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Abstract: Current state-of-the-art single shot object detection pipelines, composed by an object detector such as Yolo, 

generate multiple detections for each object, requiring a post-processing Non-Maxima Suppression (NMS) 

algorithm to remove redundant detections. However, this pipeline struggles to achieve high accuracy, 

particularly in object counting applications, due to a trade-off between precision and recall rates. A higher 

NMS threshold results in fewer detections suppressed and, consequently, in a higher recall rate, as well as 

lower precision and accuracy. In this paper, we have explored a new pedestrian detection pipeline which is 

more flexible, able to adapt to different scenarios and with improved precision and accuracy. A higher NMS 

threshold is used to retain all true detections and achieve a high recall rate for different scenarios, and a 

Pedestrian Similarity Extraction (PSE) algorithm is used to remove redundant detentions, consequently 

improving counting accuracy. The PSE algorithm significantly reduces the detection accuracy volatility and 

its dependency on NMS thresholds, improving the mean detection accuracy for different input datasets. 

1 INTRODUCTION 

Real-time pedestrian detection and counting, which 

detects and instantly counts the number of people in 

a designated area, is highly valuable and helpful in 

managing emergency situations, providing efficient 

resource allocation in smart buildings, and enabling 

automatic door control (Raghavachari et al., 2015). 

The solution for this problem largely relies on 

detection accuracy and processing speed, both 

equally important factors for real-time applications. 

Vision-based pedestrian detection, as one 

canonical instance of object detection, has been 

widely studied using multiple techniques. The most 

widely mentioned approaches include Histogram of 

Oriented Gradients (HOG) (Dalal and Triggs, 2005), 

Aggregated Channel Features (ACF) (Dollar et al., 

2014), and other approaches, based on Convolutional 

Neural Networks (CNN), such as Faster Region-

based Convolutional Network (Faster R-CNN) (He et 

al., 2016) (Dollar et al., 2014), Single Shot MultiBox 

Detector (SSD) (Liu et al., 2016), and You Only Look 

Once (Yolo, Yolo2, Yolo3) (Redmon et al., 2016). 

The comparative study in (Raghavachari et al., 

2015) shows that ACF achieves a better detection 

accuracy than HOG based approach. Moreover, the 

research in (Byeon and Kwak, 2017) shows that 

Faster R-CNN has much better accuracy than ACF in 

vehicle driving environments. Again, comparisons in 

(Redmon et al., 2016) show that Yolo family of 

detectors outperform Fast R-CNN and SSD detectors 

in both speed and accuracy, making it a state-of-the-

art detector on PASCAL VOC and Microsoft COCO 

public datasets. Yolo uses a single deep neural 

network to predict bounding boxes and class 

probability scores of detected objects directly from 

full images, in a single evaluation. However, it often 

generates redundant object detections, resulting in 

inaccurate counting, seriously compromising the 

accuracy of pedestrian counting systems where 

exactly one detection per pedestrian is required. 

The vast majority of modern object detectors, 

such as Yolo and Fast R-CNN, require a post-

processing Non-Maxima Suppression (NMS) 

(Devernay, 1995) algorithm to merge all detections 

belonging to the same object (Hosang et al., 2017) 
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(Hosang et al., 2016). This algorithm is very popular 

due to its simplicity and performance. However, the 

output of this detection pipeline is still not accurate 

due to NMS’s conceptual shortcomings. 

In standard NMS, if the NMS threshold is too low, 

multiple true positive detections are merged together, 

penalizing the recall rate. On the other hand, if the 

NMS threshold is too high, false positive redundant 

detections may not be suppressed, hurting the 

precision. Additionally, a pre-fixed NMS threshold is 

not suitable for all different scenarios such as densely 

crowded or sparse environments.   

In this paper we developed a Pedestrian Similarity 

Extraction (PSE) algorithm which can be added to the 

final stage of the current pedestrian detection pipeline 

to achieve higher precision and accuracy. The PSE 

algorithm uses a CNN, inspired in Google’s Inception 

v3 (Szegedy et al., 2016), to learn 128 distinguishable 

features which may differentiate pedestrians, making 

it appropriate to remove redundant detections and 

output exactly one bounding box per pedestrian.  

