
The Impact of Diverse Execution Strategies on Incremental Code
Updates for Wireless Sensor Networks

Kai Lehniger and Stefan Weidling
IHP - Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany

Keywords: Wireless Sensor Networks, WSN, Code Update, Over-the-air, Incremental Reprogramming, Delta, Page-
based, Low-power.

Abstract: Wireless Sensor Networks (WSNs) may require code updates for a variety of reasons, such as fixing bugs,
closing security holes or extending functionality. WSNs typically have limited resources available and wireless
updates are costly in terms of energy and can lead to early battery failure. The idea of incremental code
updates is to conserve energy by reusing the existing code image on the node and disseminating only a delta
file that is generated by differencing algorithms, which can be used to reconstruct the new image. Beyond
these differencing algorithms, there are other strategies to minimize the delta, e.g., reconstructing only the
changed parts of the image. This paper points out possible implications of diverse execution strategies and
gives suggestions. In addition to the usual delta size, the impact on the flash memory was considered. The
presented results can be used to select a fitting strategy for a given use case.

1 INTRODUCTION

WSNs consist of many low-cost, low-power devices
with harsh resource restrictions, such as limited en-
ergy in the form of a battery or limited processing
power. Despite these limitations, nodes in field op-
eration must provide update functionality for adding
features or fixing bugs.

Incremental code updates attempt to consume as
little energy as possible by calculating the differences
between two program images and compiling them as
instructions summarized as delta file. This file is then
disseminated across the network and executed by the
corresponding nodes.

The research field of incremental reprogramming
strategies is well studied, with approaches such as
R3diff (Dong et al., 2013) to generate delta files.
Common to all publications is that they try to min-
imize the size of the delta file, because over-the-air
dissemination of the delta file is considered the main
drain of energy. This assumption was possible be-
cause the execution of the delta file was equivalent for
the different approaches. After the image has been re-
ceived, it has been completely constructed either on
an external memory or in a separate part of the inter-
nal memory and then copied to its destination.

Meanwhile, alternative delta execution techniques
have been introduced in recent publications, for ex-

ample, by Kachman and Balaz (2016b). These ap-
proaches try to eliminate the overhead that occurs
when an image is completely reconstructed before be-
ing copied in place, especially the parts that have not
changed.

Beyond the differencing algorithms, Lehniger
et al. (2018) have proposed an approach that has the
same goal of minimizing the delta but taking a dif-
ferent path. Namely, a good order is searched for the
pages in flash memory in which they are to be up-
dated.

A major consequence of these diverse execution
strategies is a different treatment of the internal flash
memory, which affects its lifetime and energy con-
sumption. Kachman and Balaz (2016a) have already
considered other metrics for comparison.

This paper tries to support the understanding of
the state of the art in this research area by pointing out
possible implications of diverse execution strategies
and giving suggestions. In addition to the usual delta
size, the impact on the flash memory is examined. It
also studies the impact of the page update order on the
diverse execution strategies.

The rest of this paper is structured as follows.
Section II describes various incremental code update
strategies and categorizes them. Three strategies are
described in detail as case studies in Section III. Sec-
tion IV discusses the possible implications of the

30
Lehniger, K. and Weidling, S.
The Impact of Diverse Execution Strategies on Incremental Code Updates for Wireless Sensor Networks.
DOI: 10.5220/0007383400300039
In Proceedings of the 8th International Conference on Sensor Networks (SENSORNETS 2019), pages 30-39
ISBN: 978-989-758-355-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Image
pre-processing

Differencing
algorithm

Delta
dissemination

Execution
Strategy

delta delta new

image

new

image

PC side Medium Sensor node side

Delta generation Reprogramming

old image

new image

old image

Figure 1: General reprogramming scheme.

strategies with respect to the lifetime of the nodes.
The trade-off between dissemination costs and exe-
cution costs is evaluated in Section V and Section VI
concludes this paper.

2 STATE OF THE ART

The general idea of an incremental code update is to
reuse the image already installed on the node. In nor-
mal updates/patches, large parts of the code base re-
main unchanged compared to the previous program
version. This applies to the application itself, but
more to other parts of the binary file, such as the op-
erating system, drivers, or libraries.

