represents the case when subject s is re-
questing a ”read” access to a resource r. The policy
engine requests the contexts of s and r, and evaluates
the permission p for the request ar. Assume the con-
texts of s and r are sc and rc, respectively. If using the
contexts sc and rc, the policy engine can derive a per-
mission, i.e., p is ”Permit”, and there is no conflict,
it grants the access permission for the request. Oth-
erwise, it denies the request. This kind of access au-
thorization does not involve the case when delegation
is present within access control policy setting. Algo-
rithm 1 represents this kind of access authorization.
Definition 3. (Monotonic Reasoning.) Let O1 and O2
two DL ontologies, and c is a DL axiom. O1 entails c
(equivalently, c is a logical consequence of O1), writ-
ten as O1 |= c if we have O2 ⊆ O1 and O2 |= c. In
secure authorization terms, monotonic authorization
reasoning means that positive (and negative) autho-
rizations will not be altered when new facts are added
into the knowledge base. Hence, what is previously
inferred as a permitted action still holds even after
new facts are asserted (or inferred) into the knowl-
edge base.
Definition 4. (Closed World Assumption (CWA)
(Pratt, 1994).) Closed World Assumption is the as-
sumption that what is not known to be true is false. In
CWA, absence of information is interpreted as neg-
ative information. CWA assumes complete informa-

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

450

tion about a given state of affairs, which is useful for
constraining information and validating data in an ap-
plication such as a relational database.

Algorithm 1: Simple Access Authorization.
Input: CBAC, CBAC ontology and RQ is an Access
Request. RS is Jena rule-set
Output: Access decision, either ”Deny” or ”Permit”.

1: RT←parse(RQ) . RT = 〈s,r,ac〉
2: if RT = access then
3: sc←getContext(s);
4: rc←getContext(r);
5: p←evaluate(s,sc,r,rc,CBAC,RS);
6: if p = ”Permit” AND

noCon f lict(p,s,sc,r,rc,CBAC,RS) then
7: return(”Permit”);
8: exit();
9: end if

10: else
11: return(”Deny”);
12: exit();
13: end if

Definition 5. (Non-monotonic Reasoning.) Let KB1
and KB2 be two knowledge bases, and c is a conse-
quence. We may have that KB2 ⊆KB1 and KB2 |=d c,
but KB1 2d c. In secure authorization terms, non-
monotonic authorization reasoning means that pos-
itive (and negative) authorizations may be altered
when new facts are added into the knowledge base.
Hence, what is previously inferred as a permitted ac-
tion may not hold when new facts are asserted (or in-
ferred) into the knowledge base.

Definition 6. (Open World Assumption (OWA) (Hit-
zler et al., 2010).) The Open World Assumption is
the assumption that what is not known to be true,
is unknown. In OWA, absence of information is in-
terpreted as unknown information that may be added
later. OWA assumes incomplete information about a
given state of affairs, which is useful for extending
information in an application such as ontology-based
applications and Semantic Web.

For the sake of this paper, CWA is better suited,
because we need to capture who has access per-
mission to a certain resource and not the reverse.
CWA assumes non-deductibility as a failure to pre-
vent granting access rights. For example, the access
authorization algorithm needs to know who has the
permission to access a certain resource but not all
those who have not the access permission to that re-
source. For this reason, we have used Jena forward
chaining rules to assert access authorization decisions
and also for blocking delegation-based access permis-
sions. Jena rules are used to enforce the CWA after all

semantic inferences are made.

Definition 7. (Least Privilege Principle (Schneider,
2003).) The least privilege principle states that a sub-
ject should be given only those privileges that it needs
in order to complete its task

2.2 Ontology-based Context Model

To model the context, we adopt a Description
Logic (DL)-based method that partially resembles the
method adopted by Bellavista and Montanari (Bellav-
ista and Montanari, 2017). However, our context rep-
resentation differs than that adopted by (Bellavista
and Montanari, 2017). They have tightly coupled
the subject’s context (they call it the requester con-
text), the resource’s context, the environmental con-
text and the time context in one context (protection
context). In our model, the subject’s context and re-
source’s context are separated. To support context
delegation, we modify the subject’s context only. We
represent our model using the OWL-DL ontologies,
the reader is referred to (Hitzler et al., 2010) and
(https://www.w3.org/OWL/, Data accessed on April
13 2018) for additional description on the current
OWL standard.