Resulting feature vectors of each pair of detections 

are compared using a cosine similarity distance 

metric to determine the similarity score. If the 

similarity score is over a pre-fixed PSE threshold, the 

detections likely correspond to the same pedestrian 

and the lowest score detection is removed from the 

final output, increasing precision and accuracy rates. 

In the newly proposed pedestrian detection three-

stage (detector + NMS + PSE) pipeline, the NMS 

algorithm, pre-fixed with a high threshold, is still 

required, as it is able to quickly remove most close-

by redundant detections. Then, PSE performs an 

additional comparison to remove detections with high 

similarity scores corresponding to the same object. 

This new pipeline delivers additional flexibility when 

compared with the current standard Yolo2 pipeline. 

The experiments demonstrated in this paper 

showed that, when compared with the current Yolo2 

detection pipeline, our approach can promisingly 

improve the precision and accuracy in pedestrian 

detection and counting systems. In addition, it 

reduces the volatility across a full range of pre-fixed 

NMS thresholds, resulting in accurate and stable 

performance in different scenarios.  

2 LIMITATION OF STANDARD 

DETECTION PIPELINE ON 

PEDESTRIAN COUNTING 

Yolo family of detectors have evolved from Yolo 

(Redmon et al., 2016), to Yolo2/9000 (Redmon and 

Farhadi, 2016), and, most recently, to Yolo3 

(Redmon and Farhadi, 2018). In Yolo3 paper, 

Redmon and Farhadi pointed out that Yolo3 struggles 

to get bounding boxes perfectly aligned with objects 

and has comparatively worse accuracy on medium 

and larger size objects compared with previous 

versions, which negatively impacts the detection and 

counting. Therefore, in this work we use Yolo2 

detector to demonstrate the detection accuracy of the 

new pipeline for detection and counting. 

Yolo2 is a fast and accurate, state-of-the-art, 

single shot object detector with real-time 

performance. Yolo2 algorithm is able to detect 20 

classes of objects when trained with a PASCAL VOC 

dataset (Everingham et al., 2010). The network 

classifies and locates objects in a single image scan, 

making it extremely fast and suitable for real-time 

pedestrian detection without compromising accuracy. 

As a consequence of Yolo2 object detection 

process, multiple bounding boxes may be generated 

for each detected object, as shown in Figure 1(b). 

Thus, a post-processing Non-Maxima Suppression 

(NMS) (Devernay, 1995) algorithm is added as an 

integral part of the object detection pipeline to 

remove redundant spatial overlapping bounding 

boxes, as illustrated in Figure 1(c). 

The NMS algorithm selects all pairwise 

combinations of detected bounding boxes with a 

spatial overlapping ratio Intersection over Union 

(IoU) (Equation (1)), equal or higher than a pre-fixed 

threshold. Finally, the NMS removes the lowest score 

bounding box among each pair of selected boxes. 

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝑏𝑝 ∩ 𝑏𝑡)

𝑎𝑟𝑒𝑎(𝑏𝑝 ∪ 𝑏𝑡)
 , (1) 

where bp is the predicted bounding box and bt is the 

ground truth bounding box. 

The NMS algorithm removes most redundant 

detections but trades off precision versus recall rates 

(Hosang et al., 2016). Low NMS thresholds may 

merge true positive detections and penalize the recall 

rate, whereas high NMS thresholds may not suppress 

false positive redundant detections and hurt the 

precision, as shown in Figure 1(c). 

We conducted preliminary evaluation 

experiments on EPFL Terrace (sequence 1, camera 

view 3) video dataset (Fleuret et al., 2008). For the 

sake of simplicity, we used a 100-frame subset of the 

original dataset. 

We evaluated Yolo2 detection pipeline to 

demonstrate the effect of NMS threshold values on 

the detection ratio, expressed by DR=dt/gt, where dt 

is the number of detected bounding boxes, and gt is 

the number of ground truth bounding boxes. 
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Figure 1: Pedestrian detections. (a) Original image 

containing five pedestrians. (b) Yolo2 detector output with 

multiple redundant bounding boxes. (c) NMS algorithm 

output with few redundant bounding boxes. (d) PSE 

algorithm output with no redundant bounding boxes. 