Figure 1 shows the main steps during the code
update progress, namely delta generation, dissemina-
tion, and reprogramming. Within the first step, pre-
processing the image is optional. The idea behind the
optimization techniques during the preprocessing is to
increase the similarity between the two program im-
ages before the actual delta is generated. This can be
done in several ways. Koshy and Pandey (2005) add
slop regions between functions to compensate func-
tion growth. Zephyr (Panta et al., 2009, 2011) and
Hermes (Panta and Bagchi, 2009) use indirection ta-
bles to reduce the changes that occur to pointers due
to function relocation. Hermes uses the indirection ta-
ble to replace the pointers to the indirection table with
the actual function address to minimize the runtime
overhead.

The actual delta generation is done by a differenc-
ing algorithm. This algorithm and its execution strat-
egy on the node are closely related. Therefore, they
are described together. The target of the first step is a
delta file. This file generally consists of copy and add
instructions. Copies are used to move code to new
positions, while add operations add code blocks that
were not present in the old binary file. However, the
algorithms themselves can be categorized according
to their execution strategy.

The first category of algorithms relies on an out-
of-place execution strategy. They try to find a se-

quence of instructions to completely build the new
image, either in a separate location in internal mem-
ory or in external memory, while leaving the origi-
nal image untouched. The first representative of this
category was based on Rsync (Tridgell, 1999), an al-
gorithm used to exchange binary files over a low-
bandwidth link. It slices the binary into blocks and
compares its signatures to find unmatched blocks.
This resulted in block-based algorithms (Jeong, 2003;
Jeong and Culler, 2004) for WSNs, where Jeong and
Culler (2004) changed the Rsync algorithm to bet-
ter handle code shifts. Byte-level algorithms (Brown
and Sreenan, 2006; Dong et al., 2011, 2010b,a) make
use of the fact that both image versions are known
to the host PC. They differ in finding the differences:
RMTD (Brown and Sreenan, 2006) uses dynamic pro-
gramming, DASA (Dong et al., 2011) suffix arrays,
R3diff (Dong et al., 2013) footprints, and Dong et al.
(2010a) Longest Common Subsequences (LCSs).

The second category of algorithms is character-
ized by an in-place execution strategy. Instead of
reconstructing the images, these algorithms focus on
”fixing” changes. Kachman and Balaz (2016b) point
out that for small code changes, many instructions
only reconstruct unchanged parts. Their differencing
algorithm only updates non-matching segments in the
memory. A similar idea, but at the page level, was im-
plemented by Lehniger et al. (2018). Instead of one
delta for the complete image, a delta for each page is
generated. However, the focus of this approach was
not on the differencing algorithm, but how to mini-
mize the overall delta size. This is done by finding
a good order for the internal flash memory pages in
which they are to be updated.

The remaining part of the general reprogramming
scheme is briefly summarized as it is beyond the
scope of this paper. During the dissemination step,
the delta is split into packets and sent over the air to
the sensor nodes. at the receiving node, all packets are
stored and checked for completeness and correctness.

The Impact of Diverse Execution Strategies on Incremental Code Updates for Wireless Sensor Networks

31

3 CASE STUDIES

Before discussing the implications of the two cate-
gories of algorithms, it is necessary to better under-
stand the differences between the pursued strategies.
For this reason, this section presents three different
approaches to an incremental code update as case
studies.

The first algorithm, R3diff, was proposed by Dong
et al. (2013) and is optimal in terms of the delta size.
It compares two binary files at the byte-level. The
second algorithm, Delta Generator (DG), proposed by
Kachman and Balaz (2016b), is an in-place strategy
which reconstructs non-matching segments. The third
and last algorithm presented in this section was re-
cently proposed by Lehniger et al. (2018). This algo-
rithm was introduced as an in-place strategy that fol-
lowed a different approach than Kachman and Balaz.