Our context model is built around the concept of
contextual attribute, information which models con-
textual attributes of the physical/logical environment
such as location and temperature. Specific context
subclasses can be represented under Generic Concept
Context. Each subcontext class consists of attribute
values and constants. In our model, the generic con-
text of the subject is given by the following DL axiom:

SContext ≡Context u (Useru∃hasID.IDentity
u∃hasRole.Roleu∃hasGroup.Group)
u (Environment u∃hasLocation.Location)u
(T Element u∃hasTime.Time Interval)u∃
hasID.Identi f ier (1)

For example, A reference context of OnDutyDoctor
is represented as follows:

OnDutyDoctor ≡Context u (Useru∃hasID.IDentity
u∃hasRole.Role{Doctor}u∃hasGroup.Group
{InShi f tDoctors})u (Environment{WorkingEnvrnt}
u∃hasLocation.Location{Hospital})u (T Element
{WorkingTime}u∃hasTime{xsd : dateTime
[≥ 2018−04−06T 09 : 00 : 00,≤ 2018−04−06
T 17 : 00 : 00]})u∃hasID.{0} (2)

Note that the concept OnDutyDoctor includes all the
characteristics specifications of the generic concept

Monotonic and Non-monotonic Context Delegation

451

SContext. We call this context a re f erence context.
It holds the high-level context of an entity which will
be used later as a reference when we need to in-
stantiate the active context of that entity. The active
context holds the entity context at a specific instant
of time. For example, when an entity requests an ac-
cess to a resource. Active contexts are similar to their
re f erence contexts counterparts. However, they dif-
fer in that they do not have range values in their defini-
tions. Active context reflects a real snapshot of an en-
tity’s context at a specific time instant. For example,
the following DL axiom describes a certain user con-
text at 2018-04-06T14:23:00, which represents 2:23
pm on April 6, 2018:

OnDutyDoctor{Bob} ≡Context u (User{Bob}u∃
hasID.IDentity{Doctor563}u∃hasRole.Role
{Doctor}u∃hasGroup.Group{InShi f tDoctors})u
(Environment{WorkingEnvrnt}u∃hasLocation
.Location{HospitalA})u (T Element{WorkingTime}
u existshasTime.Time Instance{xsd : dateTime
[2018−04−06T 14 : 23 : 00]})u∃hasID.{0} (3)

This concept states that Bob is OnDutyDoctor at
time 2:23 pm on April 6, 2018, if he is a user, has
a role of Doctor, belongs to a group that is called
InShi f tDoctor, within a WorkingEnvrnt, at location
Hospital and during the WorkingTime.

The context ontology can be extended or shrinked
by adding or removing subcontexts or by adding or
removing contextual attributes to the subcontexts.

3 SEMANTIC-BASED CONTEXT
DELEGATION

The purpose of delegation is to grant/transfer access
privileges from one entity, the delegator, to another
entity, the delegatee. We require that the delegator
must have the access privilege that is associated with
context to be delegated. Delegating a subset of con-
textual attributes may result in a number of problems.
These problems:

• Colluding (Servos and Osborn, 2016; Servos and
Osborn, 2017), i.e., two entities may satisfy a
policy that they could not if they acted individ-
ually. Our approach solves this problem by not
allowing the delegated context’s attributes to be
merged with the delegatee context’s attributes that
are of the same type. For example, consider Fig-
ure. 1 below, Joe and Alice can potentially col-
lude to satisfy a policy that they could not if

they acted individually. The policy {role(Lab-
Analyst),location(Hospital)} can not be satisfied
neither by Alice nor by Joe, if acting alone,
but they can deceive the system’s policy through
attribute-delegation.

Figure 1: Attribute delegation problems example.

When this context is delegated by our approach,
the delegatee’s context, c2, is checked if it already
has time and role attributes, and if these satisfy the
delegation constraints, the corresponding contex-
tual attributes of the delegator will not be merged
with them. Instead, a new context, c3, is created
for the delegatee, and the chosen contextual at-
tributes are assigned to it. This way there will be
no colluding among the contextual attributes be-
cause c2 is not the same as c3.

• Inconsistent policy, i.e., the delegated privileges
are conflicting the user’s original privileges. For
example, Joe’s delegation of the role ”Doctor” to
Ann will result in Ann’s delegated context that
contains two values for the role attribute, ”Doc-
tor” and ”Nurse”. If there was a policy rule such
that ”role <> ”Nurse””, then two different re-
sults would be possible depending on the value of
role attribute. Our approach avoids inconsistent
policies by evaluating delegator’s context together
with the delegatee’s context.

At the time of delegation, the delegator must have
the context c that is to be delegated to the delega-
tee. After the delegation is successfully completed,
delegatee can use the delegated context and the privi-
lege(s) associated with it to access to a resource r Our
approach imposes constrains on context delegation.
The constraints may be specified by the delegator or
the system security officer. These constraints further
restrict the delegation. Intuitively, if the delegatee’s
context satisfies the constraints, then the delegation is
permitted. Otherwise, the delegation will be aborted.
Our model architecture is shown in Figure 2.

Definition 8. (Delegation Request (DR).) Delegation
request is given as a 6-tuple 〈s1,s2,r,ac,DCs,Par〉,

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

452

Figure 2: The proposed system architecture.

where s1, s2 ∈ Sub ject and they represent the dele-
gator and delegatee, respectively. r ∈ Resource, the
resource to make the delegation over, ac ∈ Action,
the action and must be equal to ”delegate”, DCs ⊆
Constraint represents the set of constraints imposed
by the delegator on delegatee’s context, and Par is a
finite set of delegation parameters, other than the del-
egation constraints, which are specified by the dele-
gator. Delegation parameters, Par, are given by:

Par = (n1,v1), ...,(nm,vm) (4)

Where ni represents the parameter namei and vi
is the value of this parameter. Two important parame-
ters in Par are very crucial for our approach. DelType
and DelStatus, DelType is used to specify whether
the delegation is of type GRANT or T RANSFER.
If DelType = T RANSFER, then the delegator must
specify which kind of T RANSFER to work with. One
of the two values for the parameter DelStatus is used
to do so, which is either Permanent or Temporary.
The meaning of these values is clear, Permanent is
used for permanent delegation and Temporary is for
temporary delegation.

