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Abstract: The fundamental formula in an optical system is Rayleigh diffraction integral. In practice, we deal with 

Fresnel diffraction integral as approximate diffraction formula. By optical instruments, an optical wave is 

subject to a band limited. To reveal the band-limited effect in Fresnel transform plane, we seek the function 

that its total power in finite Fresnel transform plane is maximized, on condition that an input signal is zero 

outside the bounded region. This problem is a variational one with an accessory condition. This leads to the 

eigenvalue problems of Fredholm integral equation of the first kind. The kernel of the integral equation is 

Hermitian conjugate and positive definite. Therefore, eigenvalues are real non-negative numbers. Moreover, 

we also prove that the eigenfunctions corresponding to distinct eigenvalues have dual orthogonal property. 

By discretizing the kernel and integral calculus range, the eigenvalue problems of the integral equation depend 

on a one of the Hermitian matrix in finite dimensional vector space. We use the Jacobi method to compute all 

eigenvalues and eigenvectors of the matrix. We consider the application of the eigenvectors to the problem of 

approximating a function and showed the validity of the eigenvectors in computer simulation. 

1 INTRODUCTION 

In scalar diffraction theory, the Huygens-Fresnel 

principle is used to explain diffraction phenomenon. 

The integral theorem of Helmholtz and Kirchhoff 

plays an important role in the development of the 

scalar theory of diffraction. Although scalar wave 

propagation is fully described by a single scalar wave 

equation, fundamental formula in an optical system is 

Rayleigh diffraction integral. In practice, we deal 

with Fresnel diffraction integral as approximate 

diffraction formula. The Fresnel transform has been 

studied mathematically and shown to be a one-

parameter group of unitary and factor-type operators 

from its algebraic and topological properties in 

Hilbert space ( 𝐻(𝐸2)) (Aoyagi, 1973, and Aoyagi et 

al., 1973a). In recently, it is also used in image 

processing, optical information processing, optical 

waveguides, computer-generated holograms, 

iterative phase retrieval techniques, speckle pattern 

interferometry and so on. In optical applications, an 

orthogonal functional system plays an important role. 

Up to now, many orthogonal functional systems have 

been derived in connection with the Fourier transform 

and applied to many applications. The extension of 

optical fields through an optical instrument is 

practically limited to some finite area. By band-

limited effect in Fourier transform plane, sampling 

functional systems have been derived and have 

orthogonal property. From sampling theorem about 

the Fourier transform, orthogonal functional systems 

are formulated from the point of view of functional 

analysis (Ogawa, 2009). In the literature, there are 

many sampling theorems and examples about the 

Fourier transform. Its applications and references 

therein (Jerri, 1977). However, the property of the 

orthogonal function about Fresnel transform is not 

revealed sufficiently.  

In this paper, the band-limited effect in Fresnel 

transform plane is investigated. For that, we seek the 

function that its total power in finite Fresnel 

transform plane is maximized, on condition that an 

input signal is zero outside the bounded region. This 

problem is a variational one with an accessory 

condition. This leads to the eigenvalue problems of 

Fredholm integral equation of the first kind (Kondo, 

1954). The kernel of the integral equation is 

Hermitian conjugate and positive definite. Therefore, 

eigenvalues are real non-negative numbers. 

Moreover, we prove that the eigenfunctions 

corresponding to distinct eigenvalues have dual 

orthogonal property. By discretizing the kernel and 
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integral range, the eigenvalue problems of the integral 

equation depend on a one of the Hermitian matrix in 

finite dimensional vector space (ℂ𝑛 ). We use the 

Jacobi method to compute all eigenvalues and 

eigenvectors of the matrix. We consider the 

application of the eigenvectors to the problem of 

approximating a function. We show the validity and 

limitations of the eigenvectors in computer 

simulation. 