3.1 R3diff: Optimal Reconstruction

R3diff (Dong et al., 2013) is a classic out-of-place al-
gorithm that achieves a minimal delta. The proposed
algorithm calculates an opti, a minimum delta size
for a given image I for the index i. To get the opti-
mal size of an image, opt|I| is calculated. A method
findk is described to find the smallest index k such
that [k, i− 1] is a segment in the old image. For the
calculation of opti, optA

i and optC
i are introduced with

opti = min(optA
i ,optC

i). optA
i describes the minimum

delta size if the last instruction was an add, and optC
i

if it was a copy. The two can be computed as follows:

optA
i = min(optA

i−1,optC
i−1 +α+1)

optC
i =

{
LARGE INT EGER, i f k > i−1
optk +β, otherwise

With this exhaustive approach and some additional in-
formation, it is possible to construct a delta file that is
minimal for a given α and β, where α= size of an add
instruction (without payload) and β = size of a copy
instruction.

As a result, the algorithm has a O(n3) time and
O(n) space complexity, where n is the combined
length of the two images.

D6 5C C2 43 29 3E 4B 16 00 13 4F 14 D2

D6 B1 13 82 42 3E 4B 41 00 13 29 3E 42

0 1 1 1 1 0 0 1 0 0 1 1 1

old

new

XOR

s1 s2 s3

Figure 2: Example for calculating non-matching segments.

3.2 DG: Non-matching Segments

In 2016, Kachman and Balaz (2016b) described their
optimized differencing algorithm DG. By recon-
structing non-matching segments instead of the full
image, they were able to achieve a smaller delta file
size. These non-matching segments are determined
by a byte-wise XOR of the two images. An exam-
ple is given in Figure 2. Each block of consecutive
1’s, in the result string of the XOR, is a non-matching
segment. For each segment, the instructions are gen-
erated separately. LCSs are used to create copy in-
structions. The remaining bytes are added with add
instructions. copy instructions must be executed be-
forehand to prevent their source data from being over-
written by add instructions. For this, the instructions
are rearranged. The paper also describes optimization
techniques to further reduce the size of the delta.

However, it does not generate an optimal delta.
Looking at the byte strings ”axb” and ”cxd”, a diff
would find two non-matching segments, and therefore
two add instructions would be generated. Each of the
add instructions has a size of 6 bytes for a 16-bit ar-
chitecture. On the other hand, a single add instruction
that adds all three bytes has only the size of 8 bytes
and saves 4 bytes. Since the optimization techniques
focus only on already generated instructions and do
not take into account unchanged parts of the image,
this optimization cannot be found.

More important than the differencing algorithm it-
self was the different execution strategy required to
perform the update. Unfortunately, that was not part
of the work. No description has been given for up-
dating the non-matching segments. The fact that flash
memory in general can not be written randomly was
completely ignored.

3.3 Page Updates

To write a single byte (or sequence of bytes) to flash
memory requires several steps. First, a copy of the
block in main memory is needed. Then the operation
can be executed on this copy. After that, the block
in the flash memory must be erased and the modified
copy can then be written to the flash. This would put a
tremendous burden on the flash memory itself as each
instruction execution of an in-place strategy forces a
read-write cycle of a flash memory block. Of course,
the copy of the block may be cached in main memory
until another memory block needs to be written. In
the best case, each block must be written only once.

The algorithm of Lehniger et al. (2018) addresses
this problem. Instead of updating segments, it updates
a complete page. Pages are described as the smallest

SENSORNETS 2019 - 8th International Conference on Sensor Networks

32

Table 1: Overview of possible implications of different code update executions strategies.

better←−−−→ worse

Instruction size
R3diff

next position is
given implicitly

Page-based
extra header, but smaller values

DG
destination for each instruction

Number of
instructions

DG
only non-matching segments

Page-based
only pages

R3diff
always complete image

Delta size
R3diff

finds optimum for
complete image

DG
only delta for non-matching

segments, but no optimizations
between non-matching segments

Page-based
page update can override

useful data, depends highly on
choosen differencing algorithm

flash memory
usage

Page-based
each block is written once

R3diff
each block is written

once, but external flash
is used for image construction

DG
multiple block writes

may be necessary

Node recovery
possibilities

R3diff
old image is valid until new image has been built

DG, Page-based
in-place execution

might corrupt image

block of memory that can be erased from the flash
memory.