The DCs are represented as a set of pairs:
DCs = (CA1,Cons1), ...(CAn,Consn) (5)

Where CAi represents an attribute i and Consi is
the delegation constraints set i (if any) that is imposed
over CA by the delegator and must be satisfied by the
delegatee’s contextual attributes.

3.1 Delegation Policies

Every delegation operation is subject to predefined
delegation policies. Delegation policies are rules that
restrict the delegation. We represent our delegation
policies in a predicate form as follows:

can delegate(s1, c1, s2, c2, \GRANT ”, DCs):
subject s1 can delegate context c1 to subject s2 if s2’s
context satisfies delegation constraints DCs.

can delegate(s1, c1, s2, c2, \T RANSFER”, DCs):
subject s1 can delegate context c1 to subject s2 if
s2’s context (the reference context) satisfies delega-
tion constraints DCs.

can revoke(s1, s2, c1, casCaded): delegator s1
can revoke the delegated context c1 from s2 if s1 is
authorized to do so, i.e., it was the delegator of c1
and the delegation is of type \GRANT ”. In case of
\T RANSFER” delegation, the system administrator
is responsible for revoking delegated context c1. Note
that, the issue of cascading revoke has been studied
extensively and we do not address this issue in this
paper.

3.2 Delegation Ontology

Delegation ontology, DEL, shown in Figure 3, states
that the Delegator is either a Source of Authority
(SoA), and in this case, she does not lose her ac-
cess rights when she transfers the Context associ-
ated with her to the Delegatee. Or she is not the
SoA, and in this case, she is going to lose her ac-
cess rights to a resource when she transfers her ac-
cess rights to a Delegatee. Only the SoA have the
right to set the value isSoA. This will keep dele-
gation chain under the control of SoA and guaran-
tee that the delegation authorization will not go in-
finite. Delegation has two types DelType to deal
with the two cases of delegation. The first type is
when the Delegator transfers (”Transfer”) her access
rights to the Delegatee and the second type is when
the Delegator grants (”Grant”) her access rights to
the Delegatee. A Delegation can be delegated by
a Delegator who grants/transfers a Context in case
the Delegator is also the SoA) to a Delegatee if that
Delegatee’s context satisfies delegation constraints.
The delegated Context qualifies the Delegatee to ac-
complish a specific type of Permission that is associ-
ated with the Context on a certain Resource. If the
Delegation isDelegatable and the MaxDepth of the
Delegation chain does not reach its limit yet, then the
Delegatee can be a Delegator. When Delegation is
endowed to a Delegatee, the constraints Constraint
are applied to that granted/transferred Delegation ac-
cording to what the Delegator specifies. Delegation
ontology also specifies that a Delegation can be au-
thenticated using some Credential. This meant to
be used by the CBAC engine to authenticate delega-
tors before they can reach/change their delegation set-
tings.

Monotonic and Non-monotonic Context Delegation

453

Figure 3: Delegation ontology.

3.3 Delegation Operations

We assume that each delegation operation delegates
only one context at a time. If the delegator has multi-
ple contexts (one is the instantiated context and the
others may be gained by previous delegations) and
(s)he wishes to delegate more than one context to the
same delegatee, (s)he can do that in multiple delega-
tion operations. The delegation operation takes the
form delegate(s1, c1, s2, c2, \GRANT ”, Par).

Delegator s1 delegates context c1 to delegatee s2.
After checking delegation constraints satisfaction as
we have illustrated in the previous subsection, the del-
egation algorithm (see Algorithm 3) creates a delega-
tion instance with an identifier delid . The delegation
instance gets part of its values from the delegation re-
quest, namely from Par and DCs. We define the fol-
lowing parameters, MaxDepth is the depth of the del-
egation. It specifies the number of times the context
can be delegated. This value is set by the first delega-
tor (isSoA = true, see Figure 3). The isDelegatable
is a Boolean value that determines whether the con-
text is delegatable. If isDelegatable = f alse, then the
algorithm automatically sets MaxDepth to 0.

3.4 Delegation Constraints

We represent delegation constraints, denoted as
Cons, using Semantic Web Rule Language safe rules
(SWRL-safe). SWRL combines OWL ontologies
with Horn Logic rules, extending the set of OWL ax-
ioms to include Horn-like rules. SWRL rules have
the syntax Antecedent− > Consequent, where each
Antecedent and Consequent consists of atoms. These
atoms can be of the form C(x), P(x,y), sameAs(x,y)
or di f f erentFrom(x,y), where C is an OWL class,
P is an OWL property, and x, y are either vari-
ables, OWL individuals or OWL data values. The

Consequent atom will be true if all atoms in the
Antecedent are true.