2 FRESNEL TRANSFORM 

From the physical and mathematical standpoint, the 

fundamental formula in scalar diffraction theory is the 

Rayleigh diffraction integral guided by Helmholtz 

equation. The Rayleigh diffraction integral is defined 

as the Rayleigh diffraction operator on 𝐻(𝐸2) which  

indicates the Hilbert space of all complex-valued 

square-integrable function defined on 2 dimensional 

Euclidean space. The Rayleigh diffraction operator is 

a bounded additive operator. The derivations of the 

transform formula of Fresnel diffraction are 

straightforward and reflect the traditional view that 

wave fields can be thought of as being generated by a 

distribution of point sources. Since wave field is 

expressed as a superposition of plane waves traveling 

in different directions, we can derive the Fresnel 

diffraction formula by restricting attention to plane 

wave components which are diffracted through small 

angles. 
Assume that we place a diffracting screen on the 

𝑧 = 0 plane. The parameter 𝑧 represents the normal 
distance from the input plane. Let ξ , η  be the 
coordinates of any point in that plane. Parallel to the 
screen at 𝑧 is a plane of observation. Let 𝑥, 𝑦 be the 
coordinates of any point in this latter plane. If 𝑓(𝜉, 𝜂) 
represents the amplitude transmittance in  𝐻(𝐸2)  , 
then the Fresnel transform is defined by 

𝑔(𝑥, 𝑦; 𝑧) =
𝑘exp(𝑖𝑘𝑧)

𝑖2𝜋𝑧
∬ 𝑓(𝜉, 𝜂)

∞

−∞

 

× exp [
𝑖𝑘

2𝑧
{(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2}] 𝑑𝜉𝑑𝜂, 

(1) 

where 𝑘  is the wave number and 𝑖 = √−1 . The 

inverse Fresnel transform is defined by 

𝑓(𝜉, 𝜂) = −
𝑘exp(−𝑖𝑘𝑧)

𝑖2𝜋𝑧
∬ 𝑔(𝑥, 𝑦; 𝑧)

∞

−∞

 

× exp [−
𝑖𝑘

2𝑧
{(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2}] 𝑑𝑥𝑑𝑦. 

(2) 

Figure 1 shows a general optical system and its 

coordinate system. Fresnel transform and inverse 

Fresnel transform, which give a basis for Fresnel 

diffraction, are formulated systematically and 

mathematically in terms of Fresnel diffraction 

operator on 𝐻(𝐸2). The Fresnel transform has been 

studied mathematically and shown to be a one-

parameter group of unitary and factor-type operators 

from its algebraic and topological properties. In 

addition, a generalized Fresnel transform have been 

formulated by considering the transformation of the 

scalar-wave propagating between two quadratic 

surfaces within a paraxial approximation (Aoyagi et 

al., 1973b). 

 

Figure 1: Sketch of a general optical system and its 

coordinate system. 

3 EIGENVALUE PROBLEM 

To simplify the discussion, we consider only one-

dimensional Fresnel transform. The one-dimensional 

Fresnel transform is defined by  

𝑔(𝑥, 𝑧) =
1

√𝑖2𝜋𝑧
∫ 𝑓(𝜉)

∞

−∞

 

×exp {
𝑖

2𝑧
(𝑥 − 𝜉)2} 𝑑𝜉, 

(3) 

where we set the wave number unit. The inverse 

Fresnel transform is defined by 

𝑓(𝜉) = √
𝑖

2𝜋𝑧
∫ 𝑔(𝑥, 𝑧)

∞

−∞

 

 × exp {−
𝑖

2𝑧
(𝑥 − 𝜉)2} 𝑑𝑥. 

(4) 

Assume that 𝑓(𝜉) is limited within the finite region 𝑅 

on the ξ-plane and its total power 𝑃𝑅 , namely the 

inner product of the function, is constant. 

𝑃𝑅 = ∫ |𝑓(𝜉)|2
𝑅

𝑑𝜉 = const.              (5) 

Assume that 𝑔(𝑥)  is the Fresnel transform of the 

function 𝑓(𝜉) which is bounded by a finite region R. 

