
Detailed Human Activity Recognition based on Multiple HMM

Mariana Abreu1, Marı́lia Barandas1, Ricardo Leonardo1 and Hugo Gamboa2

1Associacao Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, Porto, Portugal
2Laboratorio de Instrumentacao, Engenharia Biomedica e Fisica da Radiacao (LIBPhys-UNL), Departamento de Fisica,

Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Keywords: Human Activity Recognition, Gesture Recognition, Smartphone Sensors, Feature Selection, Hidden Markov
Models.

Abstract: A wide array of activities is performed by humans, everyday. In healthcare, precocious detection of movement
changes in daily activities and their monitoring, are important contributors to assess the patient general well-
being. Several previous studies are successful in activity recognition, but few of them provide a meticulous
discrimination. Hereby, we created a novel framework specialized in detailed human activities, where signals
from four sensors were used: accelerometer, gyroscope, magnetometer and microphone. A new dataset was
created, with 10 complex activities, suchlike opening a door, brushing the teeth and typing on the keyboard.
The classifier was based on multiple hidden Markov models, one per activity. The developed solution was
evaluated in the offline context, where it achieved an accuracy of 84±4.8%. It also showed a solid performance
in other performed tests, where it was tested with different detailed activities, and in simulations of real time
recognition. This solution can be applied in elderly monitoring to access their well-being and also in the early
detection of degenerative diseases.

1 INTRODUCTION

The inherent complexity of human behaviour tends
to promote well-defined motions which are repeated
on everyday basis. In this sense, several areas of the
biomedical field could benefit from the recognition of
detailed activities including health-care, elderly mon-
itoring and lifestyle. Nowadays, smartphones pos-
sess multiple accurate sensors to better assist humans,
which makes them prime candidates for monitoring
human activities.

There are several applications with smartphone
and wearable sensors, able to correctly discriminate
between physical activities, such as Walking and Sit-
ting. Furthermore, previous studies can success-
fully recognize complex activities like Cooking or
Cleaning, recurring to numerous sensors (Kabir et al.,
2016). To our knowledge, research is scarce when
it comes to a more detailed discrimination with few
sensors, such as between opening a door or answer
the phone. These detailed activities are complex since
they involve a physical state (standing, sitting) and the
use of hands to perform a specific movement or inter-
act with an object. We call them detailed, since they
provide a more detailed information about the user,
when compared to physical activities.

The motivation of this work is the development of
a new solution, for detailed human activities recog-
nition and monitoring, using only a sensing device
and machine learning algorithms. This work includes
the discrimination between several detailed activities
and also their detection in a real time simulation. A
higher definition of human activity monitoring, could
enable a more detailed view of a subject’s lifestyle
and health.

In the past years, several studies are approaching
the challenge of Human Activity Recognition (HAR)
from different perspectives. The challenge associated
with HAR is related to the amount of activities of in-
terest and their characteristics. Lara et al. (Lara and
Labrador, 2012) states that the complexity of the pat-
tern recognition problem is determined by the set of
activities selected. Even short activities such as open-
ing a door or picking up an object have a broad vari-
ety of ways to be executed, which increases with the
consideration of different users (Kreil et al., 2014).

For physical activity recognition, suchlike walk-
ing and standing, a high accuracy is achieved with
smartphones, recurring mostly to the accelerometer
(Machado et al., 2015). However, other strategies
must be reckoned, for recognizing more complex ac-
tivities, with similar body movements, such as open-
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ing a door and opening a faucet. Previous works used
sound to discriminate activities (Leonardo, 2018; B
et al., 2016). With the integration of information
from several sensors, a higher degree of discrimina-
tion could be achieved.

Given that Hidden Markov Model (HMM) enables
the assimilation of the data temporal structure, it be-
comes an effective technique for classification (Cilla
et al., 2009). The choice of multiple HMMs, one per
activity, was inspired by some video recognition sys-
tems (Gaikwad and Narawade, 2012; Karaman et al.,
2014). By having one model per activity, some time
periods could be ignored in a continuous stream anal-
ysis. Also, at any moment, new activities could be
added to the classification, allowing to personalize
this tool. Furthermore, temporal sequences, such as
daily routines, could be analyzed without the need of
an extensive training set.