Figure 2 illustrates an example of NMS filter’s 

main problem. For lower NMS thresholds, multiple 

true positive detections are filtered, resulting in a 

limited number of detections and in a lower recall 

rate. On the other hand, as the NMS threshold 

increases, the number of detected pedestrians 

increases significantly up to 2.247 times more than 

the number of ground truth pedestrians, indicating 

that too many redundant extra boxes are generated, 

which significantly hurts the precision and recall. 

Figure 3 shows that the descending precision and 

accuracy rates, reveal an increasing presence of 

redundant detections which become more evident as 

NMS threshold approaches 1.0 and recall rate reaches 

the maximum value of 0.97, sacrificing precision and 

accuracy rates. 

 

Figure 2: NMS threshold impact on detection ratio. Blue 

dashed reference line corresponds to a number of detections 

matching the number of existing ground truth pedestrians.  

The NMS threshold is pre-fixed and can’t fit all 

different scenarios. Thus, determining the optimal 

NMS threshold value capable of filtering all 

redundant detections in all different scenarios, 

becomes an impossible task. 

Our proposed solution adds a PSE algorithm to the 

final stage of current detection pipeline to remove 

remaining redundant detections, generated by a 

higher NMS threshold, to obtain an exact number of 

pedestrians. 

 

Figure 3: NMS threshold impact on recall, precision, 

accuracy (EPFL Terrace). 

3 THREE-STAGE PEDESTRIAN 

DETECTION PIPELINE 

The three-stage object detection pipeline (Yolo2 + 

NMS + PSE) displayed in Figure 4, ensures that a low 

algorithmic complexity NMS filter is applied in an 

early stage to reduce the number of bounding boxes 

processed by a subsequent high algorithmic 

complexity PSE filter. Despite the added complexity, 

the new pipeline is still fast and effective enough to 

process real-time videos. This approach adds 

flexibility and adaptability to suit different scenarios, 

also improving the precision and accuracy rates. 
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Figure 4: Three-step detection pipeline. 

The proposed detection pipeline requires two pre-

fixed filter thresholds: NMS IoU threshold described 

in section 2, and PSE similarity threshold. PSE 

threshold defines the maximum pedestrian similarity 

score allowed among each pair of bounding boxes. 
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4 PEDESTRAIN SIMILARITY 

EXTRACTION 

4.1 PSE Workflow  

The PSE workflow, displayed in Figure 5, takes 

pairwise combinations of 224×112-pixel bounding 

box images (Ia and Ib) output by an NMS stage, and 

applies multiple processing steps, described below, to 

filter redundant bounding boxes based on similarity 

and detection confidence scores, outputting unique 

pedestrian detections to Io. 
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Figure 5: Pedestrian similarity extraction block diagram. Ia, 

Ib: input bounding boxes. Fa and Fb: 128-dimensional 

pedestrian similarity vectors. S: similarity score. t: pre-fixed 

similarity threshold. Io: set of selected bounding boxes. 

1. The Pedestrian Feature Extraction (PFE) 

convolutional neural network, inspired in 

Google’s Inception v3 model, extracts 128-

dimensional vectors, Fa and Fb, containing the 

most relevant and discriminative pedestrian 

features from each pair of bounding box images. 

A detailed description is provided in section 4.2. 

 

2. The similarity measurement block computes a 

cosine similarity metric, shown in Equation (2), 

between two different feature vectors Fa and Fb 

extracted from two distinct bounding boxes, and 

outputs a single similarity score within a [0, 1] 

range. A similarity score 1 corresponds to exactly 

the same pedestrians whereas 0 corresponds to 

totally different pedestrians. 

𝑆(𝑎, 𝑏) = cos(𝜃) =
𝐹𝑎 ∙ 𝐹𝑏

‖𝐹𝑎‖ ∙ ‖𝐹𝑏‖

=
∑ 𝐹𝑎𝑖

∙ 𝐹𝑏𝑖
𝑛
𝑖=1

√∑ 𝐹𝑎𝑖
2𝑛

𝑖=1 ∙ √∑ 𝐹𝑏𝑖
2𝑛

𝑖=1

  , 
(2) 

where Fai and Fbi are components of feature 

vector Fa and Fb respectively. 