Then, the total power 𝑃𝑆  of 𝑔(𝑥)  in the bounded 

region 𝑆 is 

 

𝜉 

𝜂 

𝑥 

𝑦 

𝑧 

𝑓(𝜉, 𝜂) 𝑔(𝑥, 𝑦) 
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𝑃𝑆 = ∫ |𝑔(𝑥)|2

𝑆

𝑑𝑥 = ∫ 𝑔∗(𝑥)𝑔(𝑥)
𝑆

𝑑𝑥,     (6) 

where 𝑔∗(𝑥) denotes the complex conjugate function 

of 𝑔(𝑥). We seek the function 𝑓(𝜉) that maximizes 

𝑃𝑆  provided that the total power 𝑃𝑅  is fixed. This 

problem is a variational one with an accessory 

condition. We use the method of Lagrange multiplier 

to solve this problem (Aoyagi et al., 2018). Then, we 

can derive the integral equation, such that, 

∫ 𝐾𝑆(𝜉, 𝜉′)𝑓(𝜉′)
𝑅

𝑑𝜉′ = λ𝑓(𝜉), (7) 

where the kernel function 𝐾𝑆(∙,∙) is defined by 

𝐾𝑆(𝜉, 𝜉′) =
1

2𝜋𝑧
exp {−

𝑖

2𝑧
(𝜉2 − 𝜉′2)} 

× ∫ exp {
𝑖

𝑧
(𝜉 − 𝜉′)𝑥}

𝑆

𝑑𝑥.      
(8) 

This leads to the eigenvalue problems of Fredholm 
integral equation of the first kind. The kernel of the 
integral equation is Hermitian conjugate and positive 
definite. Therefore, eigenvalues are real non-negative 
numbers. This equation corresponds to some 
modification of the integral equation for the prolate 
spheroidal wave functions (Slepian et al., 1961, 
Landau et al., 1961, Landau et al., 1962). The integral 
equation and differential equation for the prolate 
spheroidal wave function have been generalized and 
revealed its properties (Slepian, 1964). Moreover, 
discrete prolate spheroidal functions and their 
mathematical properties have been investigated in 
great detail (Slepian, 1978). The prolate spheroidal 
wave functions have been applied to some optical 
problems (Itoh, 1970). 

In our previous paper (Aoyagi et al., 2018), it was 
shown that the kernel of the integral equation is 
Hermitian conjugate and positive definite. It was also 
shown that by setting the finite region S in Fresnel 
transform plane to the fixed real number, the kernel is 
of Hermitian symmetry. 

If 𝜆𝑚 and 𝜆𝑛 are distinct eigenvalues of the above 

integral equation, i.e. m ≠ n , and 𝜑𝑚 , 𝜑𝑛  are 

corresponding eigenfunctions, we can express them 

as the following integral formulas. 

∫ 𝐾𝑆(𝜉, 𝜉′)𝜑𝑚(𝜉′)
𝑅

𝑑𝜉′ = 𝜆𝑚𝜑𝑚(𝜉). (9) 

∫ 𝐾𝑆(𝜉, 𝜉′)𝜑𝑛(𝜉′)
𝑅

𝑑𝜉′ = 𝜆𝑛𝜑𝑛(𝜉).   (10) 

Let us consider the complex conjugate of the kernel 
of the integral equation. 

𝐾𝑆
∗(𝜉, 𝜉′) =

1

2𝜋𝑧
exp {

𝑖

2𝑧
(𝜉2 − 𝜉′2)} 

× ∫ exp {−
𝑖

𝑧
(𝜉 − 𝜉′)𝑥}

𝑆

𝑑𝑥. 
(11) 

From eq. (8), we have 

𝐾𝑆(𝜉′, 𝜉) =
1

2𝜋𝑧
exp {−

𝑖

2𝑧
(𝜉′2 − 𝜉2)} 

× ∫ exp {
𝑖

𝑧
(𝜉′ − 𝜉)𝑥}

𝑆

𝑑𝑥 

=
1

2𝜋𝑧
exp {

𝑖

2𝑧
(𝜉2 − 𝜉′2)} 

× ∫ exp {−
𝑖

𝑧
(𝜉 − 𝜉′)𝑥}

𝑆

𝑑𝑥. 

(12) 

Therefore, we obtain 

𝐾𝑆
∗(𝜉, 𝜉′) = 𝐾𝑆(𝜉′, 𝜉), (13) 

and the integral kernel 𝐾𝑆(𝜉, 𝜉′)  is of Hermitian 

symmetry. If we multiply the both sides of eq. (9) by 

𝜑𝑛
∗ (𝜉) and integrate with respect to over 𝑅, we obtain 

∫ ∫ 𝐾𝑆(𝜉, 𝜉′)𝜑𝑚(𝜉′)𝜑𝑛
∗ (𝜉)𝑑𝜉′𝑑𝜉

𝑅𝑅

 

= 𝜆𝑚 ∫ 𝜑𝑚(𝜉)𝜑𝑛
∗ (𝜉)𝑑𝜉

𝑅

. 