If a page has been changed in the new image ver-
sion, a delta for this page is created. The concrete
delta algorithm is unspecified. The main problem
with this algorithm is that replacing a page in place
could overwrite much of the data that would other-
wise have been used for copying. Therefore, a heuris-
tic has been proposed to find an update order for the
pages minimizing this overwritten data.

4 THE IMPLICATIONS OF THE
DIFFERENT EXECUTION
STRATEGIES

In this section, various implications of the different
execution strategies are discussed in more detail. Ta-
ble 1 gives a brief overview. These implications in-
directly lead to larger delta sizes, shortened lifetimes,
or even node failures.

Encoding Particularities: All featured algorithms
use copy and add instructions. In general, the param-
eters for these instructions are set. Of course, all in-
structions require some sort of opcode. To copy data,
a source address, a destination address, and a length
are needed. An add instruction requires a destination
address and the payload. In addition, the length of the
payload is needed to distinguish the bytes from the
next instruction.

Due to the different execution of the instructions,
the encoding of the instructions differs. R3diff gen-
erates the complete image. In this way, the destina-
tion address is implicitly the end of the currently built

part of the image. This saves a parameter for each
instruction compared to DG. However, because DG
fixes only changed parts of the image, the total num-
ber of instructions is smaller. It can be stated that for
more differences in the two image versions, i.e., more
instructions in the delta, the advantage of DG should
be smaller.

The other part of the delta is the header. The
header contains only information necessary for the
execution strategy to correctly interpret the delta and
is minimally different between R3diff and DG com-
pared to the size of the remainder of the delta file.
However, if a page-based approach is used, each of
the page delta files has a header. Having a lot of small
changes, i.e., changing many pages with a very small
number of instructions, adds a lot of overhead to the
headers.

Increased Delta Size Due to Instruction Execution
Dependencies: The biggest difference between an
in-place and an out-of-place execution strategy lies in
the dependency of the instruction execution. While
an out-of-place execution leaves the original image
untouched until all instructions have been executed,
an in-place execution mutates the image with each in-
struction. This must be taken into account when gen-
erating a delta file. This consideration includes, for
example, executing copy instructions before adding
instructions as described in subsection 3.2. However,
this may not be sufficient as copy instructions them-
selves may depend on each other.

Copy instructions work with two memory areas:
the source area, the part of memory from which the
data is copied, and the destination area, the part of the
memory where the data is copied to. If the destina-
tion area of an instruction i overlaps the source area

The Impact of Diverse Execution Strategies on Incremental Code Updates for Wireless Sensor Networks

33

of an instruction j, the correct execution depends on
instruction i, that is, instruction i’s execution must not
be scheduled prior to j’s execution because it would
corrupt j’s source area.

While this issue is not covered by Kachman and
Balaz (2016b), it can be easily solved by modeling
these dependencies in a directed graph, where each
copy instruction is represented as a node and edges
represent dependencies. Topological sorting of the
nodes is a valid schedule for the copy instructions.
However, cyclic dependencies must be resolved sep-
arately, i.e., solving the feedback vertex set problem
for the graph that is NP-hard (Karp, 1975).

Another approach might be to associate the in-
structions execution order and the generated instruc-
tions with the certainty of the changes that the other
instructions have already made at the source. This
had to be done by the algorithm described in subsec-
tion 3.3, because the dependencies are even bigger.
Instead of source and destination areas of single in-
structions, complete pages are updated, and each copy
instruction that is used to update a page has source
areas. These dependencies are too complex to han-
dle with the previous approach because of too many
conflicts. By shifting the dependency problem into
page order with the described heuristic by Lehniger
et al. (2018) and generating instructions thereafter, no
instruction reordering is necessary; not even copy in-
structions need to be executed before add instructions.

Increased Execution Times and Power Consump-
tion due to Excessive Flash Memory Access:
While the approach of Kachman and Balaz (2016b)
ensures that only changed parts of the binary are en-
coded, it is still necessary to erase and rewrite every
changed block of memory in the flash memory. On
the other hand, if an image is constructed in the ex-
ternal flash memory and written to the internal flash
when the delta is completely decoded, mass erasure
for the full flash memory is possible (if supported).