For example, suppose that Bob has
OnDutyDoctor as a reference context as has been
shown in equation 2. Now suppose that Bob wants
to set delegation constraint on the time contextual
attribute before delegating his context (his reference
context) to another user, Ann. Ann is a consultant
doctor and she has the following reference context:

OnDutyConsult ≡Context u (Useru∃hasID.IDentity
u∃hasRole.Role{Consult}u∃hasGroup.Group
{InShi f tConsult})u (Environment{WorkingEnvrnt}
u∃hasLocation.Location{HospitalB})u (T Element
{WorkingTime}u∃hasTime{xsd : dateTime
[≥ 2018−04−06T 09 : 00 : 00,≤ 2018−04−06
T 17 : 00 : 00]})u∃hasID.{0} (6)

The delegation constraint is (01:00pm ≥
time ≥10:00am), that is, it can only be dele-
gated between 10:00 am and 01:00 pm. At the time
of delegation, Ann has an active context as shown
below:

OnDutyConsult{Ann} ≡Context u (User{Ann}u∃
hasID.IDentity{Doctor643}u∃hasRole.Role
{Doctor}u∃hasGroup.Group{InShi f tConsult})u
(Environment{WorkingEnvrnt}u∃hasLocation
.Location{Hospital})u (T Element{WorkingTime}
u existshasTime.Time Instance{xsd : dateTime
[2018−04−06T 12 : 30 : 00]})u∃hasID.{0} (7)

The policy engine checks, then, if the delegation
constraints are satisfied or not. The policy engine uses
the following SWRL rule to check the time constraint:

TimeCons(?t3)∧notBe f ore(?t3,?cons1)∧ swrlb :
greaterT hanOrEqual(?cons1,10 : 00)∧notA f ter
(?t3,cons2)∧ swrlb : lessT hanOrEqual(?cons2,01 : 00)
−> satis f ied(?t3) (8)

where t3=Time Instance and is extracted from Ann’s
active context and is equal to 12:30:11 pm (on April
6, 2018), and the constraints cons1=10:00 am and
cons2=01:00 pm from the delegation constraints set
by Bob.

3.5 Enforcement of Delegated
Authorization

Non-monotonic context delegation (and delegation in
general) needs to revise or contract the underlying
policy rules to make them adaptable to delegation
operation. To this end, non-monotonic delegation

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

454

should be able to block, permanently or temporar-
ily, some access rules and prevent them from being
activated. Doing so, however, will enforce the pol-
icy engine to use negation to infer failure of some
rules within the policy rule set. DL’s ontologies and
SWRL rules do not permit this kind of reasoning be-
cause they based on the principle of Open World As-
sumption (OWA). OWA principle does not allow us
to conclude that a SWRL atom is false because OWA
assumes it may become true in the future, and hence,
it assumes that atom’s value is ”Unknown”. On the
contrary, in Logic Programming (LP), which is based
on Closed World Assumption (CWA), every atom or
proposition that is not proved to be true is considered
as a false atom.

The naive approach for doing so can simply be
achieved by removing the context c from the CBAC
knowledge base. However, this method ignores the
fact that one context may have access privileges to
multiple resources. Figure 4 illustrates this situation,
when subject s with context c can access resources
r1...r5. When trying to prevent subject s with context
c from accessing resources r3 and r4 by deleting con-
text c, then subject s will also be prevented to access
resources r1, r2, r5.

Figure 4: Naive context deletion.

To remedy this situation, we propose to selec-
tively block subject with specific context from ac-
cessing certain resources via labeling the access path
from that context to the blocked resources using OWL
object properties. The predicate update− cbac() is
used to block a subject s with context c and deprive
it from accessing resource r. This is done by insert-
ing fresh OWL Object property instances, isT Blocked
or isPBlocked, between context c and resource r.
isT Blocked is used for temporarily blockade, while
isPBlocked is used for permanent blockade Figure 5.

Both isT Blocked or isPBlocked are defined in CBAC
ontology.

Figure 5: Selective context blockade.

The enforcement of access control authorization
with delegation is achieved via selective blocking of
the context (and hence their associated subjects) from
accessing certain resources. Algorithm 2 is used for
this purpose.

The context delegation (both monotonic and non-
monotonic) is implemented via answering the delega-
tion request using algorithm 3.

Algorithm 3 takes CBAC, Del, Ctx, RS and RQ, for
Context-Based Access Control, delegation and con-
text ontologies, respectively. RS is the access con-
trol rule-set and RQ is an Access Request. The al-
gorithm returns the updated ontologies CBAC, Del,
Ctx and the updated RS. The function parse(RQ) is
used for parsing the request and to check its syntax
correctness. Function dismantle(RT) is used to fur-
ther partition the request into its elements, namely the
delegator s1, the delegatee s2, the resource r, delega-
tion constraints DCs and delegation parameters Par.
The function isAuthorized(s1,sc1,r,rc,CBAC,RS) is
used to check whether s1 has the privilege to access
resource r. It uses Algorithm 2 to do that. Func-
tion extractCAs(X) is used to extract the contextual
attributes CAs from a given context axiom X . The
function type= extract type(Par) extracts, from a set
of parameters found in Par, the type of delegation.
The checkSatis f iability(DCs,CAs) function checks
the satisfiability of contextual attributes of s2 against
delegation constraints DCs set by s1. The approach
proceeds as follows:
1) The delegator prepares a delegation request and
sends it to the policy engine.
2) The policy engine parses the request and starts the
delegation process.