In the scope of HAR, the recognition performed
could be of two types: offline and online. In the of-
fline recognition, each activity sample is well-defined
and isolated from other samples. Meanwhile, the on-
line recognition happens in real time, where activi-
ties are directly interpreted in the time series. In this
case, a sample up for testing could contain one activ-
ity, no activity or inbetween cases. In order to cope
with these different scenarios, Tapia et al. (Tapia
et al., 2004) defined some evaluation measures to dis-
tinguish totally wrong predictions from nearly right.
Moreover, Cardoso et al. (Cardoso and Mendes-
Moreira, 2016) adds that an activity could be a valid
label if it is predicted in a significant amount, at least
30% of the true label.

The activities addressed in this work are com-
plex and short in time, therefore, most of the acqui-
sition signal is ignored and we are only interested in
small activities that happen sporadically. Junker et al.
(Junker et al., 2010) call this type of recognition as
Activity Spotting. Kasteren et al. (van Kasteren et al.,
2011) suggests what metrics should be used for eval-
uating cases such as ours, namely how to cope with
imbalanced classes and what type of errors could oc-
cur in a continuous data stream.

In summary, from computer vision to pervasive
sensing, many investigations have approached the
challenge of human activities. Even so, there is a
lack on previous studies when it comes to short de-
tailed activities. Few evidences of such activities ex-
ist within the literature, therefore this work is an ex-
periment in a poorly explored HAR field. To address
these activities, the chosen classifier is based on mul-
tiple HMM and the recording device is a smartphone.
Their recognition could expand the range of Activi-
ties of Daily Living (ADL) applications and improve

current HAR systems.

2 PROPOSED METHOD

The framework created for activity recognition is
based on the analysis of data from accelerometer, gy-
roscope, magnetometer and microphone sensors. The
developed solution uses multiple HMM, one per each
activity.

2.1 Signal Processing and Feature
Extraction

The processing of tri-axial sensors (accelerometer,
gyroscope and magnetometer) includes the extraction
of all three axes (x, y and z) and also the overall mag-
nitude. In order to address similar activities, such as
open a door and open a faucet, sound was considered
an important element. Therefore, we chose to com-
bine the inertial sensors with the microphone. These
sensors are recorded simultaneously and the starting
and ending moments of each activity’s repetition are
annotated. The signal is segmented in windows of
250ms without overlap. For each 250ms window,
over 30 different features were extracted, using a sim-
ilar approach described in Figueira et al. (Figueira,
2016). The features come from temporal, spectral and
statistical domains, which are calculated for all sen-
sors and axes. The final output consists in a vector
with 265 features for each 250ms window.

2.2 Feature Selection

In order to reduced the amount of features, two stan-
dard feature selection methods were tested. For-
ward Selection (FS) evaluates all features separately,
choosing the one that leads to a higher performance,
to join the set of best features (Cilla et al., 2009).
Therefore, in each iteration, one new feature is added
to the set, until the accuracy stops improving. On the
other hand, in Backward Elimination (BE), the pro-
cess starts with the whole group of features (265) and
one by one the features are removed if the accuracy
increases without them. This process stops when ac-
curacy starts decreasing (Li et al., 2015).

2.3 Classification

Hidden Markov Models are capable of interpreting
time series. They are represented by a start distribu-
tion, a set of states and a set of observations (Machado
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et al., 2015). The states are associated through tran-
sition probabilities, while the observations are associ-
ated to the states through emission probabilities. As-
suming a discrete clock, in each time the system will
be in one specific state and will transit to another state
(or itself), on the next iteration. Since the states are
hidden, we infer the current state based on the current
observations.

In this framework, we built one HMM per activ-
ity, where the set of observations is the set of best
features. To classify a testing sample, we calculate
the probability of each HMM to have generated that
sample, using the Viterbi algorithm (Rabiner, 1989).
Then, we can select the activity, corresponding to the
most likely model, as the correct one.

2.4 Overall System Architecture

In Figure 1, an overall scheme of the framework de-
veloped is represented. In order to avoid over-fitting,
the leave one user out cross validation method is used,
to evaluate the classifier’s performance. In summary,
the data corresponding to the requested activities is
extracted and its features are calculated. Then, it is
split into a training group and a testing group by the
leave one user out method. The training users will
build the HMM for each activity whereas the testing
user is used for decoding and prediction. By combin-
ing the scores of all users, we reach the final result.
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Figure 1: Overall Architecture.