Using a mass-erase or deleting individual memory
blocks can affect execution time and power consump-
tion. However, the various execution strategies may
otherwise affect the lifetime of the node.

Shortened Flash Memory Lifetime Due to Exces-
sive Write Access: While flash memory reads are
harmless to the flash memory, write operations slowly
decrease its lifetime. This can be more harmful than
energy consumption, as nodes with empty batteries
can be collected and reused, while damaged flash
memory is much harder to replace or compensate for.

An execution strategy that allows for smaller delta
files and saves energy, even if the various memory

erase mechanics are taken into account, can still result
in a shorter lifetime of the node if it heavily consumes
the flash.

While Lehniger et al. (2018) limiting the erase and
write cycles to 1 per memory block, the algorithm of
Kachman and Balaz (2016b) may require several cy-
cles for individual blocks.

Of course, there are techniques to minimize the
burden on flash memory. For example, it is possible
to reorder the delta instructions to favor consecutive
operations on the same block. In this way, it is possi-
ble to perform multiple operations before the memory
block is written to the flash. However, the reordering
is either limited by the dependencies between the op-
erations or has a negative affect on the size of the delta
file.

Hardware-level and software-level techniques,
such as caching and paging (Hennessy and Patter-
son, 2011; Panda et al., 2001; Mittal, 2014; Gracioli
et al., 2015), for minimizing memory access are well
researched. Paging algorithms have been developed
to manage the pages of main memory. If there are
no free pages left and a process needs more memory,
a page must be swapped out and written to the hard
drive. This can be adapted to the problem of the delta
execution. Multiple memory blocks can be cached in
main memory, and if the cache is full and a new block
needs to be modified, a block is written to the flash.
The big advantage of the delta execution compared to
memory access of processes is that the order of oper-
ations is known. Therefore, an optimal strategy can
be found.

However, the main memory in microcontrollers is
small and blocks can consume large parts of it. It
may be impossible to have a cache with more than
one handful of blocks, which limits this method.

Node Recovery Possibilities: Recovery mecha-
nisms during the update process are necessary for
safety and security reasons. During this process, there
are several points for checks to ensure its correctness.
Whenever a check fails, a recovery mechanism be-
comes active, either to repeat the step hoping to com-
plete the update, or to return the node to its pre-update
state.

These mechanisms often include hash calculations
and re-transmissions of certain parts of the delta. For
this purpose, the node must be able to perform these
actions, i.e., the image must still be intact. After parts
of the image have been overwritten, it can no longer
be assumed that routines will function properly until
the update is complete.

While overwriting the image is the final step dur-
ing the execution of an out-of-place update, it will

SENSORNETS 2019 - 8th International Conference on Sensor Networks

34

start earlier during an in-place update. For example,
there is no way1 to verify the correctness of the de-
coded image in an in-place update without overwrit-
ing parts of the old image, because the execution of
the first instruction already causes alteration. An at-
tacker could use this vulnerability to manipulate an
update so that it does not detect the manipulation be-
fore it can not be recovered. Therefore, security as-
pects should be considered before deciding on an ex-
ecution strategy.

5 TEST METHODOLOGY

When comparing different delta generation algo-
rithms, it is common to use a real application and
apply changes of different sizes to it. This can start
with changing a constant and can end with replacing
the entire application with another. The test cases can
then be ordered by their impact on the image, i.e., the
number of bytes that have changed.

However, the number of changes in the code does
not directly match the changes in the image. Mod-
ern compilers can perform many complex optimiza-
tion techniques that can marginalize changes. For ex-
ample, encapsulating some functionality in a function
may still result in the exact same binary if the com-
piler decides to inline this function.

On the other hand, small changes that affect the
size of a function or even a single base block can
lead to large code shifts and pointer alterations that
go along with it.