Monotonic and Non-monotonic Context Delegation

455

Algorithm 2: Delegation-Supported Access Authorization.
Input: CBAC, CBAC ontology, Del is a delegation on-
tology, RQ is an Access Request, RS is access control
rule-set.
Output: Access decision, either ”Deny” or ”Permit”.

1: RT←parse(RQ) . RT = 〈s,r,ac〉
2: if RT = access then
3: sc←getContext(s);
4: if sc.Id 6= Null then
5: d inst← consult(Del,sc.Id)
6: if Del has an RDF triple:(del : d ins del :

OnResource cbac : r) then
7: rc←getContext(r);
8: p←evaluate(s,sc,r,rc,CBAC,RS);
9: end if

10: if p = ”Permit” AND
noCon f lict(p,s,sc,r,rc,CBAC,RS) then

11: Permit−Access;
12: exit();
13: else
14: Deny−Access;
15: exit();
16: end if
17: end if
18: if sc.Id = Null then
19: if Not(blocked(sc,r,CBAC)) then
20: rc←getContext(r);
21: p←evaluate(s,sc,r,rc,CBAC,RS);
22: end if
23: if p = ”Permit” AND

noCon f lict(p,s,sc,r,rc,CBAC,RS) then
24: Permit−Access;
25: exit();
26: else
27: Deny−Access;
28: exit();
29: end if
30: end if
31: else
32: return(”Not access request”);
33: end if

3) The policy engine extracts the delegation con-
straints, asks the context manager for the delegator’s
context, and checks if the delegator has the delegation
right.
4) If the delegator is authorized, the policy engine
asks the context manager for the delegatee’s (s2) con-
text and checks for satisfiability of the delegation.
5) If the delegation is satisfiable, the policy engine
creates a delegation instance using the delegation on-
tology and the parameters specified in the delegation
request.

Algorithm 3: Context Delegation Request Answering.
Input: CBAC, Del, Ctx are CBAC, delegation, and
context Ontologies. RS is the access control rule-set.
RQ is an Access Request.
Output: UCBAC, UCtx, UDel /*Updated CBAC, con-
text and delegation ontologies.*/

1: RT ← parse(RQ)
2: if RT = RQ then
3: evaluateRQ(RT);
4: exit();
5: end if
6: 〈s1,s2,r,ac,DCs,Par〉 ← dismantle(RT);
7: sc1←getContext(s1);
8: rc←getContext(r);
9: if isAuthorized(s1,sc1,r,rc,CBAC,RS) = f alse

then
10: out put(”s1 is not authorized to access r”);
11: exit();
12: end if
13: sc2←getContext(s2);
14: CAs←extractCAs(sc2);
15: T←checkSatis f iability(DCs,CAs);
16: if T = f alse then
17: out put(”T he context is not delegatable”);
18: exit();
19: end if
20: type←extract type(Par)
21: if type = ”GRANT ” then
22: UDel←createDelegationinstance(Del,〈s1,s2,

r,ac,DCs,Par〉, delid)
23: UCtx←createContext(Cx2,Ctx,delid)
24: return(UDel,UCtx)
25: exit()
26: else
27: UDel←createDelegationinstance(Del,〈s1,s2,

r,ac,DCs,Par〉, delid)
28: UCtx←createContext(Cx2,Ctx,delid)
29: UCBAC←update cbac(CBAC,UDel,delid ,sc1

,r)
30: return(UCBAC,UDel,UCtx)
31: exit()
32: end if

6) The policy engine sends a request to the context
manager, accompanied with a delegation identifier,
delid , to construct a generated context for s2. This
context is a copy of the delegator reference context
but it is associated with the delegatee.
7) The context manager creates the generated context
for s2 and associates it with the identifier delid pro-
vided by the policy engine with the request.
8) Now the delegatee has two contexts, the instanti-
ated context and the generated context and (s)he can
choose which one to work with.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

456

4 PROPERTIES AND PROOFS

In this section, we provide the proof that context dele-
gation approach, as well as enforcing the context del-
egation in access authorization are sound, consistent
and preserve the Least-Privilege principle.