 

3. The bounding box selector relies on detection 

confidence scores Ca and Cb, a PSE threshold t 

with a [0,1) range, and a pedestrian similarity 

score S(a,b) to determine the set of output 

bounding boxes Io. If the pedestrian similarity 

score S(a,b) is lower than a PSE threshold t, both 

bounding boxes Ia and Ib will be output to Io. 

However, if the pedestrian similarity score is 

equal or higher than the threshold t, only the 

highest confidence bounding box is output to Io. 

As a result, duplicate detections are removed. 

4.2 PFE Network Architecture 

The PFE network relies on a 51-layer deep neural 

network, inspired in Google’s Inception v3 model 

(Szegedy et al., 2016), slightly changed to extract 

pedestrian features. This network is composed by a 

set of inception modules which perform convolutions 

on pedestrian images based on multiple patch sizes, 

including 1×1, 1×3, 3×1, 3×3, 1×5, 5×1, 5×5, 1×7, 

7×1, and 7×7, extracting the 128 most relevant and 

discriminative pedestrian features, from pedestrians 

observed from different directions at different angles. 

4.2.1 Stem 

The PFE network has an input receptive field of 

224×112×3 pixels, with a 2:1 aspect ratio RGB image 

adequate for most standing pedestrians. The image of 

each pedestrian detected is cropped from the input 

dataset frame and fed to the network stem section 

shown in Figure 6, similarly to Google’s Inception v3 

model (Szegedy et al., 2016). 
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Figure 6: Stem section block diagram contains the set of 

operations performed before inception modules. 

The network input volume is processed by 

multiple convolutions and a maxpool to extract initial 

feature maps and reduce the input volume of the first 

inception module down to 29×15×32. 

4.2.2 Inception Modules 

In the core of a pedestrian feature extraction network 

resides a group of inception modules, introduced in 

GoogLeNet Inception v1 model (Szegedy et al., 

2015). 

The PFE network includes three types of 

inception modules (A, B, and C) (Szegedy et al., 
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Figure 7: PFE deep neural network compressed architecture. For simplicity, batch normalization and ReLU activation 

functions, used after convolutions, are not shown in the diagram. 

2016), as well as maxpool layers between groups of 

different inception modules to reduce volume 

dimensionality. 

4.2.3 Output  

The output network section, illustrated in Figure 8, is 

composed by an average pooling layer to reduce the 

dimensionality of the last inception module C output 

volume, and a fully connected layer to output a 128-

dimensional pedestrian feature vector. Dropout and 

softmax layers are excluded during the inference 

phase as no pedestrian classification is required. 
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Figure 8: Output layers – Inference & Training phases. 

A compress architectural view of PFE network is 

shown in Figure 7, with a summary shown in Table 1. 

4.3 PFE Network Training 

4.3.1 Training Dataset 

The PFE neural network is pre-trained with a 

combined dataset, extracted from six public 

pedestrian datasets, including CUHK01, CUHK03, 

Market-1501, PRID2011 and VIPeR. 

 
 

Table 1: PFE Neural network architecture. 

Layer type 
Input size 

(h × w × ch) 

Patch Size / 

Stride / Pad 
Depth 

Convolutional 224×112×3 3×3/1/1 1 

Convolutional 224×112×32 3×3/1/1 1 

Convolutional 224×112×32 3×3/1/1 1 

MaxPool 224×112×32 3×3/2/1 0 

Convolutional 113×57×32 3×3/1/1 1 

Convolutional 113×57×32 3×3/2/1 1 

Convolutional 57×29×32 3×3/2/1 1 

3×Inception A 29×15×32 - 3×3 

MaxPool 29×15×256 3×3/2/1 0 

5×Inception B 15×8×256 - 5×5 

Max Pool 15×8×256 3×3/2/1 0 

3×Inception C 8×5×256 - 3×3 

AvgPool 8×5×416 7×7/1/1 0 

Fully connected 4×1×416 - 1 

Dropout 1×1×128 - 0 

Fully connected 1×1×128 - 1 

Softmax 1×1×3812 - 0 

Accuracy 1×1×3812 - 0 

4.3.2 Training and Inference Networks 

A few layers are added to the output classification 

network section during the training phase, as shown 

in Figure 8. A dropout layer is added to prevent 

overfitting, followed by fully connected and softmax 

layers. The network was trained with a batch size of 

20, a learning rate of 0.1, a momentum of 0.9, and a 

weight decay of 0.0002. 
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5 EXPERIMENTS 

Experiments were conducted on three publicly 

available video datasets to represent a diversity of 

scenarios, enabling an unbiased evaluation capable of 

expressing the performance in real scenarios. The 

performance is evaluated based on recall, precision, 

and accuracy rates.  