These inconsistencies due to the indirection called

1Of course, it would be possible to create a copy of the
image and perform the update on the copy. However, this is
essentially a transformation to an out-of-place update.

compiler make it very difficult to create test cases
that consistently scale in one or more desired metrics.
This could be the already mentioned byte change,
but also metrics like the image size or the number of
shifts.

To control all these metrics, this paper uses im-
ages generated in addition to images based on real
applications. The images are generated as a random
byte sequence based on different hardware platforms
that differ in flash size and even in address space size.
Based on an generated or compiled image, code shifts
and mutations of different sizes can be applied.

Of course, all semantics and dependencies be-
tween the bytes for generated images and changes are
lost. Instead of a shifted function only a few bytes are
shifted. Instead of a changing constant or a pointer,
only randomly selected bytes are altered. A shift does
not mean that pointers are altered elsewhere, as is the
case with a function shift. However, the algorithms
studied do not consider any of this information. It
is still possible to get examples that are impossible
with real world applications, such as large code shifts
without alterations. However, it is still interesting to
see how the algorithms react to those cases and scale
to find advantages and disadvantages.

Another advantage is the ability to create many
similar image pairs for testing to eliminate the possi-
bility that any random structure will undesirably favor
an algorithm.

6 RESULTS

For the tests, we used randomly generated images
ranging in size from 1kB up to 64kB (up to 128kB
for time measurements). We have made changes to

Figure 3: Delta file sizes in bytes for different percentages of shifted code and 2% mutations.

The Impact of Diverse Execution Strategies on Incremental Code Updates for Wireless Sensor Networks

35

Figure 4: Distribution of copy and add instructions for different algorithm combinations and code shifts.

these images as described in the previous section. The
applied changes refer to the size of the image, begin-
ning with no code shifts, up to 90% code shifts. For
random mutations, 2% were used because code shifts
already introduce new code when the remaining areas
are filled. For charts, data from the 16kB images was
used. However, the results for other image sizes are
similar.

The algorithms of section 3 have been imple-
mented. Since the page-based approach does not de-
fine a concrete differencing algorithm, both R3diff
and DG were used. In addition, three different page
sizes are examined: 128 bytes (e.g., ATmega32U4
microcontroller), 256 bytes, and 512 bytes (e.g.,
MSP430F5438A microcontroller).

Figure 3 shows the different delta sizes in bytes
in perspective to an increasing code shift rate. First,
it can be stated that the differencing algorithms itself
performs relatively the same, regardless of whether
the page-based approach has been integrated or not,
or how large the page size is. Second, while DG
performs very well when small changes occur, the
delta files become significantly larger as more data is
shifted compared to R3diff.

Although the effect of page size, as mentioned
earlier, is low, there are differences. Especially DG
can be improved because of the better encoding. For
R3diff, the results for the different page sizes vary
more, but 256 bytes give the best results. This is
because it is possible to encode offsets and lengths
with only one byte2. While this also applies to 128-
byte pages, the header overhead is larger, resulting
in worse delta files. For larger microcontroller ad-
dress spaces, three or four bytes are needed to encode
an offset or a length. Then the benefits will be even
greater. Also DG is more affected because its instruc-
tion has an additional parameter that benefits from the
better encoding.

The reason why DG worsens with larger deltas
can be seen in Figure 4. This figure shows the number
of add and copy instructions used in the delta file. In
general, DG uses far fewer instructions, as this was
the main intent for the development of this algorithm.
More noteworthy is the decreasing number of add in-
structions with increasing code shifts for DG and the
overall low number of copy instructions. Combined

2Lengths of 256 can be encoded with 0 because a copy
of 0 bytes is meaningless.

Figure 5: Page writes fro R3diff with and without page approach.

SENSORNETS 2019 - 8th International Conference on Sensor Networks

36

Figure 6: Page writes for DG with and without page approach.

with the fact that the DG delta file gets very large,
it can be concluded that DG is unable to optimize
for many small changes. Instead, it only generates
a bunch of some-byte add instructions for each non-
matching segment. With increasing code shifts, these
non-matching segments grow together and the total
number of add instructions decreases, and the algo-
rithm can also use a few copies. However, the num-
ber of bytes added with one add instruction increases
dramatically. In the end, almost the entire image is
rebuilt with add instructions.