3 EXPERIMENTS

To approach detailed activities, two different datasets
were collected in order to test and evaluate the frame-
work in both offline and online recognition.

3.1 Set Up

3.1.1 Sensor Placement

Since the majority of detailed activities are performed
using the hands, we chose to place the sensing device

on the wrist. The sensors of interest are built-in sen-
sors on common a smartphone, therefore, our sens-
ing device is a Samsung S5, which was attached to
the dominant wrist with a wristband as it is shown
on Figure 2. Nevertheless, in the final solution, the
proposed assembly would be substituted by a smaller
sensing device, such as a wearable or a smartwatch,
to avoid discomfort to the user.

Figure 2: Smartphone attached to the wrist with a wrist-
band.

3.1.2 Acquisition of Activities

Our dataset contains two types of detailed activities:
continuous and isolated. Continuous activities, such
as clapping hands or typing on the keyboard, can have
different duration, from a few seconds up to min-
utes. On the other hand, isolated activities, such as
opening a door or switching the light on, are usu-
ally not repeatable. The acquisition consisted in per-
forming several repetitions of the same activity, where
the start and ending of each repetition was anno-
tated. Ten activities were selected, based on com-
mon activities we perform in our daily life: opening
or closing a door (Door), opening or closing a win-
dow (Window), opening or closing a faucet (Faucet),
turning the light on or off (Light), picking up the tele-
phone (Phone), typing on the keyboard (Keyboard),
mouse clicking and moving (Mouse), biting the nails
(NailBiting), brushing teeth (BrushTeeth) and clap-
ping hands (Clap).

3.2 Offline Activity Recognition

The first analysis was performed offline. In offline
recognition, each sample only contains one activity,
the difficulty relies on its correct prediction, among
all possible choices.

3.2.1 Composition of the Offline Dataset

The offline dataset considered is composed by 8 users,
who performed several repetitions of the activities de-
scribed in Section 3.1.2. In Figure 3, the distribution
of the dataset across all activities and users is shown.
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Figure 3: Distribution of the dataset across all 10 activi-
ties. In total, more than 3 hours of recordings compose
the dataset, executed by 8 subjects, where each subject per-
formed an average of 46±6.0 repetitions per activity.

3.2.2 Feature Selection Method

The attempt to select the best set of features, was con-
ducted by two different methods which were intro-
duced in Section 2.2. In Figure 4, the behaviour of
both methods for the first 7 iterations is shown. With
265 features we can reach an accuracy of 70±8.4% .
BE eliminates 6 features, which leads to an end value
of 72±6.9% and a set of 259 best features. With only
7 best features, FS is able to reach 80±8.4%, which
is considerably better than the result of BE. With FS,
a final accuracy of 85± 8.1% was achieved, after 21
iterations, corresponding to a set of 21 best features.
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Figure 4: Evolution of accuracy for Forward Selection and
Backward Elimination. The x axis is the number of iter-
ations performed to choose or eliminate another feature.
Both processes stop when accuracy stops improving.

For each iteration of FS, the feature chosen is the
most relevant for the discrimination process. In Fig-
ure 5, an horizon plot shows the values of the first 5
features, for 3 repetitions of each activity.

From the horizon plot, the contribution of each
feature to the recognition is clear, which demon-
strates the value of selection methods. These
first 5 features are y max, z standard deviation,
sound spectral slope, y spectral variance and
zgyr spectral kurtosis. These first features belong
already to three different sensors: accelerometer,
microphone and gyroscope, which reinforces the
idea of combining sound with inertial sensors for
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Figure 5: Horizon Plot for most relevant features ordered
from top to bottom. The x axis contains 3 consecutive repe-
titions for each activity, while the y axis contains the values
of the features. The different shades of green represent the
positive values, while the negative values are in orange and
red.

activity recognition. In fact, with Forward Selection,
21 features were selected, which came from all
sensors considered (8 from accelerometer, 7 from
the gyroscope, 3 from the magnetometer and 2 from
the microphone) and all domains (6 statistical, 5
temporal and 10 spectral).