5.1 Datasets 

Table 2 summarizes the three public datasets used in 

this work. For each video, 100-frame subsets were 

selected to evaluate our pipeline. 

Table 2: Input test datasets. 

Dataset 
Background 

complexity 

Pedestrians 

Range Mean 
Mean 

height 

EPFL 

Terrace 
Simple 0 ~ 8 4 217 px 

PETS 

2009 
Moderate 2 ~ 8 6 61 px 

Town 

Centre 
Complex 6 ~ 26 16 78 px 

EPFL Terrace dataset (Fleuret et al., 2008) 

(sequence 1, camera 3) is a multi-camera pedestrian 

video dataset with a resolution of 360×288-pixel, 

25fps, recorded by cameras standing approximately 

two meters from the ground, made publicly available 

by the computer vision lab of École Polytechnique 

Fédérale de Lausanne. 

 

PETS2009 dataset (Ferryman and Shahrokni, 2009) 

is one of the most commonly used for pedestrian 

detection evaluation, made publicly available by the 

Computational Vision Group of the University of 

Reading. The video PETS2009 S2L1, view 1, used in 

this research, has a resolution of 768×576 pixels and 

795 frames. 

 

Town Centre dataset (Benfold and Reid, 2011) is a 

high-definition, 1920×1080-pixel, 25fps, video 

dataset, showing an average of sixteen visible people 

at any given time. 

5.2 Results and Discussion 

This section demonstrates the results and discussion 

of conducted experiments. We used composite 

metrics: Precision, Recall and Accuracy rates to 

evaluate and compare the performance of multiple 

pedestrian detection pipelines.  

5.2.1 Improving Precision and Accuracy 

Figure 9 plots the resulting metrics for each dataset, 

based on different settings of PSE and NMS 

thresholds. Our approach always achieves higher 

precision, as shown in Figure 9 (a), (b), (c) and recall 

rate (Figure 9 (g), (h) and (i)) when compared with a 

standard Yolo2 pipeline, regardless of the pre-fixed 

NMS threshold value.  

5.2.2 Maintaining Recall 

It is often desirable to improve the detection accuracy 

and precision without removing true detections. Our 

approach can greatly enhance precision and accuracy 

rates with a small recall rate penalty (Figure 9 (d), (e), 

(f) and Table 3). 

Table 3: Precision, Recall and Accuracy rate improvement 

over a standard Yolo2 pipeline based on a high PSE 

threshold (PSE=0.9). 𝑃̅: mean precision improvement. 𝑅̅: 

mean recall improvement. 𝐴̅: mean accuracy improvement. 

PSE=0.90 
NMS Threshold 

0.50 0.60 0.70 0.80 

E
P

F
L

 

T
er

ra
ce

 𝑃̅ 0.42% 1.87% 8.65% 37.02% 

𝑅̅ -0.19% -0.53% -4.08% -6.91% 

𝐴̅ 0.20% 1.17% 4.70% 27.03% 

P
E

T
S

 

2
0
0
9
 𝑃̅ 0.92% 1.24% 3.98% 6.7% 

𝑅̅ 0.00% 0.00% -0.20% -0.40% 

𝐴̅ 0.94% 1.33% 3.32% 5.72% 

T
o

w
n
 

C
en

tr
e 𝑃̅ 0.13% 0.38% 0.90% 3.54% 

𝑅̅ 0.00% 0.00% -0.24% -0.67% 

𝐴̅ 0.06% 0.22% 0.32% 1.48% 

Occasionally, some pedestrians become almost 

completely occluded by other pedestrians and, 

consequently, the similarity score of bounding boxes 

generated for the two different pedestrians can be 

high, making it difficult for our PSE algorithm to 

differentiate the two bounding boxes, resulting in a 

true detection removal and, consequently, in a recall 

rate reduction. 