The function evaluate() is given by:

function evaluate(s,sc,r,rc,CBAC,RS)
1 : RulesNo← getrulesnumber(RS);
2 : in f model← reason(CBAC);
3 : for i = 1 to RulesNo do
4 : if RS[i] has the f orm :

(?rq rd f : type cbac : Request)
(?rq ctx : hasAction cbac : ac)
(?rq cbac : hasSub ject ?s)
(?rq cbac : hasResource ?r)
(?s rd f : type ctx : sc)
(?r rd f : type ctx : rc)
(?rq cbac : hasDecision ?d)

−> (?d cbac : hasE f f ect cbac : p)] then
5 : if p = ”Permit” then
6 : return(p);
7 : exit();
8 : else
9 : p = ”Deny”
10 : return(p);
11 : exit();
12 : end {evaluate}

The function evaluate(s,sc,r,rc,CBAC,RS) takes
the access control ontology CBAC, Figure 6 as in-
put and achieves the DL-based reasoning to get the
in f model. The access control policy rules, repre-
sented as Jena forward inference rules, will be ap-
plied on in f model to derive an access decision. The
function getrulesnumber(RS) returns the number of
rules in the access control policy rule-set RS. The
Boolean function noCon f lict(p,s,sc,r,rc,CBAC,RS)
works just like evaluate(s,sc,r,rc,CBAC,RS) function
but it returns a Boolean value if two conflicting rules
(”Permit” and ”Deny”) are fired at the same time.

Lemma 1. Given RS and CBAC correctly repre-
sented, the function evaluate(s,sc,r,rc,CBAC,RS) will
always return a correct authorization decision.

Proof. Assume the function
evaluate(s,sc,r,rc,CBAC,RS), when it is called,
returns false authorization decision. This decision
could be derived in three cases: (i) The first case

Figure 6: CBAC ontology.

is an example of traditional security violations that
could take place in any system. A resource owner
(or security officer) misconfigures her security
settings, such as incorrectly encoding Jena rules for
access control policy. As a result, the system will
adhere to this misconfigured setting.(ii) There is no
misconfigured security settings. In this case, one
of the following three conditions must be held: (a)
The DL-based reasoning process (step 2) returns
inconsistent model. This assumption is invalid
because we use DL-based reasoner Pellet which
is sound and complete with respect to OWL-DL.
Hence, The system knowledge base is always have
correct and consistent information. (b) RS 2 p, access
control rule-set does not model the decision p (p is
neither ”Permit” or ”Deny”). If p ∈ RS, then RS |= p.
If p /∈ RS, then p must be generated by a Jena rule of
the form:

a1∧ ...∧an→ p (9)

where a1...an are RDF (Resource Description Frame-
work) triples and p is an RDF triple (or set of triples),
and for each ai ∈ a1...an, RS |= ai, either by infer-
ence or by assertion. If RS |= ai for all a1...an, then
a1...an |= p, for p is either ”Permit” or ”Deny” (more
precisely, ”Deny” is the default value returned by the
function evaluate(s,sc,r,rc,CBAC,RS) when there is
no rule of the form a1...an|= p). Hence, RS |= p
which contradicts our assumption that RS 2 p. (c)
RS and/or CBAC are incorrectly represented. This
contradicts (a) above and our assumption that CBAC
and RS are correctly represented. Hence, the function
evaluate(s,sc,r,rc,CBAC,RS) will eventually derive a
correct access decision p.

Corollary 1. Given a CBAC and RS correctly repre-
sented, the function noCon f lict(p,s,sc,r,rc,CBAC,RS)
will derive the correct Boolean value and terminates.

Proof. Function noCon f lict(p,s,sc,r,rc,CBAC,RS)
works just like the function

Monotonic and Non-monotonic Context Delegation

457

evaluate(s,sc,r,rc,CBAC,RS) does but after find-
ing a decision p=”Permit”, it iteratively searches
for p=”Deny”. If it happens to find two conflicting
decisions, it will return a true value. Otherwise,
f alse value is returned. In Lemma 1, we have
proved that the function evaluate(s,sc,r,rc,CBAC,RS)
is sound (returns only correct answers). Hence,
noCon f lict(p,s,sc,r,rc,CBAC,RS) follows from
Lemma 1.

Theorem 1. (Algorithm 2 Soundness.) Given a do-
main knowledge base that is correctly represented us-
ing ontologies CBAC, CT X, DEL, and a set of Jena
rules RS.

Proof. The proof is naturally follows from Lemma 1
and Corollary 1.

Lemma 2. Function checkSatis f iability(DCs;CAs)
is decidable, sound and consistent.

Proof. We use only SWRL-Safe rules in our delega-
tion and CBAC ontologies. A SWRL rule is DL-safe
if every variable in the rule head occurs in a Data-
log atom in the body. SWRL-Safe rules are known to
be decidable, sound, consistent and complete (refer to
(Motik et al., 2005) for the complete proof).

function update cbac(CBAC,UDel,delid ,sc1,r)
1 : D← get Instance(UDel,delid);
2 : if D.isPermanent = ”False” then
3 : UCBAC←CBAC∪opAssertion(sc1,r,

”isT Block”)
4 : else
5 : UCBAC←CBAC∪opAssertion(sc1,r,

”isPBlock”);
10 : return(UCBAC);
11 : exit();
12 : end {update cbac}

Lemma 3. The function up-
date cbac(CBAC,UDel,delid ,sc1,r) is decidable,
sound and consistent.