(14) 

After taking the complex conjugate of eq. (10), we 
multiply the both sides by 𝜑𝑚(𝜉) and integrate with 
respect to over 𝑅, we obtain 

∫ ∫ 𝐾𝑆
∗(𝜉, 𝜉′)𝜑𝑚(𝜉)𝜑𝑛

∗ (𝜉′)𝑑𝜉′𝑑𝜉

𝑅𝑅

 

= 𝜆𝑛
∗ ∫ 𝜑𝑚(𝜉)𝜑𝑛

∗ (𝜉)𝑑𝜉

𝑅

.           

(15) 

From eq. (15) and eq. (13), we obtain 

∫ ∫ 𝐾𝑆(𝜉′, 𝜉)𝜑𝑚(𝜉)𝜑𝑛
∗ (𝜉′)𝑑𝜉′𝑑𝜉

𝑅𝑅

 

= 𝜆𝑛
∗ ∫ 𝜑𝑚(𝜉)𝜑𝑛

∗ (𝜉)𝑑𝜉

𝑅

.          

(16) 

Because the left side of eq. (14) and the right side of 
eq. (16) are equal and 𝜆𝑛 is real number, we have 

(𝜆𝑚 − 𝜆𝑛) ∫ 𝜑𝑚(𝜉)

𝑅

𝜑𝑛
∗ (𝜉)𝑑𝜉 = 0. (17) 

For 𝜆𝑚 ≠ 𝜆𝑛, we conclude 

∫ 𝜑𝑚(𝜉)

𝑅

𝜑𝑛
∗ (𝜉)𝑑𝜉 = 0.     (18) 

That is to say, 𝜑𝑚(𝜉) and 𝜑𝑛(𝜉) are orthogonal on 𝑅. 
Let us consider the extension of the domain of ξ 

into one-dimensional Euclidean space 𝐸. Now we can 
redefine the following integral equation. 
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∫ 𝐾𝑆(𝜉, 𝜉′)𝜑(𝜉′)𝑑𝜉′

𝑅

= 𝜆𝜑(𝜉)  ξ ∈ 𝐸, (19) 

where 𝐸 denotes one-dimensional Euclidean space. 
Then, for the eigenfunctions 𝜑𝑚, and 𝜑𝑛, 𝑚 ≠ 𝑛 , we 
have 

∫ 𝜑𝑚(𝜉)𝜑𝑛
∗ (𝜉)𝑑𝜉

∞

−∞

 

=
1

𝜆𝑚𝜆𝑛

∫ ∫ 𝜑𝑚(𝜉′)𝜑𝑛
∗ (𝜉′′)

𝑅𝑅

 

× ∫ 𝐾𝑆(𝜉, 𝜉′)𝐾𝑆
∗(𝜉, 𝜉′′)𝑑𝜉𝑑𝜉′𝑑𝜉′′

∞

−∞

. 

(20) 

We need to consider the integral part about the kernel. 

∫ 𝐾𝑆(𝜉, 𝜉′)𝐾𝑆
∗(𝜉, 𝜉′′)𝑑𝜉

∞

−∞

 

=
1

(2𝜋𝑧)2
exp {

𝑖

2𝑧
(𝜉′2 − 𝜉′′2)} 

× ∫ ∫ ∫ exp {
𝑖

𝑧
(𝜉 − 𝜉′)𝑥

𝑆𝑆

∞

−∞

−
𝑖

𝑧
(𝜉 − 𝜉′′)𝑥′} 𝑑𝑥𝑑𝑥′𝑑𝜉 

=
1

(2𝜋𝑧)2
exp {

𝑖

2𝑧
(𝜉′2 − 𝜉′′2)} 

× ∫ ∫ exp {−
𝑖

𝑧
(𝜉′𝑥 + 𝜉′′𝑥′)}

𝑆𝑆

 

× ∫ exp {
𝑖

𝑧
(𝑥 − 𝑥′)𝜉} 𝑑𝜉𝑑𝑥𝑑𝑥′

∞

−∞

. 