3.2.3 Feature Selection Criteria

The overall result achieved with FS presents a stan-
dard deviation of 8.1%. We decided to try another
criteria to choose the best feature. Instead of using the
arithmetic mean of all activities (overall accuracy),
we combined the individual accuracy of each activity
through the geometric mean. In Figure 6 we notice
that both criteria behave similar. However in Figure 7
we see that the geometric mean leads to a lower stan-
dard deviation, based on choosing different features.
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Figure 6: Evolution of accuracy through FS, using the crite-
ria Arithmetic Mean and Geometric Mean. The x axis is the
number of features added to the set. The first two features
were the same, which explains the equal values.

The final result achieved with the geometric mean
is 84±4.8% which is more reliable than the previous
result (85±8.1%). With the geometric mean, the set
of best features has a dimension of 27, still they be-
long to all sensors and domains, just as in the previous
case.
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Figure 7: Standard deviation in each iteration of FS with
Arithmetic Mean and Geometric Mean.

3.2.4 Number of States of Hidden Markov
Models

When dealing with Markov models, one impor-
tant parameter is the number of states. Usually a
fixed number is given to all models (Gaikwad and
Narawade, 2012). In this framework, we decided to
choose the number for each HMM based on a cluster-
ing algorithm applied to the training data. The clus-
tering algorithm used was hdbscan (McInnes et al.,
2017). To validate N-based clustering, we compared
it to using a fixed number of states (N=4). In Figure 8,
both methods were applied with Forward Selection.
The use of 4 states for all activities achieves a final
accuracy of 83± 5.9% with 17 features, while vary-
ing the number of states is able to reach an accuracy
of 84±4.8% with 10 more features.
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Figure 8: Evolution of accuracy with Forward Selection
for a fixed number of states (Fixed 4 States) and for N-
based Clustering. The x axis is the number of iterations
performed, one feature is added to the set.

Despite the proximity of both results, the varia-
tion of the number of states allows to have a better
perception on how many states should exist. Further-
more, N-based clustering showed an interpersonal in-
variability, within each activity. This process is only
implemented in the training phase and therefore it
does not jeopardize the time complexity of a real time
application.

3.2.5 Analysis of Activities

Movements associated to the same object, like open-
ing a door and closing a door, were acquired sepa-
rately, but they were adressed as one activity, since the
movement performed is similar. In Table 1, the accu-
racy for each activity, for the best result, is presented.

Activities Door and Faucet present a lower accuracy,
while activities NailBiting, Clap and BrushTeeth have
the best results.

Table 1: Final accuracy for each activity (%).

Door Faucet Light Window Phone
69±17 70±20 74±22 85±14 94±11

NailBiting Clap Keyboard Mouse BrushTeeth
98±3.9 98±2.0 80±25 89±16 97±4.0
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Figure 9: Confusion Matrix for all activities. This matrix is
normalized and the values for the diagonal are presented on
Table 1.

The confusion matrix in In Figure 9, show which
are the activities more easily mistaken. The confu-
sion observed can be explained by the similarity be-
tween movements, which is a good indicator of the
classifier’s performance: a Keyboard sample can be
misplaced by Mouse, but not by any other activity.

3.2.6 New Activities

Up until now, we have shown the framework’s abil-
ity to discriminate between ten short detailed activi-
ties. In fact, this framework was built specifically for
them. This new experiment consisted on applying,
from scratch, the same framework to a new set of ac-
tivities. This new dataset was acquired exactly in the
same way as the first, but the activities executed are
different. Since this study was very brief, the dataset
is smaller than the previous one. The activities con-
sidered are: EatHand - to take food into the mouth;
Writing - to write on a notebook; ReadBook - to flip
the pages of a book.

Once more, the set of best features was retrieved
by Forward Selection. With 8 features, an accuracy
of 94± 1.9% was achieved. Since only three activi-
ties were being classified, the challenge is easier when
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compared to the previous, with ten activities. Never-
theless, the high accuracy achieved sustains the adapt-
ability of the framework developed to new activities,
becoming a personalized tool for each user.

3.3 Online Activity Recognition

In online recognition, a continuous data stream is sub-
mitted for prediction. In this case, one testing sample
could contain one activity, an empty sequence or both
cases, which leads to two challenges: how to distin-
guish activities from empty periods; how to discrimi-
nate activities when we only see part of the activity.