Proof. All ontology-based operations in this func-
tion, namely get Instance() and opAssertion() (for
object Property assertion) are decidable, sound and
complete.

Theorem 2. (Algorithm 2 Soundness.) Given a do-
main knowledge base that is correctly represented us-
ing ontologies CBAC, CT X, DEL, and a set of Jena
rules RS.

Proof. The proof is naturally follows from Lemma 1
and Corollary 1.

Theorem 3. (Algorithm 3 Soundness.) Given a do-
main knowledge base that is correctly represented us-
ing ontologies CBAC, CT X, DEL, and a set of Jena
rules RS.

Proof. The proof is naturally follows from proof of
Theorem 2, Lemma 2 and Lemma 3.

We have shown that Algorithms 2 and 3 are sound.
Remains to prove that the model in which context del-
egation is used is consistent, no contradicting deci-
sions are derived for one access request.

Theorem 4. (Model Consistency.) Given a model
represented by a domain knowledge base that is
correctly represented using ontologies CBAC, CT X,
DEL, and a set of Jena rules RS. Delegation opera-
tion always results in consistent access authorization
decisions (”Permit” and ”Deny” are never both de-
rived as answers for the same access request).

Proof. Let M be the model of our approach and is
given by M =CBAC∪ CT X ∪ DEL. Our model em-
ploys two types of reasoning techniques, monotonic
reasoning which is achieved by DL-based Pellet rea-
soner on the model ontologies before any access au-
thorization or delegation operation is made and non-
monotonic reasoning, which is applied using Jena
forward chaining. Monotonic reasoning has been
proven to be decidable, sound, complete and consis-
tent (Baader et al., 2003; Hitzler et al., 2010). That
means for every sound and consistent model M , there
is an inference model M F = In f (M), where In f is
the DL-based reasoning operation, M F is also sound
and consistent model. Hence, while the model is cor-
rectly represented (this is given), so all DL-based in-
ferences produce sound and consistent output models.
However, this fact does not solve the problem of pos-
sible inconsistencies that may be resulted when de-
riving an answer for a request (it is possible to reach
to a conclusion that the decision is both ”Permit” and
”Deny” while both of them belong to the same class in
the CBAC ontology and not for disjoint classes). Our
model solves this problem by using Jena rules (func-
tion noCon f lict(p,s,sc,r,rc,CBAC,RS)) which returns
a true value when conflicting decision is reached.
Hence, the model M is consistent and any model
M F that is resulted by either monotonic reasoning
or non-monotonic reasoning is also consistent (in re-
spective to conflicting access decisions).

Theorem 5. (Least-privilege Principle.) Given a do-
main knowledge base that is correctly represented
using ontologies CBAC, CT X, DEL, and a set of
Jena rules RS. Algorithms 2 and 3 (Delegation-
Supported Context Delegation) always preserve the

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

458

Least-Privilege Principle when executes a delegation
request.

Proof. In this proof, we combine two proofs of Algo-
rithms 2 and 3 preserve Least-Privilege Principle. As-
sume that Algorithms 2 and 3 do not preserve Least-
Privilege Principle. This would happen in two situa-
tions:

(i) Delegatee acquires more privileges that (s)he
supposed to have according to the policy in use.
For example, delegatee may acquire, as a result
of context delegation operation, access to more
than the specified resource(s) or/and can use
more than one access type (write/read/execute)
on a specific resource. Our approach restricts
the delegatee access to a specific resource (and
the type of this access) according to the delega-
tion ontology. In (step 4) of Algorithm 2, we
check whether the context is a delegated or an
instantiated context (sc.Id = X or sc.Id = Null,
X is any non-zero integer value). If it is a del-
egated context, then the algorithm checks if the
delegation instance d ins is applicable on a re-
source r by checking existence of RDF triple
(del1 : d ins del : OnResource cbac : r) in del-
egation ontology (step 6). Only in this case the
delegatee with context sc is permitted to access
resource r in ontology CBAC. Otherwise, ac-
cess is denied. But this violates our assump-
tion that Algorithms 2 and 3 do not preserve
Least-Privilege Principle. Hence, Algorithms 2
and 3 preserve Least-Privilege Principle for the
delegatee accessing a resource in the knowledge
based.

(ii) Delegator has transferred her context sc to
the delegatee but she is still able to use it
for accessing resource r. Algorithm 3 (step
29) updates the CBAC ontology by insert-
ing an RDF triple (ctx : c cbac : isPBlock
cbac : r), for permanent delegation, and (ctx : c
cbac : isT Block cbac : r), for temporary del-
egation). In this way, when delegator tries
to access resource r using a context sc that
she has already permanently or temporarily
transferred it to the delegatee, then algorithm
will discover that this context is blocked from
access resource r (step 19 of Algorithm 2).
Again, this violates our assumption that Algo-
rithms 2 and 3 do not preserve Least-Privilege
Principle. Hence, Algorithms 2 and 3 preserve

1del, cbac and ctx are prefixes for delegation, CBAC and
context ontologies

Least-Privilege Principle for the delegator ac-
cessing a resource in the knowledge based.