(21) 

By using the delta function δ(∙) , as shown in the 
Appendix, such that, 

δ(𝑥 − 𝑥′) =
1

2𝜋𝑧
∫ exp

∞

−∞

{
𝑖

𝑧
(𝑥 − 𝑥′)𝜉} 𝑑𝜉, (22) 

the above equation can be expressed by the following 
form. 

1

2𝜋𝑧
exp {

𝑖

2𝑧
(𝜉′2 − 𝜉′′2)} 

× ∫ ∫ exp {−
𝑖

𝑧
(𝜉′𝑥 + 𝜉′′𝑥′)}

𝑆𝑆

δ(𝑥

− 𝑥′)𝑑𝑥𝑑𝑥′ 

=
1

2𝜋𝑧
exp {

𝑖

2𝑧
(𝜉′2 − 𝜉′′2)} 

× ∫ exp {−
𝑖

𝑧
(𝜉′ − 𝜉′′)𝑥} 𝑑𝑥

𝑆

 

= 𝐾𝑆
∗(𝜉′, 𝜉′′).         

(23) 

Substituting eq. (23) into eq. (21), we have 

∫ 𝜑𝑚(𝜉)𝜑𝑛
∗ (𝜉)𝑑𝜉

∞

−∞

 

=
1

𝜆𝑚𝜆𝑛

∫ ∫ 𝜑𝑚(𝜉′)𝜑𝑛
∗ (𝜉′′)𝐾𝑆

∗(𝜉′, 𝜉′′)𝑑𝜉′𝑑𝜉′′

𝑅𝑅

 

=
1

𝜆𝑚

∫ 𝜑𝑚(𝜉′)

𝑅

𝜑𝑛
∗ (𝜉′)𝑑𝜉′. 

(24) 

If the functional systems {𝜑𝑚(𝜉)} are orthogonal on 
𝐸 , these also are orthogonal on 𝑅 . Therefore, the 
orthogonal functional systems have dual orthogonal 
property. 

Dual orthogonal property means that the functional 
systems have the orthogonality of the functions over 
two different intervals. It can expand any function in 
two different intervals. Orthogonal functional 
systems have important role in expanding the 
objective functions by using basis functions. In 
numerical computation, it is necessary to discretize 
the objective function. We derived dual orthogonal 
functional systems and revealed its property. These 
lead to reveal the relation between functions and their 
Fresnel transforms. 

4 NUMERICAL COMPUTATION 

It is difficult in general to seek the strict solution of 
the integral equation. So we desire to seek the 
approximate solution in practical exact accuracy. By 
discretizing the kernel function and integral calculus 
range at equal distance, and using the value of the 
discrete sampling points, we can write 

∑ 𝐾𝑖𝑗𝑥𝑗

𝑁

𝑗=1

= 𝜆𝑥𝑖 , (25) 

where 𝑖 , 𝑗  are the natural number, 1 ≤ 𝑖 ≤ 𝑀 . The 

matrix 𝐾𝑖𝑗  is the Hermitian matrix if the kernel is 

discretized evenly-spaced and 𝑀 = 𝑁.  

Therefore, the eigenvalue problems of the integral 

equation depend on one of the Hermitian matrix in 

finite dimensional vector space. In general finite 

dimensional vector spaces (ℂ𝑛 ), the eigenvalues of 

Hermitian matrix are real numbers and then 

eigenvectors from different eigenspaces are 

orthogonal (Anton et al., 2003). We use the Jacobi 

method (Press et al., 1992) to compute all eigenvalues 

and eigenvectors of the matrix. The Jacobi method is 

a procedure for the diagonalization of complex 

symmetric matrices, using a sequence of plane 

rotations through complex angles. All eigenvectors 
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Figure 2: Plots of the eigenvalues in descending order. 𝑆 =
[−6,6], 𝑅 = [−6,6]. 

 

Figure 3:Plots of the eigenvectors for the largest 

eigenvalue. 𝑆 = [−6,6], 𝑅 = [−6,6]. z=5.0. 