3.3.1 Composition of the Online Dataset

To have an online activity monitoring simulation,
three of the eight initial users performed all these
continuous data streams: Online 1 is composed by
all activities except BrushTeeth; Online 2 contains
the activities Door, Light, Window, NailBiting and
Clap; Online 3 simulates the whole process of brush-
ing teeth, which includes approximately 1 minute of
BrushTeeth and several repetitions of Faucet. Be-
sides containing the activities, the continuous data
also presents Empty periods. In Figure 10, we can
see the representation of each activity in each acqui-
sition. The Empty class, represented by the walking
man, is considerably predominant in all acquisitions,
which highlights the irregularity of the dataset. The
approximation to real life conditions, turns the activi-
ties into anomalies, sporadically occurring throughout
the continuous signal, which is described as Activity
Spotting (Junker et al., 2010).

Figure 10: Dataset distribution for the continuous acquisi-
tions Online 1, Online 2 and Online 3.

3.3.2 Continuous Data Segmentation

If this solution is applied in an online activity recog-
nition system, the signal is classified in real time
through the use of the previously trained HMMs. The
continuous stream is first segmented into 250ms win-
dows (without overlap), from where the 27 features
are extracted. However, it is still a multiple activ-
ity stream, which needs to be segmented into smaller

samples for classification. Since some activities, such
as Light, could have less than 3 seconds duration, we
decided to segment into 2 second samples, with an
overlap of 1.75 seconds. In each iteration, one sample
is submitted for prediction. The next evaluation oc-
curs 250 ms after the first and it evaluates the next 2
seconds.

3.3.3 Classifier Calibration

To distinguish between activity samples and empty
samples, we calibrate the classifier based on the re-
sults of offline recognition. In the offline mode, the
highest probability is associated to the most probable
model, and can be saved as its result. Then, using
a percentile, we define a threshold for each activity.
The percentile 70 was chosen as our threshold, after
testing several percentiles. A lower percentile would
cause many false positives, while a higher percentile
would miss some of the activities.

It is not necessary to show all labels predicted (ev-
ery 250 ms), since it would be repetitive. Whenever
a label is not Empty, while the previous label was, it
means that an activity has started. Until the appear-
ance of another Empty label, the whole period will be
considered the same activity, which will correspond
to the most repeated activity on the list of predicted
labels.

3.3.4 Performance Evaluation

The three users that performed the online experiment,
they achieved an offline accuracy of 81%, 79% and
85%. These values influence the results achieved in
the online recognition. Given the unusual nature of
this task, we divide the performance analysis in three:
in Activity Spotting we are only interested in evaluat-
ing the ability of detecting activities, just like anoma-
lies in the signal; in Activity True Prediction we con-
sider only what happens inside activities, if they are
well predicted or not; finally we analyze the results
for each activity individually.

Regarding Activity Spotting, two main tests us-
ing F1score were performed:

• Empty Score - The framework’s ability to cor-
rectly predict Empty periods.

• Anomaly Detector - A binary classification (Ac-
tivity/ Empty).

In Table 2, the results regarding Activity Spotting
are presented. Empty Score is low, due to the inter-
pretation of Empty periods as activities. Some adjust-
ments should be implemented to improve its value.
Nevertheless, our solution is able to spot activities
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within the continuous signal with an average accuracy
for Anomaly Detector of 81±7.2%.

Table 2: Results of Anomaly Detector and Empty Score.
The metric used is F1score.

Anomaly Detector (%) 81±7.2
Empty Score (%) 55±7.5

In the analysis of Activity True Prediction, the
correct prediction of the activity, when compared to
the ground truth, is analyzed. We recur to three dif-
ferent performance metrics, to retrieve meaningful in-
formation from the results:

• Substitution (van Kasteren et al., 2011) - Percent-
age of activities which were classified as other ac-
tivities.

• Activity True Detector (Tapia et al., 2004) - The
average percentage of correct activity inside a true
activity.

• Top 2 Activity - If the ground truth label was part
of the top 2 most frequent of the predicted labels
list.

The results in Table 3 are indicators of the clas-
sifier’s proximity to a correct prediction. The value
of Substitution (20± 8.2%) sustains a low misclassi-
fication of activities, while Activity True Detector in-
dicates that, in average, 70± 18% of the activity is
correctly predicted. Moreover, the high result for Top
2 Activity (90± 16%) indicates a high proximity of
the classification to the ground truth.