As a solution, a few subsequent video frames can 

be analysed to detect pedestrians and track their 

movements even when they become occluded, 

avoiding occlusion problems and achieving a 

maximum counting accuracy. 

Table 3 clearly shows that a higher PSE, such as 

PSE=0.9, and an NMS threshold within a limited 

range, such as NMS=0.6, may strictly remove high 

similarity bounding boxes, resulting in precision and 

accuracy improvements. When the NMS threshold is 

higher (NMS=0.8), our approach significantly 
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Figure 9: Main performance metrics of three input datasets. Chart colours: Dashed blue line: Standard Yolo2 pipeline with 

fixed NMS threshold only. Orange line: Our approach (PSE:0.5). Green line: Our approach (PSE:0.6). Red line: Our 

approach (PSE:0.7). Violet line: Our approach (PSE:0.8). Brown line: Our approach (PSE:0.9). 

increases precision and accuracy rates with a small 

recall penalty. 

Although a higher PSE can maintain the recall 

rate, it will lose precision since only highly similar 

redundant bounding boxes may be removed, as 

shown in Figure 9 (a), (b) and (c). 

5.2.3 Accuracy Volatility 

Pre-fixed thresholds are unlikely to perform 

accurately across all input datasets. Standard Yolo2 

pipeline shows a high detection accuracy volatility 

across the complete range of NMS thresholds. 

We determined the mean accuracy standard 

deviation using Equation (3). 

𝜎𝐴̅̅ ̅ = √
∑(𝐴𝑖 − 𝐴̅)2

100
 , (3) 

where 𝜎𝐴̅̅ ̅ is the mean accuracy standard deviation of 

100 selected frames, 𝐴𝑖 is the accuracy of each video 

frame, and 𝐴̅ is the mean accuracy of the selected 100 

frames on each dataset. 

The results, displayed in Table 4, clearly 

demonstrate the ability of our three-stage pipeline to 

significantly reduce the accuracy variance across a 

wide range of NMS thresholds, while maintaining a 

high detection accuracy. 

Table 4: Accuracy volatility evaluation. 

Dataset 

𝝈𝑨̅̅̅̅  
𝑨̅ 

Improvement Standard 

Yolo2 

Our 

Approach 

EPFL 

Terrace 
0.14059 0.01108 12.81% 

PETS 

2009 
0.03260 0.00930 4.56% 

Town 

Centre 
0.00429 0.00304 1.40% 

Average 

(All) 
0.05916 0.00781 6.96% 

a. Evaluation threshold ranges:  

Standard Yolo2 pipeline: NMS: { 0.2, 0.3, ..., 1.0 } 

Our Approach: NMS: { 0.2, 0.3, ..., 1.0 } 

 PSE: { 0.5, 0.6, ..., 0.9 } 
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6 CONCLUSIONS 

The counting accuracy of a standard Yolo2 detection 

pipeline depends on a pre-fixed NMS threshold and 

results from a precision and recall trade-off. Higher 

NMS thresholds increase the number of true positive 

detections, resulting in high recall rates. However, the 

number of unfiltered redundant detections will 

increase, resulting in lower precision and accuracy. 

In this paper, we have explored a new detection 

pipeline to mitigate this limitation. A PSE algorithm 

can be added to the final stage of a current detection 

pipeline to filter further redundant detections. The 

three-step detection pipeline is flexible and adaptable 

to different scenarios. A higher NMS filtering 

threshold may be set to keep all true detections, 

resulting in a higher recall rate. In addition, the PSE 

algorithm removes redundant detentions, eventually 

resulting in higher precision and accuracy rates. 

The three-stage detection pipeline reduces 

substantially the accuracy variance, allowing it to 

perform better in multiple different scenarios. In 

addition, the low accuracy variance achieved makes 

it easier to pre-define the NMS threshold as it has a 

limited impact on the pipeline’s performance. 

Finally, the PSE algorithm can be properly trained 

and added to any detection pipeline to remove 

redundant detections other than the pedestrian 

detection application described in this work. 
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