Figure 4: Plots of the normalized mean square error versus 

the number of eigenvectors. 

computed by the Jacobi method is of orthonormal 

vectors automatically. Now, we set 𝑀 = 𝑁 = 30. 

Figure 2 shows the eigenvalues in descending order, 

if z is 3.0, 4.0 and 5.0. They are nonnegative and real 

number. Figure 3 shows the real part and imaginary 

part of the eigenvectors for the largest eigenvalue at 

 

Figure 5: Plots of the normalized mean square error versus 

the number of eigenvectors. Original function is added by 

noise with white Gaussian. (Ex. 1) 18.0 dB SNR;(Ex. 2) 

8.4dB SNR;(Ex. 3) 4.0dB SNR. 

 

Figure 6: Plots of the mean square error versus the number 

of eigenvectors for the phase without noise. 

z = 5.0 . Because of 30 dimensional vector space, 
except for this, there are 29 eigenvectors. 

We consider the application of the above 
eigenvectors to the problem of approximating a 
function. Theoretically, we deal with a problem of 
expressing an arbitrary element on a finite 𝑁 -
dimensional Hilbert space 𝐻𝑁  with an orthonormal 
basis. For any element 𝒗 in 𝐻𝑁, by using orthonormal 
basis {𝜓𝑛}𝑛=1

𝑁 , we can write 

𝒗 = ∑〈𝒗, 𝜓𝑛〉𝜓𝑛

𝑁

𝑛=1

,   (26) 

where 〈∙,∙〉 is an inner product (Reed et al., 1972) . 

Now, we set 𝑁 = 30. Let us consider the set ℂ30 of 

all 30-tuples 

𝒗 = (𝑣1, 𝑣2, ⋯ , 𝑣30), (27) 

where 𝑣1, 𝑣2, ⋯ , 𝑣30 are complex numbers. 
Now, let us consider a following test function. 

𝑓(𝑥) = sin(c𝑥), 𝑥 ∈ [0,2𝜋] (28) 
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where c is natural number. We evenly discretize the 
test function at 30 points to reconstruct by using the 
eigenvectors. Figure 4 illustrates the mean square 
error versus the number of eigenvectors. The 
normalized mean square error is defined by 

Error(𝑛) =
‖𝒗𝑛 − 𝒗‖2

‖𝒗‖2

, (29) 

where 𝒗𝑛  is the sum in Eq. (26) up to 𝑛 , 𝒗 is the 
original vector and ‖∙‖2 is the ℓ2-norm. From Fig. 4, 
we can see that the error decreases with increasing 
number of eigenvectors used in the expansion. 

Next, let us consider another following test function. 

𝑓(𝑥) = sin(𝑥)+q, 𝑥 ∈ [0,2𝜋], (30) 

where q indicates noise and is a normally distributed 

deviate with zero mean and unit variance. To measure 

the effect of noise on the function, we use the signal-

to-noise ratio (SNR) (Trussel, 2008). This is usually 

defined as the ratio of signal power 𝜎𝑓
2 , to noise 

power 𝜎𝑞
2,  

SNR =
𝜎𝑓

2

𝜎𝑞
2

,   (31) 

and in decibels 

SNRdB = 10log10 (
𝜎𝑓

2

𝜎𝑞
2

). (32) 

In ℂ30, the function power is usually estimated by the 
simple summation 

𝜎𝑓
2 =

1

30
∑{𝑓(𝑥𝑖) − 𝜇𝑓}

2
,

30

𝑖=1

 (33) 

where 𝜇𝑓  is the mean of the function. Figure 5 
illustrates the mean square error versus the number of 
eigenvectors with noise. The SNR in example 1 
(Ex.1) is 18.019354, example 2 (Ex. 2) is 8.476929 
and example 3 (Ex. 3) is 4.039954. From Fig. 5, we 
can see that the original test function is reconstructed 
in the state that is almost perfection if SNR increases. 
In general, it is difficult for the small value of SNR to 
reconstruct original test function completely. Figure 
6 illustrates the mean square error versus the number 
of eigenvectors for the phase without noise. The mean 
square error is defined by 

Error(𝑛) = ‖𝒗𝑛 − 𝒗‖2. (34) 

From Fig. 6, we can see also that the error decreases 
with increasing number of eigenvectors used in the 
expansion for the phase. 