Table 3: Results of Activity True Detector, Top 2 Activity
and error Substitution.

Substitution (%) 20±8.2
Activity True Detector (%) 71±18

Top 2 Activity (%) 90±16

3.3.5 Analysis of Activities

Further on, the activities are analyzed individually in
terms of their precision, recall and F1score. In this
analysis, Empty moments are also considered.

In Table 4, the difference between some activi-
ties is notable. The activities Nailbiting, Clap and
BrushTeeth achieved scores higher than 95%. This
value is understandable based on the high results of
offline accuracy. Besides Light, all activities presents
an F1score higher than 50%. The Empty periods
were rightly classified if the user had is arm down, as
in walking, which explains the high precision (92±
0.5%). The instant the user starts to raise its arm,

the classifier identifies that movement as Light, result-
ing in a low precision and high recall for this activ-
ity. Furthermore, Empty periods also contained hav-
ing the hand on the table, which is similar to Mouse
and Keyboard. We also considered as Empty, pre-
dicted activities with less than 1 second. This process
was helpful, but it also reduced the Recall of Faucet
and Door, since this activities are often only partially
classified. The overall results of precision, recall and
F1score are satisfying for further experiments. Still,
some improvements can be performed in terms of Ac-
tivity Spotting and Activity True Prediction.

Table 4: Results for each activity in Online Recognition.

Precision (%) Recall (%) F1score (%)
NailBiting 93±9.6 99±1.9 95±5.7

Faucet 69±40 48±15 51±24
Door 76±11 46±30 54±28
Light 7.1±5.5 97±5.0 13±9.4

Phone 42±13 73±38 53±20
Window 62±23 96±3.9 71±19

Clap 98±3.7 96±3.3 97±2.7
Keyboard 76±24 73±24 73±21

Mouse 66±29 79±37 72±33
BrushTeeth 100±0.0 100±0.0 100±0.0

Empty 92±0.5 41±7.2 55±7.5
Total 71±27 77±23 74±26

4 CONCLUSIONS

The major contribution of the present work is the abil-
ity to recognize short detailed activities, both offline
and online. A dataset with 10 detailed activities was
acquired for both contexts and an adaptive framework
was created with multiple HMMs (one per each activ-
ity). The Forward Selection method was implemented
to reduce the set of features. Even though this method
is already used in previous studies, we applied a new
criteria, which led to a lower standard deviation. An-
other contribution, is the N-based clustering approach
to find the number of states in each HMM. The final
contribution was the classifier’s calibration for the on-
line recognition, based on the offline results.

Despite the variability and similarity between the
dataset’s activities, we still achieved a final accu-
racy of 84± 4.8%. This result was achieved with 27
features selected through Forward Selection, which
came from different domains (statistical, temporal
and spectral) and sensors (accelerometer, gyroscope,
magnetometer and microphone), sustaining the im-
portant contribution of different sensors in activity
recognition systems.

Furthermore, the solution was trained and tested
with a totally new dataset, where it substantiate its
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ability to adjust from scratch to the data, to choose a
new set of features and also reach great results in ac-
curacy. Even though it is necessary to test with more
activities, we are confident about the ability of this
framework to adapt to any given activity, becoming a
personalized tool for each user.

In online recognition, the solution underwent pre-
liminary tests, using three of the eight initial users.
The classifier was calibrated, by the percentile 70 of
offline results, to allow the distinction between activ-
ities and Empty periods. The classifier’s performance
that the framework is able to detect activities within
a continuous stream with an F1score of 74± 26%.
To improve the classification inside true activities, the
metric Top 2 Activity could be used as an additional
criteria, for the prediction phase. To improve Activity
Spotting, Light could serve as a trigger to identify the
beginning of an activity, which was then combined to
a binary classifier to perform Empty/Activity distinc-
tion.

The purpose of this work was to reach further
than current recognition systems, and observe activi-
ties usually ignored or classified as Walking (Door) or
Sitting (Mouse and Keyboard). Moreover, the recog-
nition of BrushTeeth could indicate if the time spent
on this activity was adequate or if it was too short.
Beyond that, the recognition of NailBiting could be
helpful in the control of this impulse.

In the future, the dataset should be increased to
more users. Also, other activities should be tested.
Considering the application in a real live situation, our
framework could be integrated into a wearable sens-
ing device with an android interface.
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