Looking at page write operations for the internal
flash, there are almost no differences for R3diff (see
Figure 5). With R3diff, each page is written exactly
once when the reconstructed image is flashed. In its
paged counterpart, only the affected pages are written.
Due to the page size and the changes in the images

due to the 2% mutations, all pages are affected for
page sizes of 256 and 512. Only for the small 128
byte pages some pages remain unchanged.

For DG, an instruction execution caching mecha-
nism has been implemented. One page can be kept in
main memory. If successive instructions write data to
the same page, this will only be done in main mem-
ory. Only when the cache needs to be flushed, a write
operation is performed in flash memory. If no cache
is used, each instruction would result in at least one
page write.

Figure 6 shows the results for these cached op-
erations. Some pages need to be written more than
once because of dependencies, although the impact
of these dependencies is far less than expected. In
any case, more page writes are required by DG than
by R3diff. It should be noted that the 2% mutations

Figure 7: Algorithm runtimes for different image sizes in seconds.

The Impact of Diverse Execution Strategies on Incremental Code Updates for Wireless Sensor Networks

37

that are randomly distributed are not suitable for DG
because they affect almost all pages and negate the
benefits that DG has. With increasing code shifts, de-
pendencies on the instructions cause the instructions
to reorder, increasing page writes.

Despite all the advantages and disadvantages of
the algorithms, time can be a limiting factor. Figure 7
shows the average runtime of all algorithms for differ-
ent image sizes. Both scales are logarithmic. While
the basic algorithms itself scale with a similar com-
plexity (O(n3) for non-paged and O(n4) for paged al-
gorithms), the page algorithms are one to three orders
of magnitude slower. This is because the algorithms
have to be executed for each page, but the input size is
only halved. Larger images have more pages, which
increases the distance during runtime. A positive fact
is that the delta calculation for each page can be done
independently after the page order has been calculated
leaving much potential for parallelization.

7 CONCLUSION

This paper studied the implications of diverse execu-
tion strategies for incremental code updates. These
range from larger delta files through shortened life-
times to node failures. While the original idea of in-
cremental code updates is to conserve energy by prop-
agating only a delta file generated by differencing al-
gorithms, the effects on the sensor node’s flash mem-
ory are also relevant.

To study the impact of these diverse execution
strategies on incremental code updates, the flash
memory accesses were included in the consideration,
in addition to the usual delta size.

First, it could be observed that the differencing
algorithms themselves behave relatively the same re-
gardless of whether the page-based approach was in-
tegrated or not, or how big the page size is. Although
the effect of the page size is low, there are differences
between the different execution strategies, for exam-
ple, through better encoding of offsets and lengths.
With larger address spaces of microcontrollers, the
differences may be even greater.

After all, the runtime of an algorithm is also cru-
cial and can be a limiting factor. Page-based algo-
rithms are one to three orders of magnitude slower,
but it should be mentioned that the delta computation
for each page could be parallelized after the page up-
date order is determined, which could speed up the
runtime.

In conclusion, while a reduced delta size can min-
imize transmission costs, reducing flash access may
also increase the lifetime of sensor nodes by not un-

necessarily wearing the flash memory. And the code
update execution strategy is critical. In the future,
with growing complexity for embedded systems, al-
gorithms must be able to handle larger images. Due to
the recent trends for general-purpose processors with
stagnating clock rates and increasing number of cores,
algorithms that can be parallelized are highly benefi-
cial for those future applications.

ACKNOWLEDGEMENTS

This work was supported by the Federal Ministry
of Education and Research (BMBF) under research
grant number 03IPT601X.

REFERENCES

Brown, S. and Sreenan, C. (2006). Updating software in
wireless sensor networks: A survey. Technical report,
Dept. of Computer Science, National Univ. of Ireland,
Maynooth.

Dong, W., Chen, C., Liu, X., Bu, J., and Gao, Y. (2011). A
lightweight and density-aware reprogramming proto-
col for wireless sensor networks. IEEE Transactions
on Mobile Computing, 10(10):1403–1415.