5 CONCLUSION AND FUTURE
WORK

In this paper we have proposed two ontology-based
context delegation approaches. Monotonic context
delegation, which adopts GRANT version of del-
egation, and non-monotonic for TRANSFER ver-
sion of delegation. The approaches provide dynamic
and adaptive mechanism for monotonic and non-
monotonic privilege delegation. The proposed mono-
tonic delegation does not cause any change to the un-
derlying access control policy. For non-monotonic
delegation, the approach incurs only selective changes
to the underlying access control policy. The ap-
proaches presented in this paper are modeled using
semantic-based technologies and can be used by ex-
isting CBAC systems which do not provide delegation
capability. Furthermore, we have provided the for-
mal proofs that context delegation and its delegation-
supported authorization enforcement are sound, con-
sistent and preserve the least privilege principle. We
have implemented the model using real networks.
The ontologies and some related preliminary cod-
ing can be found on https://github.com/Mouiad1975/
Context-Delegation

For future direction, we are working on extending
our model by using RESTful web services with Java
(Jersey/JAX-RS). Another extension we are working
on is the semantic-based obligation for situations that
need to make sure some obligations are respected by
subjects already got the access authorization to access
certain resources.

REFERENCES

AL-Wahah, M. and Farkas, C. (2018). Context delegation
for context-based access control. In 2nd International
Workshop on A.I. in Security, pages 70–79. ECML.

Baader, F., Calvanese, D., McGuinness, D., Patel-
Schneider, P., and Nardi, D. (2003). The description
logic handbook: Theory, implementation and applica-
tions. Cambridge university press.

Bellavista, P. and Montanari, R. (2017). Context awareness
for adaptive access control management in iot envi-
ronments. Security and Privacy in Cyber-Physical
Systems: Foundations, Principles and Applications,
pages 157–178.

Monotonic and Non-monotonic Context Delegation

459

Bhatti, R., Bertino, E., and Ghafoor, A. (2005). A
trust-based context-aware access control model for
web-services. Distributed and Parallel Databases,
18(1):83–105.

Corradi, A., Montanari, R., and Tibaldi, D. (2004). Context-
based access control management in ubiquitous envi-
ronments. In Proceedings of the 3rd IEEE Interna-
tional Symposium on Network Computing and Appli-
cations, pages 253–260. IEEE.

Crampton, J. and Khambhammettu, H. (2008). Delegation
in role-based access control. International Journal of
Information Security, 7(2):123–136.

Dey, A., Abowd, D., and Salber, D. (2001). A concep-
tual framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Hum.-
Comput. Interact., 16(2):97–166.

Gusmeroli, S., Piccione, S., and Rotondi, D. (2013). A
capability-based security approach to manage access
control in the internet of things. Mathematical and
Computer Modelling, 58(5-6):1189–1205.

Hitzler, P., Krötzsch, M., and Rudolph, S. (2010). Foun-
dations of Semantic Web Technologies. Chapman and
Hall/CRC Press.

Kagal, L., Berners-Lee, T., Connolly, D., and Weitzner, D.
(2006). Self-describing delegation networks for the
web. In Policies for Distributed Systems and Net-
works, 2006. Policy 2006. Seventh IEEE International
Workshop on, pages 10–pp. IEEE.

Kulkarni, D. and Tripathi, A. (2008). Context-aware role-
based access control in pervasive computing systems.
In Proceedings of the 13th ACM symposium on Ac-
cess control models and technologies, pages 113–122.
ACM.

Motik, B., Sattler, U., and Studer, R. (2005). Query answer-
ing for owl-dl with rules. Web Semantics: Science,
Services and Agents on the World Wide Web, 3(1):41–
60.

Pratt, I. (1994). Closed World Assumptions, pages 65–84.
Springer.

Schneider, F. (2003). Least privilege and more [computer
security]. IEEE Security & Privacy, 99(5):55–59.

Servos, D. and Osborn, S. (2016). Strategies for incorpo-
rating delegation into attribute-based access control
(abac). In International Symposium on Foundations
and Practice of Security, pages 320–328. Springer.

Servos, D. and Osborn, S. (2017). Current research and
open problems in attribute-based access control. ACM
Computing Surveys (CSUR), 49(4):1–65.

Shen, H. and Cheng, Y. (2011). A semantic context-based
model for mobile web services access control. Inter-
national Journal of Computer Network and Informa-
tion Security, 3(1):18.

Toninelli, A., Montanari, R., Kagal, L., and Lassila, O.
(2006). A semantic context-aware access control
framework for secure collaborations in pervasive com-
puting environments. In International semantic web
conference, pages 473–486. Springer.

Trnka, M. and Cerny, T. (2016). On security level usage in
context-aware role-based access control. In Proceed-

ings of the 31st Annual ACM Symposium on Applied
Computing, pages 1192–1195. ACM.

Zhang, L., Ahn, G., and Chu, B. (2001). A rule-based
framework for role based delegation. In Proceedings
of the sixth ACM symposium on Access control models
and technologies, pages 153–162. ACM.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

460