5 CONCLUSIONS 

Band-limited effects with respect to Fourier 
transform have already been investigated and well 
known. However, those with respect to Fresnel 
transform have not been studied and revealed 

sufficiently. We have investigated the band-limited 
effect in Fresnel transform plane. For that, we have 
sought the function that its total power in finite 
Fresnel transform plane is maximized, on condition 
that an input signal is zero outside the bounded 
region. We have shown that this leads to the 
eigenvalue problems of Fredholm integral equation of 
the first kind. It is important to reveal the 
mathematical properties of the integral equation for 
finite Fresnel transform. Orthogonal eigenfunctions 
are derived from its properties. Orthogonal functional 
systems are significant tools in analysing a diffraction 
image. We have also shown that the eigenfunctions 
corresponding to distinct eigenvalues have dual 
orthogonal property. These functional systems and its 
properties show clearly the relation between 
functions and their Fresnel transforms. It is difficult 
in general to seek the strict solution of the integral 
equation. So we desired to seek the approximate 
solution in practical exact accuracy. Furthermore, we 
applied it to the problem of approximating a function 
and evaluated the error. We confirmed the validity of 
the eigenvectors for finite Fresnel transform by 
computer simulations. 

In this study, there are many parameters, 
especially, the band-limited areas 𝑆, 𝑅 , the wave 
number 𝑘 and the normal distance 𝑧. It is necessary to 
consist of orthogonal functional systems with the 
optimal parameters for finite Fresnel transform in 
application of an optical system. Moreover, in 
general, the matrix given by discretizing the kernel of 
the integral equation is not the Hermitian matrix. If 
so, it is difficult to compute accurately all eigenvalues 
and eigenvectors. It is also necessary to consider other 
computational methods for this. Although the kernel 
function was discretizing at 30 point, it is necessary 
to increase the number of sampling points. Although 
we considered only one dimensional Fresnel 
transform, it is necessary to derive the integral 
equation for the two dimensional Fresnel transform. 
These become the future problems. Theoretically, it 
is important to search for a spectral representation of 
finite Fresnel transform which are defined as a 
bounded linear operator in Hilbert space. 
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APPENDIX 

The delta function can be defined as follows 

(Goodman, 2005);  

δ(𝑥) = lim
𝑁→∞

𝑁sinc(𝑁𝑥), (35) 

where 

sinc(𝑥) =
sin(𝜋𝑥)

𝜋𝑥
. (36) 

Noting that 

 

 

 

 

∫ exp {𝑖
1

𝑧
(𝑥 − 𝑥′)𝜉} 𝑑𝜉

𝑁

−𝑁

 

= [exp {𝑖
1

𝑧
(𝑥 − 𝑥′)𝑁}

− exp {−𝑖
1

𝑧
(𝑥 − 𝑥′)𝑁}] 

/ {𝑖
1

𝑧
(𝑥 − 𝑥′)} 

=
2𝑧

𝑥 − 𝑥′
sin

1

𝑧
(𝑥 − 𝑥′)𝑁, 

(37) 

we can define 𝑆𝑁(∙) as following. 

𝑆𝑁(𝑥 − 𝑥′) = sin
𝜋

𝑧
(𝑥 − 𝑥′)𝑁

/ {
𝜋

𝑧
(𝑥 − 𝑥′)𝑁} 

=
𝑥 − 𝑥′

2𝑧
∫ exp {𝑖

1

𝑧
(𝑥 − 𝑥′)𝜉} 𝑑𝜉

𝜋𝑁

−𝜋𝑁

∕ {
𝜋

𝑧
(𝑥 − 𝑥′)𝑁} 

=
1

2𝜋𝑁
∫ exp {𝑖

1

𝑧
(𝑥 − 𝑥′)𝜉} 𝑑𝜉

𝜋𝑁

−𝜋𝑁

. 

(38) 

We conclude that 

δ(𝑥 − 𝑥′) = lim
𝑁→∞

𝑁𝑆𝑁(𝑥 − 𝑥′) 

=
1

2𝜋
∫ exp {𝑖

1

𝑧
(𝑥 − 𝑥′)𝜉} 𝑑𝜉

∞

−∞

. 
(39) 
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