Dong, W., Liu, Y., Chen, C., Bu, J., and Huang, C. (2010a).
R2: Incremental reprogramming using relocatable
code in networked embedded systems. In IEEE IN-
FOCOM 2010. IEEE.

Dong, W., Liu, Y., Wu, X., Gu, L., and Chen, C. (2010b).
Elon: enabling efficient and long-term reprogram-
ming for wireless sensor networks. ACM SIGMET-
RICS Performance Evaluation Review, 38(1):49–60.

Dong, W., Mo, B., Huang, C., Liu, Y., and Chen, C. (2013).
R3: Optimizing relocatable code for efficient repro-
gramming in networked embedded systems. In INFO-
COM, 2013 Proceedings IEEE, pages 315–319. IEEE.

Gracioli, G., Alhammad, A., Mancuso, R., Fröhlich, A. A.,
and Pellizzoni, R. (2015). A survey on cache manage-
ment mechanisms for real-time embedded systems.
ACM Computing Surveys (CSUR), 48(2):32.

Hennessy, J. L. and Patterson, D. A. (2011). Computer ar-
chitecture: a quantitative approach. Elsevier.

Jeong, J. (2003). Node-level representation and system sup-
port for network programming.

Jeong, J. and Culler, D. (2004). Incremental network pro-
gramming for wireless sensors. In IEEE Communica-
tions Society Conference on Sensor and Ad Hoc Com-
munications and Networks (SECON), pages 25–33.

Kachman, O. and Balaz, M. (2016a). Effective over-the-
air reprogramming for low-power devices in cyber-
physical systems. In Doctoral Conference on Com-
puting, Electrical and Industrial Systems, pages 284–
292. Springer.

SENSORNETS 2019 - 8th International Conference on Sensor Networks

38

Kachman, O. and Balaz, M. (2016b). Optimized differenc-
ing algorithm for firmware updates of low-power de-
vices. In 19th IEEE International Symposium on De-
sign and Diagnostics of Electronic Circuits Systems
(DDECS), pages 1–4. IEEE.

Karp, R. M. (1975). On the computational complexity of
combinatorial problems. Networks, 5(1):45–68.

Koshy, J. and Pandey, R. (2005). Remote incremental link-
ing for energy-efficient reprogramming of sensor net-
works. In Proceeedings of the Second European Work-
shop on Wireless Sensor Networks, pages 354–365.

Lehniger, K., Weidling, S., and Schölzel, M. (2018).
Heuristic for page-based incremental reprogramming
of wireless sensor nodes. In 2018 IEEE 21st Interna-
tional Symposium on Design and Diagnostics of Elec-
tronic Circuits & Systems (DDECS). IEEE.

Mittal, S. (2014). A survey of techniques for improving en-
ergy efficiency in embedded computing systems. In-
ternational Journal of Computer Aided Engineering
and Technology, 6(4):440–459.

Panda, P. R., Catthoor, F., Dutt, N. D., Danckaert, K.,
Brockmeyer, E., Kulkarni, C., Vandercappelle, A.,
and Kjeldsberg, P. G. (2001). Data and memory op-
timization techniques for embedded systems. ACM
Transactions on Design Automation of Electronic Sys-
tems (TODAES), 6(2):149–206.

Panta, R. K. and Bagchi, S. (2009). Hermes: Fast and en-
ergy efficient incremental code updates for wireless
sensor networks. In IEEE INFOCOM 2009, pages
639–647. IEEE.

Panta, R. K., Bagchi, S., and Midkiff, S. P. (2009). Zephyr:
Efficient incremental reprogramming of sensor nodes
using function call indirections and difference compu-
tation. In Proc. of USENIX Annual Technical Confer-
ence.

Panta, R. K., Bagchi, S., and Midkiff, S. P. (2011). Efficient
incremental code update for sensor networks. ACM
Trans. Sen. Netw., 7(4):30:1–30:32.

Tridgell, A. (1999). Efficient algorithms for sorting and
synchronization. PhD thesis, Australian National Uni-
versity Canberra.

The Impact of Diverse Execution Strategies on Incremental Code Updates for Wireless Sensor Networks

39

